Endolysins T5 and PlyG Dynamics: Comparative Analysis in silico

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Bacteriophage endolysins are part of a lytic enzymes complex responsible for the destruction of the bacterial cell wall peptidoglycan. In this paper, the dynamic properties of bacteriophage T5 single-domain endolysin and the multi-domain endolysin PlyG of gamma phage are studied using molecular dynamics and normal mode analysis. The mechanism of activation of bacteriophage T5 endolysin by calcium and the discovery of a fundamental difference in the dynamic features of single-domain and multi-domain endolysins are explained.

About the authors

A. G Arakelian

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: arkatsachndir@gmail.com
Pushchino, Russia

G. N Chuev

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

T. V Mamedov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Russia

A. Arikov

The Agricultural University of Plovdiv

Plovdiv, Bulgaria

K. R Ismailov

Olympic Reserve Sports School of Wrestling

Vladimir, Russia

References

  1. Love M. J., Bhandari D., Dobson R. C. J., and Billington C. Potential for bacteriophage endolysins to supplement or replace antibiotics in food production and clinical care. Antibiotics (Basel, Switzerland), 7 (1), 17 (2018). doi: 10.3390/antibiotics7010017
  2. Fischetti V. A. Development of phage lysins as novel therapeutics: A historical perspective. Viruses, 10 (6), 310 (2018). doi: 10.3390/v10060310
  3. Czaplewski L., Bax R., Clokie M., Dawson M., Fairhead H., Fischetti V. A., Foster S., Gilmore B. F., Hancock R. E., Harper D., Henderson I. R., Hilpert K., Jones B. V., Kadioglu A., Knowles D., Olafsdottir S., Payne D., Projan S., Shaunak S., Silverman J., Thomas C. M., Trust T. J., Warn P., and Rex J. H. Alternatives to antibiotics −a pipeline portfolio review. Lancet. Infectious Diseases, 16 (2), 239–251 (2016). doi: 10.1016/S1473-3099(15)00466-1
  4. Vermassen A., Leroy S., Talon R., Provot C., Popowska M., and Desvaux M. Cell wall hydrolases in bacteria: Insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol., 10, 331 (2019). doi: 10.3389/fmicb.2019.00331
  5. Wang M., Zhang J., Wei J., Jiang L., Jiang L., Sun Y., Zeng Z., and Wang Z. Phage-inspired strategies to combat antibacterial resistance. Crit. Rev. Microbial., 50 (2), 196–211 (2024). doi: 10.1080/1040841X.2023.2181056
  6. Low L. Y., Yang C., Perego M., Osterman A., and Liddington R. Role of net charge on catalytic domain and influence of cell wall binding domain on bactericidal activity, specificity, and host range of phage lysins. J. Biol. Chem., 286 (39), 34391–34403 (2011). doi: 10.1074/jbc.M111.244160
  7. Payne K. M. and Hatfull G. F. Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS One, 7 (3), e34052 (2012). doi: 10.1371/journal.pone.0034052
  8. Oliveira H., Melo L. D., Santos S. B., Nobrega F. L., Ferreira E. C., Cerca N., Azeredo J., and Kluskens L. D. Molecular aspects and comparative genomics of bacteriophage endolysins. J. Virol., 87 (8), 4558–4570 (2013). doi: 10.1128/JVI.03277-12
  9. Son B., Kong M., and Ryu S. The auxiliary role of the amidase domain in cell wall binding and exolytic activity of staphylococcal phage endolysins. Viruses, 10 (6), 284 (2018). doi: 10.3390/v10060284
  10. Khan F. M., Chen J. H., Zhang R., and Liu B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: recent advances, challenges, and future perspective. Front. Microbiol., 14, 1259210 (2023). doi: 10.3389/fmicb.2023.1259210
  11. Briers Y., Volckaert G., Cornelissen A., Lagaert S., Michiels C. W., Hertveldt K., and Lavigne R. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Mol. Microbiol., 65 (5), 1334–1344 (2007). doi: 10.1111/j.1365-2958.2007.05870.x
  12. Loessner M. J., Kramer K., Ebel F., and Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol. Microbiol., 44 (2), 335–349 (2002). doi: 10.1046/j.1365-2958.2002.02889.x
  13. Oechslin F., Menzi C., Moreillon P., and Resch G. The multidomain architecture of a bacteriophage endolysin enables intramolecular synergism and regulation of bacterial lysis. J. Biol. Chem., 296, 100639 (2021). doi: 10.1016/j.jbc.2021.100639
  14. Vazquez R., Garcia E., and Garcia P. Sequence-function relationships in phage-encoded bacterial cell wall lytic enzymes and their implications for phage-derived product design. J. Virol., 95 (14), e0032121 (2021). doi: 10.1128/JVI.00321-21
  15. Atilgan C., Okan O. B., and Atilgan A. R. How orientational order governs collectivity of folded proteins. Proteins: Structure, Function, and Bioinformatics, 78 (16), 3363–3375 (2010). doi: 10.1002/prot.22843
  16. Leitner M. D. Frequency-resolved communication maps for proteins and other nanoscale materials. J. Chem. Phys., 130 (19), 195101 (2009). doi: 10.1063/1.3130149
  17. Cui Q. and Bahar I. Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, 1st ed. (Chapman and Hall/CRC, 2005). doi: 10.1201/9781420035070
  18. Van Wynsberghe A. W. and Cui Q. Interpreting correlated motions using normal mode analysis. Structure, 14 (11), 1647–1653 (2006). doi: 10.1016/j.str.2006.09.003
  19. Mikoulinskaia G. V., Odinokova I. V., Zimin A. A., Lysanskaya V. Y., Feofanov S. A., and Stepnaya O. A. Identification and characterization of the metal ion-dependent L-alanoyl-D-glutamate peptidase encoded by bacteriophage T5. FEBS J., 276 (24), 7329–7342 (2009). doi: 10.1111/j.1742-4658.2009.07443.x
  20. Schuch R., Nelson D., and Fischetti V. A. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 418 (6900), 884–889 (2002). doi: 10.1038/nature01026
  21. Case D. A., Aktulga H. M., Belfon K., Cerutti D. S., Cisneros G. A., Cruzeiro V. W. D., Forouzesh N., Giese T. J., Gotz A. W., Gohlke H., Izadi S., Kasavajhala K., Kaymak M. C., King E., Kurtzman T., Lee T.-S., Li P., Liu J., Luchko T., Luo R., Manathunga M., Machado M. R., Nguyen H. M., O’Hearn K. A., Onufriev A. V., Pan F., Pantano S., Qi R., Rahnamoun A., Risheh A., Schott-Verdugo S., Shajan A., Swails J., Wang J., Wei H., Wu X., Wu Y., Zhang Sh., Zhao Sh., Zhu Q., Cheatham III Th. E., Roe D. R., Roitberg A., Simmerling C., York D. M., Nagan M. C., and Merz K. M. Jr. AmberTools. J. Chem. Inf. Model., 63 (20), 6183–6191 (2023). doi: 10.1021/acs.jcim.3c01153
  22. Grant B. J., Rodrigues A. P., ElSawy K. M., McCammon J. A., and Caves L. S. Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics, 22 (21), 2695–2696 (2006). doi: 10.1093/bioinformatics/btl461
  23. Prokhorov D., Mikoulinskaia G., Kutyshenko V., and Uversky V. Structural basis of activation of zinc-dependent peptidase of the bacteriophage T5 by calcium ions: A glance at the ion-dependent functioning proteoforms. Preprints, 2024072561 (2024). doi: 10.20944/preprints202407.2561.v1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».