Trimonoecy in flowering plants
- Autores: Godin V.N.1
-
Afiliações:
- Central Siberian Botanical Garden SB RAS
- Edição: Volume 110, Nº 7 (2025)
- Páginas: 619-633
- Seção: REVIEWS
- URL: https://bakhtiniada.ru/0006-8136/article/view/308721
- DOI: https://doi.org/10.31857/S0006813625070017
- EDN: https://elibrary.ru/hlobwp
- ID: 308721
Citar
Resumo
Trimonoecious plant populations consist of individuals that have staminate, pistillate, and perfect flowers. Trimonoecy is very rare in angiosperms, and knowledge about it is extremely sparse. Based on literature data and personal research, a list of trimonoecious plants in the world flora has been compiled, which includes 73 species from 44 genera belonging to 29 families and 19 orders of angiosperms. Trimonoecy occurs in 6.9% of families, 0.3% of genera, and 0.025% of species in angiosperms. Trimonoecious species have not been identified in the group of basal angiosperms and magnoliids. The highest proportion of trimonoecious species occurs within the monocots: 20.0% of families, 0.7% of genera, and 0.05% of species, while the vast majority of trimonoecious plants (80.3% of all species) are found among the Superrosids (27 species) and Superasterids (32 species). Five families are particularly noted for having trimonoecious species: Apiaceae (16 species from 2 genera), Amaranthaceae (7 species from 3 genera), Cleomaceae (6 species from 2 genera), Commelinaceae (5 species from 1 genus), and Poaceae (4 species from 4 genera). Slightly less than half of all trimonoecious species belong to five genera: Heracleum L. (13 species), Aneilema R.Br. (5), Cleome L. (5), Amaranthus L. (4), and Lomatium Raf. (3). The relationship and possible correlation of trimonoecy with such biological and ecological characteristics as life form, mode of pollination, perianth color, pericarp consistency, presence of related monoecious taxa, geographical latitude of occurrence, and distribution along floristic phytochorions has been analyzed and is presented herein. The article ultimately discusses the dimensional differences in the perianths of the three flower types, pollen fertility and pollen productivity of perfect and staminate flowers, the location and ratio of perfect, staminate, and pistillate flowers on individuals, as well as the mechanisms of the origin and evolution of trimonoecy in angiosperms.
Palavras-chave
Sobre autores
V. Godin
Central Siberian Botanical Garden SB RAS
Autor responsável pela correspondência
Email: vn.godin@mpgu.su
Zolotodolinskaya Str., 101, Novosibirsk, 630090, Russia
Bibliografia
- Anton A.M., Connor H.E., Astegian M.E. 1998. Taxonomy and floral biology of Scleropogon (Eragrostideae: Grami- neae). – Plant Species Biol. 13(1): 35–50. https://doi.org/10.1111/j.1442-1984.1998.tb00246.x
- Aona L.Y.S, Amaral M.C.E. 2003. Halogaraceae. – In: Wanderley M.G.L., Shepherd G.J., Melhem T.S., Giulietti A.M., Kirizawa M. (eds.). Flora Fanerogâmica do Estado de São Paulo. Vol. 3. São Paulo. P. 105–108.
- Bannikova V.A. 1976. Morphology of panicle and peculiarities of flowering of Zizania latifolia (Griseb.) Stapf. – Bot. Zhurn. 61(7): 990–993 (In Russ.).
- Belyaeva I.V., Epanchintseva O.V., McGinn K., Govaerts R.H.A. 2021. The application of scientific names to plants: Salix alba L. f. tristis Gaudin and related taxa (Salicaceae). – Skvortsovia: International Journal of Salicology and Plant Biology. 7(3): 15–23. https://doi.org/10.51776/2309-6500_2021_7_3_15
- Billard E., Serrão E.A., Pearson G.A., Engel C.R., Destombe C., Valero M. 2005. Analysis of sexual phenotype and prezygotic fertility in natural populations of Fucus spiralis, F. vesiculosus (Fucaceae, Phaeophyceae) and their putative hybrids. – Eur. J. Phycol. 40(4): 397–407. https://doi.org/10.1080/09670260500334354
- Bobrov A.V., Melikian A.P., Romanov M.S. 2009. Morphogenesis of fruits of Magnoliophyta. Moscow. 400 p. (In Russ.).
