ОКТАКАЛЬЦИЕВЫЙ ФОСФАТ, ДОПИРОВАННЫЙ КАТИОНАМИ БАРИЯ, ДЛЯ ПРИМЕНЕНИЯ В ТКАНЕВОЙ ИНЖЕНЕРИИ
- Авторы: Смирнов И.В1, Смирнова П.В1, Тетерина А.Ю1, Минайчев В.В1,2, Кобякова М.И1,2, Салынкин П.С2, Звягина А.И2, Пятина К.В1,2, Мещерякова Е.И2, Фадеева И.С1,2, Баринов С.М1, Комлев В.С1
-
Учреждения:
- Институт металлургии и материаловедения им. А.А. Байкова РАН
- Институт теоретической и экспериментальной биофизики РАН
- Выпуск: Том 70, № 2 (2025)
- Страницы: 333-346
- Раздел: Биофизика клетки
- URL: https://bakhtiniada.ru/0006-3029/article/view/292985
- DOI: https://doi.org/10.31857/S0006302925020124
- EDN: https://elibrary.ru/KYYYQQ
- ID: 292985
Цитировать
Аннотация
Об авторах
И. В Смирнов
Институт металлургии и материаловедения им. А.А. Байкова РАНМосква, Россия
П. В Смирнова
Институт металлургии и материаловедения им. А.А. Байкова РАНМосква, Россия
А. Ю Тетерина
Институт металлургии и материаловедения им. А.А. Байкова РАНМосква, Россия
В. В Минайчев
Институт металлургии и материаловедения им. А.А. Байкова РАН; Институт теоретической и экспериментальной биофизики РАНМосква, Россия; Пущино, Россия
М. И Кобякова
Институт металлургии и материаловедения им. А.А. Байкова РАН; Институт теоретической и экспериментальной биофизики РАНМосква, Россия; Пущино, Россия
П. С Салынкин
Институт теоретической и экспериментальной биофизики РАНПущино, Россия
А. И Звягина
Институт теоретической и экспериментальной биофизики РАНПущино, Россия
К. В Пятина
Институт металлургии и материаловедения им. А.А. Байкова РАН; Институт теоретической и экспериментальной биофизики РАНМосква, Россия; Пущино, Россия
Е. И Мещерякова
Институт теоретической и экспериментальной биофизики РАНПущино, Россия
И. С Фадеева
Институт металлургии и материаловедения им. А.А. Байкова РАН; Институт теоретической и экспериментальной биофизики РАН
Email: is_fadeeva@mail.ru
Москва, Россия; Пущино, Россия
С. М Баринов
Институт металлургии и материаловедения им. А.А. Байкова РАНМосква, Россия
В. С Комлев
Институт металлургии и материаловедения им. А.А. Байкова РАНМосква, Россия
Список литературы
- Dorozhkin S. V. Calcium orthophosphate (CaPO4) containing composites for biomedical applications: Formulations, properties, and applications. J. Composites Sci., 8 (6), 218 (2024). doi: 10.3390/jcs8060218
- Минайчев В. В. Клеточные и тканевые аспекты биосовместимости кальций-фосфатных соединений, полученных низкотемпературным синтезом. Дис. … канд. биол. наук (ИТЭБ, Пущино, 2024).
- Kovrlija I., Locs J., and Loca D. Incorporation of barium ions into biomaterials: Dangerous liaison or potential revolution? Materials, 14 (19), 5772 (2021). doi: 10.3390/ma14195772
- Dorozhkin S. V. Calcium orthophosphate (CaPO4)based bioceramics: Preparation, properties, and applications. Coatings, 12 (10), 1380 (2022). doi: 10.3390/coatings12101380
- Pankratov A. S., Fadeeva I. S., Minaychev V. V., Kirsanova P. O., Senotov A. S., Yurasova Y. B., and Akatov V. S. A biointegration of micro- and nanocrystalline hydroxyapatite: problems and perspectives. Genes & Cells, 13 (3), 46–51 (2018). doi: 10.23868/201811032
- Takayanagi H., Ogasawara K., Hid, S., Chiba T., Murata S., Sato K., Takaoka A., Yokochi T., Oda H., Tanaka K., Nakamura K., and Taniguchi T. T-cell-mediated regulation of osteoclastogenesis by signalling crosstalk between RANKL and IFN-gamma. Nature, 408 (6812), 600–605 (2000). doi: 10.1038/35046102
- Okamoto K. and Takayanagi H. Osteoimmunology. Cold Spring Harbor Perspect. Med., 9 (1), a031245 (2019). doi: 10.1101/cshperspect.a031245
- Boanini E., Gazzano M., and Bigi A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater., 6 (6), 1882–1894 (2010). doi: 10.1016/j.actbio.2009.12.041
- Teterina A. Y., Smirnov I. V., Fadeeva I. S., Fadeev R. S., Smirnova P. V., Minaychev V. V., Kobyakova M. I., Fedotov A. Y., Barinov S. M., and Komlev V. S. Octacalcium phosphate for bone tissue engineering: Synthesis, modification, and in vitro biocompatibility assessment. Int. J. Mol. Sci., 22 (23), 1274 (2021). doi: 10.3390/ijms222312747
