Optimization of the Method for Measuring 2,3-Diphosphoglycerate in Erythrocytes Using 31P NMR Analysis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It has been shown by 31P NMR spectroscopy that reducing the number of washes of rat erythrocytes significantly increases the stability of 2,3-diphosphoglycerate in these samples. The level of 2,3-diphosphoglycerate remains unchanged for 3.5 hours with a single wash and for 4 hours without washing. At the same time, with standard double washing, the content of 2,3-diphosphoglycerate decreases already after 2.5 hours. Analysis of its distribution between red blood cells and removed plasma, as well as analysis of the serum of one animal, showed that all 2,3-diphosphoglycerate remains in the suspension of red blood cells and is absent in plasma and serum. The results obtained should be taken into account when working with intact erythrocytes.

About the authors

M. V Molchanov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

A. Ye Yegorov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

A. V Kholina

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

E. A Kalabina

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

N. A Borozdina

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

S. I Baydarova

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

M. S Kazakova

Branch of Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

E. V Arshintseva

LLC “Medical emulsions”

Serpukhov, Moscow Region, Russia

S. Yu Pushkin

LLC “Medical emulsions”

Serpukhov, Moscow Region, Russia

M. A Timchenko

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: maria_timchenko@mail.ru
Pushchino, Moscow Region, Russia