- Bullock S.H. 1985. Breeding systems in the flora of a tropical deciduous forest in Mexico. – Biotropica. 17(4): 287–301. https://doi.org/10.2307/2388591
- Burrows G.E., Tyrl R.J. 2013. Toxic plants of North America. 1392 p. https://doi.org/10.1002/9781118413425
- Cardoso J.C.F., Viana M.L., Matias R., Furtado M.T. Caetano A.P.S., Consolaro H., Brito V.L.G. 2018. Towards a unified terminology for angiosperm reproductive systems. – Acta Bot. Bras. 32(3): 329– 348. https://doi.org/10.1590/0102-33062018abb0124
- Cardoso-Gustavson P., Demarco D., Carmello-Guerreiro S.M. 2011. Evidence of trimonoecy in Phyllanthaceae: Phyllanthus acidus. – Plant Syst. Evol. 296(3/4): 283–286. https://doi.org/10.1007/s00606-011-0494-3
- Charlesworth B., Charlesworth D. 1978. A model for the evolution of dioecy and gynodioecy. – Am. Nat. 112(998): 975–997. https://doi.org/10.1086/283342
- Chinchilla I.F. 2020. A new tree species of Cupania (Sapindoideae, Sapindaceae) from Quepos, Costa Rica. – Phytotaxa 475(3): 178–186. https://doi.org/10.11646/phytotaxa.475.3.2
- Cole T.C.H., Hilger H.H., Stevens P.F. 2019. Angiosperm Phylogeny Poster (APP) – Flowering plant systematics, 2019. PeerJPreprints, 7e2320v6. https://doi.org/10.7287/peerj.preprints.2320v6
- Croat T.B. 1978. Flora of Barro Colorado Island. Stanford University Press. 943 p.
- Cruden R.W., Lloyd R.M. 1995. Embryophytes have equi- valent sexual phenotypes and breeding systems: why not a common terminology to describe then? – Am. J. Bot. 82(6): 816–825. https://doi.org/10.1002/j.1537-2197.1995.tb15694.x
- Darrach M.E. 2014. Lomatium knokei (Apiaceae), a new, narrowly endemic species from Washington State. – Phytoneuron. 2014–108: 1–12.
- Darrach M.E. 2018. Lomatium roneorum (Apiaceae), a new species from the east slopes of the Cascade Mountains, Washington state. – Phytoneuron. 2018–78: 1–12.
- Darrach M.E., Hinchliff C.E. 2014. Lomatium tarantuloides (Apiaceae), a new narrowly endemic species from northeast Oregon. – Phytoneuron. 2014–27: 1–8.
- Darwin C. 1877. The different forms of flowers on plants of the same species. London. 352 p.
- Dasumiati, Miftahudin, Triadiati T., Hartana A. 2017. Sex types in flowering of Jatropha curcas. – Biodiversitas. 18(1): 442–446. https://doi.org/10.13057/biodiv/d180158
- Davidse G., Ellis R.P. 1984. Steyermarkochloa unifolia, a new genus from Venezuela and Colombia (Poaceae: Arundinoideae: Steyermarkochloeae). – Ann. Missouri Bot. Gard. 71(4): 994–1012. https://doi.org/10.2307/2399237
- Dempster L.T. 1990. The genus Galium (Rubiaceae) in South America. IV. – Allertonia. 5(3): 283–345.
- Demyanova E.I. 2000. Monoecy. – In: Embryology in flowering plants. Terminology and concepts. Vol. 3. Reproductive systems. Saint-Petersburg. P. 75–78 (In Russ.).
- Demyanova E.I. 2011. The spectrum of sexual types and forms in the local floras of the Urals (Cis- and Trans-Urals). – Bot. Zhurn. 96(10): 1297–1315 (In Russ.). https://doi.org/10.1134/S1234567811100016
- Dommée B., Denelle N., Rioux J.-A. 1984. Proportions des sexes dans deux populations françaises de Thymelaea hirsuta (L.) Endl. – Bull. Soc. Bot. France. Let. Bot. 131(3): 201–205. https://doi.org/10.1080/01811797.1984.10824631
- Dransfield J., Uhl N.W., Asmussen C.B., Baker W.J., Harley M.M., Lewis C.E. 2008. Genera Palmarum. The evolution and classification of palms. International Palm Society. 744 p.
