ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ СУБКЛЕТОЧНЫХ СТРУКТУР В КЛЕТКЕ ВОДОРОСЛИ С ПОМОЩЬЮ ОПТИЧЕСКОЙ ЛАЗЕРНОЙ ТОМОГРАФИИ
- Авторы: Самойленко А.А1, Левин Г.Г1, Волгушева А.А2, Казаков А.П2, Максимов Г.В2,3
-
Учреждения:
- Всероссийский научно-исследовательский институт оптико-физических измерений
- Московский государственный университет имени М.В. Ломоносова
- Национальный исследовательский технологический университет «МИСиС»
- Выпуск: Том 70, № 2 (2025)
- Страницы: 278-284
- Раздел: Биофизика клетки
- URL: https://bakhtiniada.ru/0006-3029/article/view/292979
- DOI: https://doi.org/10.31857/S0006302925020065
- EDN: https://elibrary.ru/LABDNT
- ID: 292979
Цитировать
Аннотация
Ключевые слова
Об авторах
А. А Самойленко
Всероссийский научно-исследовательский институт оптико-физических измеренийМосква, Россия
Г. Г Левин
Всероссийский научно-исследовательский институт оптико-физических измеренийМосква, Россия
А. А Волгушева
Московский государственный университет имени М.В. ЛомоносоваМосква, Россия
А. П Казаков
Московский государственный университет имени М.В. ЛомоносоваМосква, Россия
Г. В Максимов
Московский государственный университет имени М.В. Ломоносова; Национальный исследовательский технологический университет «МИСиС»
Email: gmaksimov@mail.ru
Москва, Россия; Москва, Россия
Список литературы
- Паршина Е. Ю., Самойленко А. А., Максимов Г. В., Юсипович А. И., Лобакова Е. С., Хе Я. и Левин Г. Г. Комплексный подход для исследования морфологии и распределения пигментов в клетке водоросли. Вестн. МГТУ им. Н.Э. Баумана. Сер. Естественные науки, № 2 (113), 129–148 (2024). EDN: NBOFMH
- Parshina E. Y., Yusipovich A. I., Brazhe A. R., Silicheva M. A., and Maksimov G. V. Heat damage of cytoskeleton in erythrocytes increases membrane roughness and cell rigidity. J. Biol. Phys., 45 (4), 367−377 (2019). doi: 10.1007/s10867-019-09533-53
- Yusipovich A. I., Parshina E. Yu, Baizhumanov A. A., Pirutin S. K., Ivanov A. D., Minaev V. L., Levin G. G., and Maksimov G. V. Use of a laser interference microscope for estimating fluctuations and the equivalent elastic constant of cell membranes. Instruments and Experimental Techniques, 64 (6), 877 (2021). doi: 10.1134/S0020441221060129
- Faist J., Capasso F., Sivco D. L., Sirtori C., Hutchinson A. L., and Cho A. Y. Quantum cascade laser. Science, 264 (5158), 553–556 (1994). doi: 10.1126/science.264.5158.553
- Kuepper C., Kallenbach-Thieltges A., Juette H., Tannapfel A., Groserueschkamp F., and Gerwert K. Quantum Cascade laser-based infrared microscopy for labelfree and automated cancer classification in tissue sections. Sci. Rep., 8 (1), 7717 (2018). doi: 10.1038/s41598-018-26098-w
- Betzig E., Lewis A., Harootunian A., Isaacson M., and Kratschmer E. Near field scanning optical microscopy (NSOM): development and biophysical applications. Biophys. J., 49 (1), 269–279 (1986).
- Kawata S. and Inouye Y. Scanning probe optical microscopy using a metallic probe tip. Ultramicroscopy, 57, 313–317 (1995).
- Mastel S., Govyadinov A. A., Maissen C., Chuvilin A., Berger A., and Hillenbrand R. Understanding the image contrast of material boundaries in IR nanoscopy reaching 5 nm spatial resolution. ACS Photonics, 5, 3372 (2018).
- Hauer B., Engelhardt A. P., and Taubner T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems. Opt. Express, 20 (12), 13173–13188 (2012).
