TOChNYE APPROKSIMATsII MNOZhESTV S VEROYaTNOSTNYMI OGRANIChENIYaMI S POMOShch'Yu PAKETNOGO VEROYaTNOSTNOGO MASShTABIROVANIYa
- Authors: MIRAS'ERRA V.1, MAMMARELLA M.1, DABVENE F.1, ALAMO T.1
-
Affiliations:
- Issue: No 8 (2025)
- Pages: 60-81
- Section: Topical issue
- URL: https://bakhtiniada.ru/0005-2310/article/view/304787
- DOI: https://doi.org/10.31857/S0005231025080031
- EDN: https://elibrary.ru/UTBLUS
- ID: 304787
Cite item
Abstract
About the authors
V. MIRAS'ERRA
Email: vmirasierra@us.es
M. MAMMARELLA
Email: martina.mammarella@cnr.it
F. DABVENE
Email: fabrizio.dabbene@cnr.it
T. ALAMO
Email: talamo@us.es
References
- Bemporad A., Morari, M. Robust model predictive control: A survey / Robustness in Identification and Control. Lecture Notes in Control and Information Sciences. Garulli A., Tesi A. (Eds.). London: Springer, 1999. V. 245.
- Mayne D., Seron M., Rakovic S. Robust model predictive control of constrained linear systems with bounded disturbances // Automatica. 2005. V. 41. No. 2. P. 219–224.
- Mayne D., Rakovic S., Findeisen R., Allgöwer F. Robust output feedback model predictive control of constrained linear systems // Automatica. 2006. V. 42. No. 7. P. 1217–1222.
- Lorenzen M., Dabbene F., Tempo R., Allgöwer F. Constraint-tightening and stability in stochastic model predictive control // IEEE Transactions on Automatic Control. 2016. V. 62. No. 7. P. 3165–3177.
- Farina M., Giulioni L., Scattolini R. Stochastic linear model predictive control with chance constraints – a review // J. Process Control. 2016. V. 44. P. 53–67.
- Mesbah A. Stochastic model predictive control: An overview and perspectives for future research // IEEE Control Systems Magazine. 2016. V. 36. No. 6. P. 30–44.
- Charnes A., Cooper W. Chance constraints and normal deviates // J. Amer. Stat. Associat. 1962. V. 57. No. 297. P. 134–148.
- Kücükyaouz S., Jiang, R. Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness // EURO J. Comput. Optim. 2022. V. 10. Art. No. 100030.
- Mammarella M., Mirasierra V., Lorenzen M., Alamo T., Dabbene F. Chance-constrained sets approximation: A probabilistic scaling approach // Automatica. 2022. V. 137. Art. No. 110108.
- Polyak B., Tempo R. Probabilistic robust design with linear quadratic regulators // Syst. Control Lett. 2001. V. 43. No. 5. P. 343–353.
- Calaftore G., Polyak B. Stochastic algorithms for exact and approximate feasibility of robust LMIs // IEEE Transactions on Automatic Control. 2001. V. 46. No. 11. P. 1755–1759.
- Dabbene F., Gay P., Polyak B. Recursive algorithms for inner ellipsoidal approximation of convex polytopes // Automatica. 2003. V. 39. P. 1773–1781.
- Calaftore G., Campi M. The scenario approach to robust control design // IEEE Transactions on Automatic Control. 2006. V. 51. No. 5. P. 742–753.
- Tempo R., Calafiore G., Dabbene F. Randomized Algorithms for Analysis and Control of Uncertain Systems, with Applications. London: Springer, 2013.
- Polyak B., Shcherbakov P. Randomization in robustness, estimation, and optimization // Uncertainty in Complex Networked Systems: In Honor of Roberto Tempo. Basar T. (Ed.). Cham: Springer, 2018. P. 181–208.
- Kataoka S. A stochastic programming model // Econometrica: J. Econom. Soc. 1963. P. 181–196.
- Prekopa A. Logarithmic concave measures with application to stochastic programming // Acta Scientiarum Mathematicarum. 1971. V. 32. P. 301–316.
- Geng X., Xie L. Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization // Ann. Rev. Control. 2019. V. 47. P. 341–363.
- Soudjani S., Majumdar R. Concentration of measure for chance-constrained optimization // IFAC-PapersOnLine. 2018. V. 51. No. 16. P. 277–282.
- Lejeune M., Prekopa A. Relaxations for probabilistically constrained stochastic programming problems: Review and extensions // Annals of Operations Research. 2018. P. 1–22.
- Campi M., Garatti S. A sampling-and-discarding approach to chance-constrained optimization: Feasibility and optimality // J. Optim. Theory Appl. 2011. V. 148. No. 2. P. 257–280.
- Alamo T., Mirasierra V., Dabbene F., Lorenzzen M. Safe approximations of chance constrained sets by probabilistic scaling // 2019 18th European Control Conference (ECC). IEEE, 2019. P. 1380–1385.
- Alamo T., Tempo R., Luque A., Ramirez D. Randomized methods for design of uncertain systems: Sample complexity and sequential algorithms // Automatica. 2015. V. 52. P. 160–172.
- Lorenzen M., Dabbene F., Tempo R., Allgower F. Stochastic MPC with offline uncertainty sampling // Automatica. 2017. V. 81. P. 176–183.
- Mammarella M., Lorenzzen M., Capello E., Park H., Dabbene F., Guglieri G., Romano M., Allgower F. An offline-sampling SMPC framework with application to autonomous space maneuvers // IEEE Transactions on Control Systems Technology. 2018. V. 28. No. 2. P. 388–402.
- Calaftore G. Random convex programs // SIAM J. Optim. 2010. V. 20. No. 6. P. 3427–3464.
- Vapnik V. The Nature of Statistical Learning Theory. New York: Springer Science & Business Media, 1999.
- Alamo T., Tempo R., Camacho E. Randomized strategies for probabilistic solutions of uncertain feasibility and optimization problems // IEEE Transactions on Automatic Control. 2009. V. 54. No. 11. P. 2545–2559.
- Alamo T., Tempo R., Camacho E. Improved sample size bounds for probabilistic robust control design: A pack-based strategy // 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. P. 6178–6183.
- Alamo T., Manzano J., Camacho E. Robust design through probabilistic maximization / Uncertainty in Complex Networked Systems. Springer, 2018. P. 247–274.
- Nievergelt J. Exhaustive search, combinatorial optimization and enumeration: Exploring the potential of raw computing power // International Conference on Current Trends in Theory and Practice of Computer Science. Springer, 2000. P. 18–35.
- Lukashevich A., Gorchakov V., Vorobev P., Deka D., Maximov Y. Importance sampling approach to chance-constrained DC optimal power flow // IEEE Transactions on Control of Network Systems. 2023. V. 11. No. 2. P. 928–937.
Supplementary files