- Endress P.K. 1970. Die Infloreszenzen der apetalen Hamame- lidaceen, ihre grundsatzliche morphologische und systematische Bedeutung. – Bot. Jahrb. Syst. 90: 1–54.
- Errera L., Gevaert G. 1878. Sur la structure et les modes de fécondation des fleurs et en particulier sur l’hétérostylie du Primula elatior. – Bull. Soc. roy. bot. Belg. 17(1): 38–248.
- Faden R.B. 1991. The morphology and taxonomy of Aneilema R. Brown (Commelinaceae). – Smithsonian Contributions to Botany. 76: 1–166. https://doi.org/10.5479/si.0081024X.76
- FitzJohn R.G., Pennell M.W., Zanne A.E., Stevens P.F., Tank D.C., Cornwell W.K. 2014. How much of the world is woody? – J. Ecol. 102(5): 1266–1272. https://doi.org/10.1111/1365-2745.12260
- Fleming T.H. 1991. Fruiting plant-frugivore mutualism: the evolutionary theater and the ecological play. – In: Plant-animal interactions: Evolutionary ecology in tropical and temperate regions. New York. P. 119–144.
- Fox J. 1985. Incidence of dioecy in relation to growth form, pollination and dispersal. – Oecologia. 67(2): 244–249. https://doi.org/10.1007/BF00384293
- Frodin D.G. 2001. Guide to standard floras of the world. An annotated, geographically arranged systematic bibliography of the principal floras, enumerations, checklists and chorological atlases of different areas. Cambridge University Press. 1126 p.
- Godin V.N. 2007. Sex differentiation in plants. Terms and notions. – Zhurn. obsh. biol. 68(2): 98–108 (In Russ.).
- Godin V.N. 2017. Sexual forms and their ecological correlates of flowering plants in Siberia. – Russ. J. Ecol. 48(5): 433–439. https://doi.org/10.1134/S1067413617050058
- Godin V.N. 2019. Distribution of gynodioecy in APG IV system. – Bot. Zhurn. 104(5): 669–683 (In Russ.). https://doi.org/10.1134/S0006813619050053
- Godin V.N. 2020. Distrbution of gynodioecy in flowering plants. – Bot. Zhurn. 105(3): 236–252 (In Russ.). https://doi.org/10.31857/S0006813620030023
- Godin V.N. 2022. Trioecy in flowering plants. – Dokl. Biol. Sci. 507(1): 301–311. https://doi.org/10.1134/S0012496622060023
- Godin V.N. 2025. Trimonoecy in Galium rivale (Rubiaceae). – Bot. Zhurn. 110(2): 150–158 (In Russ.). https://doi.org/10.31857/S0006813625020037
- Godin V.N., Ialamova J.I. 2020. Sexual types of flowers morphology in Heracleum sibiricum (Apiaceae). – BIO Web of Conferences. 24: 00025. https://doi.org/10.1051/bioconf/20202400025
- Heywood V.H. 1976. Phalacrocarpum Willk. – Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D.A. (eds.). Flora Europaea. Vol. 4. Plantaginaceae to Compositae (and Rubiaceae). Cambridge. P. 172.
- Jong T.J., Shmida A., Thuijsman F. 2008. Sex allocation in plants and the evolution of monoecy. – Evol. Ecol. Res. 10(8): 1087–1109.
- Kier G., Mutke J., Dinerstein E., Ricketts T.H., Küper W., Kreft H., Barthlott W. 2005. Global patterns of plant diversity and floristic knowledge. – J. Biogeogr. 32(7): 1107–1116. https://doi.org/10.1111/j.1365-2699.2005.01272.x
- Kirchner E.O.O. 1888. Flora von Stuttgart und Umgebung. Stuttgart. 767 p.
- Knuth P. 1898. Handbuch der Blütenbiologie. Bd. II. T. I. Leipzig. 697 S.
- Knuth P. 1899. Handbuch der Blütenbiologie. Bd. II. T. II. Leipzig. 705 S.
- Knuth P. 1904. Handbuch der Blütenbiologie. Bd. III. T. I. Leipzig. 570 S.
