Endolysins T5 and PlyG Dynamics: Comparative Analysis in silico
- Authors: Arakelian A.G1, Chuev G.N1, Mamedov T.V1, Arikov A.2, Ismailov K.R3
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- The Agricultural University of Plovdiv
- Olympic Reserve Sports School of Wrestling
- Issue: Vol 70, No 2 (2025)
- Pages: 295-304
- Section: Cell biophysics
- URL: https://bakhtiniada.ru/0006-3029/article/view/292981
- DOI: https://doi.org/10.31857/S00063029250820082
- EDN: https://elibrary.ru/KZOTQL
- ID: 292981
Cite item
Abstract
About the authors
A. G Arakelian
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: arkatsachndir@gmail.com
Pushchino, Russia
G. N Chuev
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
T. V Mamedov
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, Russia
A. Arikov
The Agricultural University of PlovdivPlovdiv, Bulgaria
K. R Ismailov
Olympic Reserve Sports School of WrestlingVladimir, Russia
References
- Love M. J., Bhandari D., Dobson R. C. J., and Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics (Basel, Switzerland), 7 (1), 17 (2018). doi: 10.3390/antibiotics7010017
- Fischetti V. A. Development of phage lysins as novel therapeutics: A historical perspective. Viruses, 10 (6), 310 (2018). doi: 10.3390/v10060310
- Czaplewski L., Bax R., Clokie M., Dawson M., Fairhead H., Fischetti V. A., Foster S., Gilmore B. F., Hancock R. E., Harper D., Henderson I. R., Hilpert K., Jones B. V., Kadioglu A., Knowles D., Olafsdottir S., Payne D., Projan S., Shaunak S., Silverman J., Thomas C. M., Trust T. J., Warn P., and Rex J. H. Alternatives to antibiotics −a pipeline portfolio review. Lancet. Infectious Diseases, 16 (2), 239–251 (2016). doi: 10.1016/S1473-3099(15)00466-1
- Vermassen A., Leroy S., Talon R., Provot C., Popowska M., and Desvaux M. Cell wall hydrolases in bacteria: Insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol., 10, 331 (2019). doi: 10.3389/fmicb.2019.00331
- Wang M., Zhang J., Wei J., Jiang L., Jiang L., Sun Y., Zeng Z., and Wang Z. Phage-inspired strategies to combat antibacterial resistance. Crit. Rev. Microbial., 50 (2), 196–211 (2024). doi: 10.1080/1040841X.2023.2181056
- Low L. Y., Yang C., Perego M., Osterman A., and Liddington R. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J. Biol. Chem., 286 (39), 34391–34403 (2011). doi: 10.1074/jbc.M111.244160
- Payne K. M. and Hatfull G. F. Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS One, 7 (3), e34052 (2012). doi: 10.1371/journal.pone.0034052
- Oliveira H., Melo L. D., Santos S. B., Nobrega F. L., Ferreira E. C., Cerca N., Azeredo J., and Kluskens L. D. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol., 87 (8), 4558–4570 (2013). doi: 10.1128/JVI.03277-12
- Son B., Kong M., and Ryu S. The auxiliary role of the amidase domain in cell wall binding and exolytic activity of staphylococcal phage endolysins. Viruses, 10 (6), 284 (2018). doi: 10.3390/v10060284
- Khan F. M., Chen J. H., Zhang R., and Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front. Microbiol., 14, 1259210 (2023). doi: 10.3389/fmicb.2023.1259210
- Briers Y., Volckaert G., Cornelissen A., Lagaert S., Michiels C. W., Hertveldt K., and Lavigne R. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol. Microbiol., 65 (5), 1334–1344 (2007). doi: 10.1111/j.1365-2958.2007.05870.x
- Loessner M. J., Kramer K., Ebel F., and Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol., 44 (2), 335–349 (2002). doi: 10.1046/j.1365-2958.2002.02889.x
- Oechslin F., Menzi C., Moreillon P., and Resch G. The multidomain architecture of a bacteriophage endolysin enables intramolecular synergism and regulation of bacterial lysis. J. Biol. Chem., 296, 100639 (2021). doi: 10.1016/j.jbc.2021.100639
- Vazquez R., Garcia E., and Garcia P. Sequence-function relationships in phage-encoded bacterial cell wall lytic enzymes and their implications for phage-derived product design. J. Virol., 95 (14), e0032121 (2021). doi: 10.1128/JVI.00321-21
- Atilgan C., Okan O. B., and Atilgan A. R. How orientational order governs collectivity of folded proteins. Proteins: Structure, Function, and Bioinformatics, 78 (16), 3363–3375 (2010). doi: 10.1002/prot.22843
- Leitner M. D. Frequency-resolved communication maps for proteins and other nanoscale materials. J. Chem. Phys., 130 (19), 195101 (2009). doi: 10.1063/1.3130149
- Cui Q. and Bahar I. Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, 1st ed. (Chapman and Hall/CRC, 2005). doi: 10.1201/9781420035070
- Van Wynsberghe A. W. and Cui Q. Interpreting correlated motions using normal mode analysis. Structure, 14 (11), 1647–1653 (2006). doi: 10.1016/j.str.2006.09.003
- Mikoulinskaia G. V., Odinokova I. V., Zimin A. A., Lysanskaya V. Y., Feofanov S. A., and Stepnaya O. A. Identification and characterization of the metal ion-dependent L-alanoyl-D-glutamate peptidase encoded by bacteriophage T5. FEBS J., 276 (24), 7329–7342 (2009). doi: 10.1111/j.1742-4658.2009.07443.x
- Schuch R., Nelson D., and Fischetti V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 418 (6900), 884–889 (2002). doi: 10.1038/nature01026
- Case D. A., Aktulga H. M., Belfon K., Cerutti D. S., Cisneros G. A., Cruzeiro V. W. D., Forouzesh N., Giese T. J., Gotz A. W., Gohlke H., Izadi S., Kasavajhala K., Kaymak M. C., King E., Kurtzman T., Lee T.-S., Li P., Liu J., Luchko T., Luo R., Manathunga M., Machado M. R., Nguyen H. M., O’Hearn K. A., Onufriev A. V., Pan F., Pantano S., Qi R., Rahnamoun A., Risheh A., Schott-Verdugo S., Shajan A., Swails J., Wang J., Wei H., Wu X., Wu Y., Zhang Sh., Zhao Sh., Zhu Q., Cheatham III Th. E., Roe D. R., Roitberg A., Simmerling C., York D. M., Nagan M. C., and Merz K. M. Jr. AmberTools. J. Chem. Inf. Model., 63 (20), 6183–6191 (2023). doi: 10.1021/acs.jcim.3c01153
- Grant B. J., Rodrigues A. P., ElSawy K. M., McCammon J. A., and Caves L. S. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics, 22 (21), 2695–2696 (2006). doi: 10.1093/bioinformatics/btl461
- Prokhorov D., Mikoulinskaia G., Kutyshenko V., and Uversky V. Structural basis of activation of zinc-dependent peptidase of the bacteriophage T5 by calcium ions: A glance at the ion-dependent functioning proteoforms. Preprints, 2024072561 (2024). doi: 10.20944/preprints202407.2561.v1
Supplementary files
