O PROBLEME OPTIMAL'NOGO UPRAVLENIYa S UPRAVLENIEM V DISKE
- 作者: KhIL'DEBRAND R.1, ShIKAKE MAPUNGVANA T.1
-
隶属关系:
- 期: 编号 8 (2025)
- 页面: 99-115
- 栏目: Topical issue
- URL: https://bakhtiniada.ru/0005-2310/article/view/304789
- DOI: https://doi.org/10.31857/S0005231025080052
- EDN: https://elibrary.ru/UTDQEM
- ID: 304789
如何引用文章
详细
作者简介
R. KhIL'DEBRAND
Email: khildebrand.r@mipt.ru
T. ShIKAKE MAPUNGVANA
Email: tendaichikake@phystech.edu
参考
- Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischehenko E.F. The Mathematical Theory of Optimal Processes / New York, London: Wiley, 1962.
- Fuller A.T. Relay control systems optimized for various performance criteria / Proceedings of the First World Congress IFAC. Butterworth, 1960. P. 510–519.
- Kelley H.J., Kopp R.E., Moyer M.G. Singular extremals / Topics in Optimization. New York: Acad. Press, 1967. P. 63–101.
- Marchal C. Chattering arcs and chattering controls // J. Optimiz. Theory App. 1973. V. 11. No. 5. P. 441–468.
- Lewis R.M. Definitions of order and junction condition in singular control problems // SIAM J. Contr. Optim. 1980. V. 18. No. 1. P. 21–32.
- Kupka I. Generic properties of extremals in optimal control problems / Differential geometric control theory, Boston: Birkhäuser, 1983. Progr. Math. V. 27. P. 310–315.
- Zelikin M.I., Borisov V.F. Theory of chattering control with applications to astronautics, robotics, economics, and engineering / Boston: Birkhäuser, 1994.
- Lokutsievskiy L.V. Generic structure of the lagrangian manifold in chattering problems. // Sbornik Math. 2014. V. 205. No. 3. P. 432–458.
- Zelikin M.I., Melnikov N.B., Hildebrand R. Topological structure of a typical fibre of optimal synthesis for chattering problems // P. Steklov Inst. Math. 2001. V. 233. P. 116–142.
- Zelikin M.I., Lokutsievskiy L.V., Hildebrand R. Typicality of chaotic fractal behaviour of integral vortices in hamiltonian systems with discontinuous right hand side // Journal of Mathematical Sciences. 2017. V. 221. No. 1. P. 1–136.
补充文件