References

  1. Hickey T. M., Uddin D. E., and Kiesow L. A. Measurement of Erythrocyte 2,3-diphosphoglycerate with a centrifugal analyzer. Clin. Chem., 25 (7), 1314–1317 (1979). doi: 10.1093/clinchem/25.7.1314
  2. Tellone E., Barreca D., Russo A., Galtieri A., and Ficarra S. New role for an old molecule: The 2,3-diphosphoglycerate case. Biochim. Biophys. Acta. General Subjects, 1863 (10), 1602–1607 (2019).doi: 10.1016/j.bbagen.2019.07.002
  3. Clerbaux T., Detry B., Reynaert M., and Frans A. Right shift of the oxyhemoglobin dissociation curve in acute respiratory distress syndrome. Pathologie-biologie, 45 (4), 269–273 (1997).
  4. Illuchev D., Kostianev S., Hristova A., Yanev I., Ovanesyan M., and Ivanova M. Relationships between blood oxygen parameters in patients with chronic obstructive lung disease. Folia medica, 35 (1–2), 5–21 (1993).
  5. Grewal A. Anaemia and pregnancy: Anaesthetic implications. Ind. J. Anaesthesia, 54 (5), 380–386 (2010).doi: 10.4103/0019-5049.71026
  6. Willcocks J. P., Mulquiney P. J., Ellory J. C., Veech R. L., Radda G. K., and Clarke K. Simultaneous determination of low free Mg2+ and pH in human sickle cells using 31P NMR spectroscopy. J. Biol. Chem., 277 (51), 49911– 49920 (2002). doi: 10.1074/jbc.M207551200
  7. Jabłońska-Skwiecinśka E., Staniszewska K., and Kowalska H. The red cell sodium, potassium, inorganic phosphate, ATP and 2,3DPG concentrations in chronic renal failure. Folia Haematol., 114 (4), 493–495 (1987).
  8. Alvarez-Sala J. L., Urbán M. A., Sicilia J. J., Diaz Fdez A. J., Fdez Mendieta F., and Espinós D. Red-cell 2,3-diphosphoglycerate in patients with hyperthryoidism. Acta Endocrinol., 93 (4), 424–429 (1980).doi: 10.1530/acta.0.0930424
  9. Chowdhury A. and Dasgupta R. Effects of acute hypoxic exposure on oxygen affinity of human red blood cells. Appl. Optics, 56 (3), 439–445 (2017).doi: 10.1364/AO.56.000439
  10. Böning D., Maassen N., Jochum F., Steinacker J., Halder A., Thomas A., Schmidt W., Noé G., and Kubanek B. After-effects of a high altitude expedition on blood. International journal of sports medicine, 18 (3), 179– 185 (1997). doi: 10.1055/s-2007-972616
  11. Hespel P., Lijnen P., Fagard R., Van Hoof R., Goossens W., and Amery A. Effects of training on erythrocyte 2,3-diphosphoglycerate in normal men. Eur. J. Appl. Physiol. Occupat. Physiol., 57 (4), 456–461 (1988). doi: 10.1007/BF00417993
  12. Paparella P., Francesconi R., Zullo M., Giorgino R., Riccardi P., Ferrazzani S., and Mancuso S. 2,3-diphosphoglycerate in normal and pathologic pregnancy: relationship to neonatal weight. Am. J. Obstetrics Gynecol., 160 (3), 662–666 (1989). doi: 10.1016/s0002-9378(89)80053-5
  13. Kanter Y., Gerson J. R., and Bessman A. N. 2,3-diphosphoglycerate, nucleotide phosophate, and organic and inorganic phosphate levels during the early phases of diabetic ketoacidosis. Diabetes, 26 (5), 429–433 (1977).doi: 10.2337/diab.26.5.429
  14. Takeda E. Calcium pros and cons significance and risk of phosphorus supplementation. The necessity of phosphorus supplementation for hypophosphatemia. Clin. Calcium, 21 (12), 167–170 (2011).
  15. Rumi E., Passamonti F., Pagano L., Ammirabile M., Arcaini L., Elena C., Flagiello A., Tedesco R., Vercellati C., Marcello A. P., Pietra D., Moratti R., Cazzola M., and Lazzarino M. Blood p50 evaluation enhances diagnostic definition of isolated erythrocytosis. J. Internal Med., 265 (2), 266–274 (2009).doi: 10.1111/j.1365-2796.2008.02014.x
  16. Correra A., Graziano J. H., Seaman C., and Piomelli S. Inappropriately low red cell 2,3-diphosphoglycerate and p50 in transfused beta-thalassemia. Blood, 63 (4), 803– 806 (1984).
  17. Campbell-Lee S. and Ness P. Packed red blood cells and related products. Blood Banking and Transfusion Medicine, 250–258 (2007).doi: 10.1016/B978-0-443-06981-9.50023-5
  18. Teunissen A. J., de Leeuw R. J. M., Boink A. B. T. J., Hamelink M. L., and Maas A. H. J. Comparison of five methods for determination of 2,3-diphosphoglycerate in blood. Clin. Chem., 20 (6), 649–655 (1974).doi: 10.1093/clinchem/20.6.649
  19. Maeda N., Chang H., Benesch R., and Benesch R. E. A simple enzymatic method for the determination of 2,3-diphosphoglycerate in small amounts of blood. New Engl. J. Med., 284 (22), 1239–1242 (1971).doi: 10.1056/NEJM197106032842204
  20. Takebayashi Y., Mitsuma R., and Imanari T. Determination of 2,3-diphosphoglycerate in red blood cells by high performance liquid chromatography. Anal. Sci. 3, 569– 572 (1987). doi: 10.2116/analsci.3.569
  21. Kim H., Kosinski P., Kung C., Dang L., Chen Y., Yang H., Chen Y. S., Kramer J., and Liu G. A fit-for-purpose LC-MS/MS method for the simultaneous quantitation of ATP and 2,3-DPG in human K2EDTA whole blood. J. Chromatography, 162, 89–96 (2017).doi: 10.1016/j.jchromb.2017.07.010
  22. Rae C., Sweeney K., Krockenberger A., Agar N., Gallagher C., and Kuchel P. Comparison of the 1H and 31P NMR spectra of erythrocytes and plasma from some Australian native animals: Bandicoot, Echidna, Koala, Little Penguin, Tammar Wallaby, Tasmanian Devil, Tree Kangaroo and Wombat. Comp. Haematol. Int., 3, 71–80 (1993). doi: 10.1007/BF00368109
  23. Mitsumori F. Phosphorus-31 nuclear magnetic resonance studies on intact erythrocytes. Determination of intracellular pH and time course changes in phosphorus metabolites. J. Biochem., 97 (6), 1551–1560 (1985).doi: 10.1093/oxfordjournals.jbchem.a135212
  24. Petersen A., Kristensen S. R., Jacobsen J. P., and Hørder M. 31P-NMR measurements of ATP, ADP, 2,3diphosphoglycerate and Mg2+ in human erythrocytes. Biochim. Biophys. Acta, 1035 (2), 169–174 (1990).doi: 10.1016/0304-4165(90)90112-a
  25. Henderson T. O., Costello A. J., and Omachi A. Phosphate metabolism in intact human erythrocytes: determination by phosphorus-31 nuclear magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA, 71 (6), 2487– 2490 (1974). doi: 10.1073/pnas.71.6.2487
  26. Кручинина М. В., Курилович С. А., Паруликова М. В., Громов А. А. и Шакиров М. М. 31Р ЯМРспектроскопия эритроцитов и фиброз печени: пилотное исследование. Бюл. СО РАМН, 4 (122), 108– 115 (2006).
  27. Scott A. V., Nagababu E., Johnson D. J., Kebaish K. M., Lipsitz J. A., Dwyer I. M., Zuckerberg G. S., BarodkaV. M., Berkowitz D. E., and Frank S. M. 2,3-Diphosphoglycerate concentrations in autologous salvaged versus stored red blood cells and in surgical patients after transfusion. Anesth Analg., 122 (3), 616–623 (2016).doi: 10.1213/ANE.0000000000001071
  28. Маковский А. А., Бархатова Л. И., Ткачева Н. В., Потольянова Е. В. и Санникова Н. В. Опыт применения отмытых эритроцитов. Мед. сестра, 4, 30–33 (2019). doi: 10.29296/25879979-2019-04-08
  29. Cardigan R., New H. V., Tinegate H., and Thomas S. Washed red cells: theory and practice 2020 International Society of Blood Transfusion. Vox Sanguinis., 115, 606– 616 (2020).
  30. Lee G. and Goosens K. A. Sampling blood from the lateral tail vein of the rat. J. Vis. Exp., 99, e52766 (2015).doi: 10.3791/52766

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).