Photodynamic and Plasmonic Photothermal Combination Therapy in a Rat Model of Transplanted Tumors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of this study is to develop a combined technology which integrates plasmonic photothermal therapy and photodynamic therapy of transplanted cholangiocarcinoma РС-1 in rats. For photodynamic therapy, rats received intratumoral injection of 2 mg/kg indocyanine green diluted in a 1:100 volume ratio with polyethylene glycol. For plasmonic photothermal therapy, the intratumoral injectate volume of gold nanorods (400 μg/ml) coated with polyethylene glycol for tumor was drawn up to be 30% to the tumor volume. One hour after injections, the tumor was irradiated percutaneously with an 808 nm infrared diode laser at a power density of 2.3 W/cm2 for 15 min. Animals were excluded from the experiment 72 and 21 days after therapy. Morphological studies of the tumor were performed on sections stained by standard protocols and immunohistochemical methods. A significant rise in tumor temperature, up to 60 ± 4.1°C, was noted during plasmonic photothermal therapy combined with photodynamic therapy. In 72 hours, the pronounced necrotic changes in the tumor tissue were observed, the residual tumor cell foci were found only in the periphery of the tumor. A significant inhibition of tumor growth was observed 21 days after therapy; the tumor growth inhibition index by tumor mass was 77.4%.

About the authors

A. B Bucharskaya

V.I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation; National Research Saratov State University named after N.G. Chernyshevsky; National Research Tomsk State University

Email: allaalla_72@mail.ru
Saratov, Russia; Saratov, Russia; Tomsk, Russia

N. A Navolokin

V.I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation; National Research Saratov State University named after N.G. Chernyshevsky

Saratov, Russia; Saratov, Russia

D. A Mudrak

V.I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation

Saratov, Russia

G. N Maslyakova

V.I. Razumovsky Saratov State Medical University, Ministry of Health of the Russian Federation; National Research Saratov State University named after N.G. Chernyshevsky

Saratov, Russia; Saratov, Russia

B. N Khlebtsov

Institute of Biochemistry and Physiology of Plants and Microorganisms

Saratov, Russia

N. G Khlebtsov

National Research Saratov State University named after N.G. Chernyshevsky; Institute of Biochemistry and Physiology of Plants and Microorganisms

Saratov, Russia; Saratov, Russia

V. D Genin

National Research Saratov State University named after N.G. Chernyshevsky; National Research Tomsk State University

Saratov, Russia; Tomsk, Russia

E. A Genina

National Research Saratov State University named after N.G. Chernyshevsky;

Saratov, Russia; Tomsk, Russia

V. V Tuchin

National Research Saratov State University named after N.G. Chernyshevsky; National Research Tomsk State University