- Lenz L.W. 1995. A new species of Hechtia (Bromeliaceae, Pitcairnoideae) from the Cape Region, Baja California Sur, Mexico. – Aliso. 14(1): 59–61. https://doi.org/10.5642/aliso.19951401.06
- Leroy J.-F. 1952. Fam. 54. Ulmacées. – In: Flore de Madagascar et des Comores: plantes vasculaires. Paris. 18 p.
- Les D.H. 2017. Aquatic dicotyledons of North America: eco- logy, life history, and systematics. 1350 p. https://doi.org/10.1201/9781315118116
- Les D.H. 2020. Aquatic monocotyledons of North America: ecology, life history, and systematics. 568 p. https://doi.org/10.1201/b22197
- Linnæus C. 1735. Systema naturæ, sive regna tria naturæ systematice proposita per classes, ordines, genera, & species. Lugduni Batavorum. 12 p.
- Liogier A.H. 1985. Descriptive flora of Puerto Rico and adjacent islands. Vol. 1. Spermatophyta. Casuarinaceae to Connaraceae. Universidad De Puerto Rico. 352 p.
- Ma R., Xu Q., Gao Y., Peng D., Sun H., Song B. 2024. Patterns and drivers of plant sexual systems in the dry-hot valley region of southwestern China. – Plant Divers. 46(2): 158–168. https://doi.org/10.1016/j.pld.2023.07.010
- Mangla Y., Das K., Bali S., Ambreen H., Raina S., Tandon R., Goel S. 2019. Occurrence of subdioecy and scarcity of gender-specific markers reveal an ongoing transition to dioecy in Himalayan seabuckthorn (Hippophae rhamnoides ssp. turkestanica). – Heredity. 122(1): 120–132. https://doi.org/10.1038/s41437-018-0084-z
- Ollerton J., Johnson S., Hingston A. 2006. Geographical variation in diversity and specificity of pollination systems. – In: Plant – pollinator interactions: from specialization to generalization. Univ. Chicago Press. P. 283–308.
- Ollerton J., Winfree R., Tarrant S. 2011. How many flowering plants are pollinated by animals? – Oikos. 120(3): 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x
- Pammel L.H. 1892. Notes on the pollination of Cucurbits. – Proc. Iowa Acad. Sci. 1(3): 79.
- Parma D.F., Souza K.F., Vaz M.G.M.V., Martins S.B., Araújo W.L., Zsögön A., Weber A.P.M., Schranz M.E., Nunes-Nesi A. 2023. Exploring the diversity of sexual systems and pollination in Brazilian Cleomaceae species. – Flora. 300: 152245. https://doi.org/10.1016/j.flora.2023.152245
- Pendleton R.L., Pendleton B.K., Harper K.T. 1989. Breeding systems of woody plant species in Utah. – In: Proceedings–symposium on shrub ecophysiology and biotechno- logy. Logan. P. 5–22.
- Pringle J.S. 2011. Five new species of South American Gentianella (Gentianaceae). – Novon. 21(1): 78–89. https://doi.org/10.3417/2008086
- Ramírez N. 2005. Plant sexual systems, dichogamy, and herkogamy in the Venezuelan Central Plain. – Flora. 200: 30–48. https://doi.org/10.1016/j.flora.2005.01.002
- Raunkiær C. 1934. The life forms of plants and statistical plant geography. Oxford. 632 p.
- Reyna J.M.M., Erives S.A. 2010. Bases morfológicas de cómo pudo haberse originado el dimorfismo sexual en el pasto Búfalo. – Revista Fitotecnia Mexicana. 33(4): 69–73.
- Rohwer J., Kubitzki K. 1984. Salix martiana, a regularly hermaphrodite willow. – Plant Syst. Evol. 144: 99–101. https://doi.org/10.1007/BF00986668
- Ross M.D. 1978. The evolution of gynodioecy and subdioecy. – Evolution. 32(1): 174–188. https://doi.org/10.1111/j.1558-5646.1978.tb01107.x
- Sazyperova I.F. 1984. Heracleum species of the USSR – new fodder plants. Leningrad. 223 p. (In Russ.).
- Serebryakov I.G. 1962. Ecological Morphology of Plants. Moscow. 378 p. (In Russ.).
- Small J.K. 1903. Flora of the southeastern United States; being descriptions of the seed-plants, ferns and fern-allies growing naturally in North Carolina, South Carolin, Georgia, Florida, Tennessee, Alabama, Mississippi, Arkansas, Louisiana and the Indian territory and in Oklahoma and Texas east of the one-hundredth meridian. New York. 1394 p.