- Minaychev V. V., Smirnova P. V., Kobyakova M. I., Teterina A. Y., Smirnov I. V., Skirda V. D., Alexandrov A. S., Gafurov M. R., Shlykov M. A., Pyatina K. V., Senotov A. S., Salynkin P. S., Fadeev R. S., Komlev V. S., and Fadeeva I. S. Octacalcium phosphate for bone tissue engineering: synthesis, modification, and in vitro biocompatibility. assessment. Biomedicines, 12 (2), 263 (2024). doi: 10.3390/biomedicines12020263
- O’Neill E., Awale G., Daneshmandi L., Umerah O., and Lo K. W. The roles of ions on bone regeneration. Drug Discov. Today, 23 (4), 879–890 (2018). doi: 10.1016/j.drudis.2018.01.049
- Garbo C., Locs J., D'Este M., Demazeau G., Mocanu A., Roman C., Horovitz O., and Tomoaia-Cotisel M. Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration. Int. J. Nanomed., 15, 1037–1058 (2020). doi: 10.2147/IJN.S226630
- Mourino V., Cattalini J. P., and Boccaccini A. R. Metallic ions as therapeutic agents in tissue engineering scaffolds: An overview of their biological applications and strategies for new developments. J. Roy. Soc. Interface, 9 (68), 401–419 (2012). doi: 10.1098/rsif.2011.0611
- Li P., Jia Z., Wang Q., Tang P., Wang M., Wang K., Fang J., Zhao C., Ren F., Ge X., and Lu X. Resilient and flexible chitosan/silk cryogel incorporated with Ag/Sr codoped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. J. Mater. Chem. B, 6 (45), 7427–7438 (2018). doi: 10.1039/c8tb01672k
- Laskus A. and Kolmas J. Ionic substitutions in non-apatitic calcium phosphates. Int. J. Mol. Sci., 18 (12), 2542 (2017). doi: 10.3390/ijms18122542
- Barradas A. M., Yuan H., van Blitterswijk C. A., and Habibovic P. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur. Cells Mater., 21, 407–429 (2011). doi: 10.22203/ecm.v021a31
- Fellah B. H., Josselin N., Chappard D., and Weiss P., Layrolle P. Inflammatory reaction in rats muscle after implantation of biphasic calcium phosphate micro particles. J. Mater. Sci.: Mater. Med., 18 (2), 287–294 (2007). doi: 10.1007/s10856-006-0691-8
- Wang J., Liu D., Guo B., Yang X., Chen X., Zhu X., Fan Y., and Zhang X. Role of biphasic calcium phosphate ceramic-mediated secretion of signaling molecules by macrophages in migration and osteoblastic differentiation of MSCs. Acta Biomater., 51, 447–460 (2017). doi: 10.1016/j.actbio.2017.01.059
- Giancotti F. G. and Ruoslahti E. Integrin signaling. Science (N.Y.), 285 (5430), 1028–1032 (1999). doi: 10.1126/science.285.5430.1028
- Chen X., Wang J., Chen Y., Cai H., Yang X., Zhu X., Fan Y., and Zhang X. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J. Mater. Chem. B, 4 (13), 2280–2289 (2016). doi: 10.1021/acsbiomaterials.7b00232
- Shekaran A. and Garcia A. J. Extracellular matrix‐mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. Part A, 96 (1), 261–272 (2011). doi: 10.1002/jbm.a.32979
- Hu W. J., Eaton J. W., Ugarova T. P., and Tang L. Molecular basis of biomaterial-mediated foreign body reactions. Blood, 98 (4), 1231–1238 (2001). doi: 10.1182/blood.v98.4.1231
- Brodbeck W. G., Colton E., and Anderson J. M. Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. J. Mater. Sci.: Mater. Med., 14 (8), 671–675 (2003). doi: 10.1023/a:1024951330265
- Jenney C. R. and Anderson J. M. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J. Biomed. Mater. Res., 49 (4), 435–447 (2000). doi: 10.1002/(sici)1097-4636(20000315)49:4<435::aidjbm2>3.0.co;2-y
- Olszak I. T., Poznansky M. C., Evans R. H., Olson D., Kos C., Pollak M. R., Brown E. M., and Scadden D. T. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J. Clin. Invest., 105 (9), 1299–1305 (2000). doi: 10.1172/JCI9799
- De Bruijn J. D., Shankar K., Yuan H., and Habibovic P. Osteoinduction and its evaluation. In: Bioceramics and their clinical applications, Ed. by T. Kokubo (Woodhead Publ., Cambridge, 2008), pp. 199–219 doi: 10.1201/9781439832530
- McNally A. K. and Anderson J. M. Interleukin-4 induces foreign body giant cells from human monocytes/macrophages. Differential lymphokine regulation of macrophage fusion leads to morphological variants of multinucleated giant cells. Am. J. Pathol., 147 (5), 1487–1499 (1995).