Saratov, Russia; Tomsk, Russia

References

  1. Cancer today (Globocan 2020) [Electronic resource]. 2020. Mode of access: https://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf. Date of access: 05.01.2024.
  2. Huang X., Jain P. K., El-Sayed I. H., and ElSayedM. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci., 23 (3), 217 (2008). doi: 10.1007/s10103-007-0470-x
  3. Kim M., Lee J.-H., and Nam J.-M. Plasmonic Photothermal Nanoparticles for Biomedical Applications. Adv. Sci., 6, 19004712019 (2019). doi: 10.1002/advs.201900471
  4. Vines J. B., Yoon J.-H., Ryu N.-E., Lim D.-J., and Park H. Gold Nanoparticles for Photothermal Cancer Therapy. Front. Chem., 7, 1 (2019). doi: 10.3389/fchem.2019.00167
  5. Maeda H., Wu J., Sawa T., Matsumura Y., and Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release, 65 (1–2), 271 (2000). doi: 10.1016/s01683659(99)00248-5
  6. Park J., Choi Y., Chang H., Um W., Ryu J. H., and Kwon I. C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics, 9 (26), 8073 (2019). doi: 10.7150/thno.37198
  7. Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. Pers. Med. 11, 771 (2021). doi: 10.3390/jpm11080771
  8. Akhter F., Manrique-Bedoya S., Moreau C., Smith A. L., Yusheng F., Mayer K. M., and Hood R. L. Assessment and Modeling of Plasmonic Photothermal Therapy Delivered via a Fiberoptic Microneedle Device Ex Vivo. Pharmaceutics, 13 (12), 2133 (2021). doi: 10.3390/pharmaceutics13122133
  9. Bucharskaya A. B., Khlebtsov N. G., Khlebtsov B. N., Maslyakova G. N., Navolokin N. A., Genin V. D., Genina E. A., and Tuchin V. V. Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects. Materials, 15 (4), 1606 (2022). doi: 10.3390/ma15041606
  10. Kwiatkowski S., Knap B., Przystupski D., Saczko J., Kędzierska E., Knap-Czop K., Kotlińska J., Michel O., Kotowski K., and Kulbacka J. Photodynamic therapy mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, 106, 1098 (2018). doi: 10.1016/j.biopha.2018.07.049
  11. Gurcan G., Emre G. M., and Seylan A. Photodynamic Therapy—Current Limitations and Novel Approaches. Front. Chem., 9, 691697 (2021). doi: 10.3389/fchem.2021.691697
  12. Younis M. R., Wang C., An R., Wang S., Younis M. A., Li Z. Q., Wang Y., Ihsan A., Ye D., and Xia X. H. Low Power Single Laser Activated Synergistic Cancer Phototherapy Using Photosensitizer Functionalized Dual Plasmonic Photothermal Nanoagents. ACS Nano, 13 (2), 2544 (2019). doi: 10.1021/acsnano.8b09552
  13. Kong C. and Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int. J. Nanomedicine, 17, 6427 (2022). doi: 10.2147/IJN.S388996
  14. Jang J. Y., Park C. H., Tung Kim I.-H., and Choi Y. Gold Nanorod−Photosensitizer Complex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo. ACS Nano, 5 (2), 1086 (2011). doi: 10.1021/nn102722z
  15. Wang S., Huang P., Nie L., Xing R., Liu D., Wang Z., Lin J., Chen S., Niu G., Lu G., and Chen X. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater., 1 (2), 90 (2013). doi: 10.1002/adma.201204623
  16. Terentyuk G., Panfilova E., Khanadeev V., Chumakov D., Genina E., Bashkatov A., Tuchin V., Bucharskaya A., Maslyakova G., Khlebtsov N., and Khlebtsov B. Gold nanorods with a hematoporphyrinloaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res., 7, 325 (2014). doi: 10.1007/s12274-013-0398-3
  17. Zhang S., Lv H., Zhao J., Cheng M., and Sun S. Synthesis of porphyrin-conjugated silica-coated Au nanorods for synergistic photothermal therapy and photodynamic therapy of tumor. Nanotechnology, 30 (26), 265102 (2019). doi: 10.1088/1361-6528/ab0bd1
  18. Khlebtsov B. N., Khanadeev V. A., and Khlebtsov N. G. Observation of Extra-High Depolarized Light Scattering Spectra from Gold Nanorods. J. Phys. Chem. C, 112, 12760–12768 (2008).
  19. Khlebtsov B. N., Tuchina E. S., Khanadeev V. A., Panfilova E.V., Petrov P. O., Tuchin V. V., and Khlebtsov N. G. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J. Biophoton., 6, 338–351 (2013). doi: 10.1002/jbio.201200079
  20. Генина Э. А., Башкатов А. Н., Кочубей В. И., Тучин В. В. и Альтшулер Г. Б. In vivo исследование взаимодействия индоцианина зеленого с эпидермисом человека. Письма в ЖТФ, 27 (14), 63 (2001).
  21. Gong B., Shen Y., Li H. Li X., Huan X., Zhou J., ChenY., Wu J., and Li W. Thermo-responsive polymer encapsulated gold nanorods for single continuous wave laser-induced photodynamic/photothermal tumour therapy. J. Nanobiotechnol., 19, 41 (2021). doi: 10.1186/s12951-020-00754-8
  22. Bucharskaya A. B., Maslyakova G. N., Chekhonatskaya M. L., Terentyuk G. S., Navolokin N. A., Khlebtsov B. N., Khlebtsov N. G., Bashkatov A. N., Genina E. A., and Tuchin V. V. Plasmonic Photothermal Therapy: Approaches to Advanced Strategy. Lasers Surg. Med., 50, 1025–1033 (2018). doi: 10.1002/lsm.23001

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».