- Sokal R.R., Rohlf F.J. 2012. Biometry: the principles and practice of statistics in biological research. 4th edition. New York. 937 p.
- Stout A.B. 1923. Alternation of sexes and intermittent production of fruit in the spider flower (Cleome spinosa). – Am. J. Bot. 10(2): 57–66. https://doi.org/10.2307/2435573
- Sun P., Nishiyama S., Li H., Mai Y., Han W., Suo Y., Liang C., Du H., Diao S., Wang Y., Yuan J., Zhang Y., Tao R., Li F., Fu J. 2023. Genetic insights into the dissolution of dioecy in diploid persimmon Diospyros oleifera Cheng. – BMC Plant Biol. 23(1): 606. https://doi.org/10.1186/s12870-023-04610-3
- Suo Z., Hashizume H. 1995. Flower-bearing habits, flowering, pollination, pollen production and pollen dispersal in Zelkova serrata Makino. – J. Japan. Forest. Soc. 77(4): 332–339 (In Jap.). https://doi.org/10.11519/jjfs1953.77.4_332
- Takhtajan A.L. 1986. The floristic regions of the world. UC Press, Berkeley. 522 p.
- Talamali A., Dutuit P., Le Thomas A., Gorenflot R. 2001. Polygamie chez Atriplex halimus L. (Chenopodiaceae). – C. R. Acad. Sci. Ser. III. Sciences de la vie. 324(2): 107–113. https://doi.org/10.1016/s0764-4469(00)01273-7
- Tamamshyan S.G. 1959. Genus 1470. Turczaninowia DC. – In: Flora of the USSR. Vol. 25. Moscow, Leningrad. P. 136–138 (In Russ.).
- Tanimoto T. 2007. Modification of sex expression in Sagittaria latifolia by the application of gibberellic acid and paclobutrazol. – J. Japan. Soc. Hort. Sci. 76(1): 47–53. https://doi.org/10.2503/jjshs.76.47
- Tkachenko K.G. 1989. Features of flowering and seed productivity of some species of Heracleum L. grown in the Leningrad region. – Rastitelnye resursy. 25(1): 52–61 (In Russ.).
- Torices R., Mendez M., Gómez J.M. 2011. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms. – New Phytol. 190(1): 234–248. https://doi.org/10.1111/j.1469-8137.2010.03609.x
- Trivedi R.N., Roy R.P. 1973. Cytogenetics of Momordica charantia and its polyploids. – Cytologia. 38(2): 317–325. https://doi.org/10.1508/cytologia.38.317
- Tseng Y.-H., Hsieh C.-F., Hu J.-M. 2008. Incidences and ecological correlates of dioecious angiosperms in Taiwan and its outlying Orchid Island. – Bot. Stud. 49(3): 261–276.
- Vary L.B., Gillen D.L., Randrianjanahary M., Lowry II P.P., Sakai A.K., Weller S.G. 2011. Dioecy, monoecy, and their ecological correlates in the littoral forest of Madagascar. – Biotropica. 43(5): 582–590. https://doi.org/10.1111/j.1744-7429.2010.00742.x
- Wang H.-F., Friedman C.R., Zhu Z.-X., Qin H.-N. 2009. Early reproductive developmental anatomy in Decaisnea (Lardizabalaceae) and its systematic implications. – Ann. Bot. 104(6): 1243–1253. https://doi.org/10.1093/aob/mcp232
- Wilson P.G. 1983. A taxonomic revision of the tribe Chenopodieae (Chenopodiaceae) in Australia. – Nuytsia: journal of the Western Australian Herbarium. 4(2): 135–262. https://doi.org/10.58828/nuy00074
- Xia F., Cheng F., Liu Z., Lin L., Wang H., Wang G. 2020. Sexual system and ecological links of flowering plants in Changbai Mountain. – Russ. J. Ecol. 51(4): 345–350. https://doi.org/10.1134/S1067413620040062
- Yonemori K., Sugiura A., Tanaka K., Kameda K. 1993. Floral ontogeny and sex determination in monoecious-type persimmons. – J. Am. Soc. Hort. Sci. 118(2): 293–297. https://doi.org/10.21273/JASHS.118.2.293
Arquivos suplementares