- Kanatani M., Sugimoto T., Fukase M., and Fujita T. Effect of elevated extracellular calcium on the proliferation of osteoblastic MC3T3-E1 cells: its direct and indirect effects via monocytes. Biochem. Biophys. Res. Commun., 181 (3), 1425–1430 (1991). doi: 10.1016/0006-291x(91)92098-5
- Terkawi M. A., Matsumae G., Shimizu T., Takahashi D., Kadoya K., and Iwasaki N. Interplay between inflammation and pathological bone resorption: insights into recent mechanisms and pathways in related diseases for future perspectives. Int. J. Mol. Sci., 23 (3), 1786 (2022). doi: 10.3390/ijms23031786
- Lomovskaya Y. V., Kobyakova M. I., Senotov A. S., Fadeeva I. S., Lomovsky A. I., Krasnov K. S., and Fadeev R. S. Myeloid differentiation increases resistance of leukemic cells to TRAIL-induced death by reducing the expression of DR4 and DR5 receptors. Biochemistry (Moscow), Suppl. Ser. A: Membrane and Cell Biology, 17 (1), 43–57 (2023). doi: 10.1134/S1990747822060101
- Lomovskaya Y. V., Kobyakova M. I., Senotov A. S., Lomovsky A. I., Minaychev V. V., Fadeeva I. S., Shtatnova D. Y., Krasnov K. S., Zvyagina A. I., Akatov V. S., and Fadeev R. S. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules, 12 (2), 150 (2022). doi: 10.3390/ijms23147881
- Sabido O., Figarol A., Klein J. P., Bin V., Forest V., Pourchez J., Fubini B., Cottier M., Tomatis M., and Boudard D. Quantitative flow cytometric evaluation of oxidative stress and mitochondrial impairment in RAW 264.7 macrophages after exposure to pristine, acid functionalized, or annealed carbon nanotubes. Nanomaterials (Switzerland), 10 (2), 319 (2020). doi: 10.3390/nano10020319
- Antonaci S., Tortorella C., Polignano A., Ottolenghi A., Jirillo E., and Bonomo L. Modulating effects on CD25 and CD71 antigen expression by lectin-stimulated T lymphocytes in the elderly. Immunopharmacol. Immunotoxicol., 13 (1–2), 87–100 (1991). doi: 10.3109/08923979109019693
- Schroeder H. A., Tipton I. H., and Nason A. P. Trace metals in man: Strontium and barium. J. Chronic Dis., 25 (9), 491–517 (1972). doi: 10.1016/00219681(72)90150-6
- Peana M., Medici S., Dadar M., Zoroddu M. A., Pelucelli A., Chasapis C. T., and Bjorklund G. Environmental barium: Potential exposure and health-hazards. Archives Toxicol., 95 (8), 2605–2612 (2021). doi: 10.1007/s00204-021-03049-5
- Fadeeva I. S., Teterina A. Y., Minaychev V. V., Senotov A. S., Smirnov I. V., Fadeev R. S., Smirnova P. V., Menukhov V. O., Lomovskaya Y. V., Akatov V. S., Barinov S. M., and Komlev V. S. Biomimetic remineralized three-dimensional collagen bone matrices with an enhanced osteostimulating effect. Biomimetics (Switzerland), 8 (1), 91 (2023). doi: 10.3390/biomimetics8010091
- Teterina A. Y., Minaychev V. V., Smirnova P. V., Kobiakova M. I., Smirnov I. V., Fadeev R. S., Egorov A. A., Ashmarin A. A., Pyatina K. V., Senotov A. S., Fadeeva I. S., and Komlev V. S. Injectable hydrated calcium phosphate bone-like paste: Synthesis, in vitro, and in vivo biocompatibility assessment. Technologies, 11 (3), 77 (2023). doi: 10.3390/technologies11030077
- Minaychev V. V., Teterina A. Y., Smirnova P. V., Menshih K. A., Senotov A. S., Kobyakova M. I., Smirnov I. V., Pyatina K. V., Krasnov K. S., Fadeev R. S., Komlev V. S., and Fadeeva I. S. Composite remineralization of bonecollagen matrices by low-temperature ceramics and serum albumin: A new approach to the creation of highly effective osteoplastic materials. J. Function. Biomater., 15 (2), 27 (2024). doi: 10.3390/jfb15020027
- Sowden E. M. and Stitch S. R. Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone. Biochem. J., 67 (1), 104–109 (1957). doi: 10.1042/bj0670104
- Panahifar A., Swanston T. M., Jake Pushie M., Belev G., Chapman D., Weber L., and Cooper D. M. Three-dimensional labeling of newly formed bone using synchrotron radiation barium K-edge subtraction imaging. Physics Med. Biol., 61 (13), 5077–5088 (2016). doi: 10.1042/bj0670104
- Panahifar A., Chapman L. D., Weber L., Samadi N., and Cooper D. M. L. Biodistribution of strontium and barium in the developing and mature skeleton of rats. J. Bone Mineral Metab., 37 (3), 385–398 (2019). doi: 10.1007/s00774-018-0936-x
- Foster A. D. The impact of bipedal mechanical loading history on longitudinal long bone growth. PloS One, 14 (2), 0211692 (2019). doi: 10.1371/journal.pone.0211692
Дополнительные файлы