- Zuo C., Sun J., Li J., Asundi A., and Chen Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Optics and Lasers in Engineering, 128, 106003 (2020). doi: 10.1016/j.optlaseng.2020.106003
- Li J., Chen Q., Zhang J., Zhang Z., Zhang Y., and Zuo C. Optical diffraction tomography microscopy with transport of intensity equation using a light-emitting diode array. Optics and Lasers in Engineering, 95, 26–34 (2017). doi: 10.1016/j.optlaseng.2017.03.010
- Soto J. M., Rodrigo J. A., and Alieva T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express, 25, 15699–15712 (2017). doi: 10.1364/OE.25.015699
- Hamano R., Mayama S., and Umemura K. Localization analysis of intercellular materials of living diatom cells studied by tomographic phase microscopy. Appl. Phys. Lett., 120 (13), 133701 (2022). doi: 10.1063/5.0086165
- Levin G. G. Contemporary methods of optical tomography and holography. Meas. Tech., 48, 1103–1108 (2005). doi: 10.1007/s11018-006-0028-5
- Vishnyakov G. N. and Levin G. G. Linnik tomographic microscope for investigation of optically transparent objects. Meas. Tech., 41, 906–911 (1998).
- Minaev V. L. and Yusipovich A. I. Use of an automated interference microscope in biological research. Meas. Tech., 55, 839–844 (2012). doi: 10.1007/s11018-012-0048-2
- Harris E. H. Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use (Acad. Press, San Diego, CA, 1989).
- Lichtenthaler H. K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol., 148, 350–382 (1987). doi: 10.1016/0076-6879(87)48036-1
- Gfeller R. P. and Gibbs M. Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol., 75 (1), 212–218 (1984). doi: 10.1104/pp.75.1.212
- Amenabar I., Poly S., Nuansing W., Hubrich E. H., Govyadinov A. A., Huth F., Krutokhvostov R., Zhang L., Knez M., Heberle J., Bittner A. M., and Hillenbrand R. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun., 4, 2890 (2013). doi: 10.1038/ncomms3890
- Han Y., Han L., Yao Yu., Lia Ya., and Liu X. Key factors in FTIR spectroscopic analysis of DNA: the sampling technique, pretreatment temperature and sample concentration. Anal. Methods, 10, 2436–2443 (2018). doi: 10.1039/C8AY00386F
- Yusipovich A. I., Berestovskaya Yu. Yu., Shutova V. V., Levin G. G., Gerasimenko L. M., Maksimov G. V., and Rubin A. B. New possibilities for the study of microbiological objects by laser interference microscopy. Meas. Tech., 55, 351–356 (2012). doi: 10.1007/s11018-012-9963-5
- Zhurina M. V., Kostrikina N. A., Parshina E. Yu., Strelkova E. A., Yusipovich A. I., Maksimov G. V., and Plakunov V. K. Visualization of the extracellular polymeric matrix of Chromobacterium violaceum biofilms by microscopic methods. Microbiology, 82, 517–524 (2013). doi: 10.1134/S0026261713040164
- Yusipovich A. I., Berestovskaya Yu. Yu., Shutova V. V., Levin G. G., Gerasimenko L. M., Maksimov G. V., and Rubin A. B. New possibilities of studying microbial objects by laser interference microscopy. Biophysics, 56, 1063–1068 (2011). doi: 10.1134/S0006350911060224
- Wu Z., Sun Y., Matlock A., Liu J., Tian L., and Kamilov U. S. SIMBA: Scalable inversion in optical tomography using deep denoising priors. IEEE J. Selected Topics Signal Process., 14, 1163–1175 (2020).
- Merola F., Memmolo P., Miccio L., Mugnano M., and Ferraro P. Phase contrast tomography at lab on chip scale by digital holography. Methods, 136, 108–115 (2018). doi: 10.1016/j.ymeth.2018.01.003
- Jung J. H., Hong S. J., Kim H. B., Kim G., Lee M., Shin S., Lee S.-Y., Kim D.-J., Lee Ch.-G., and Park Y.-K. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci. Rep., 8 (1), 6524 (2018). doi: 10.1038/s41598-018-24393-0
Дополнительные файлы
