УПРАВЛЕНИЕ КАЧЕСТВОМ ДАННЫХ ПРИ РЕШЕНИИ ЗАДАЧ В ИССЛЕДОВАТЕЛЬСКИХ ИНФРАСТРУКТУРАХ НАД НЕОДНОРОДНЫМИ ИСТОЧНИКАМИ ДАННЫХ
- Авторы: СКВОРЦОВ Н.А1
-
Учреждения:
- Федеральный исследовательский центр «Информатика и управление» РАН
- Выпуск: № 4 (2025)
- Страницы: 71-91
- Раздел: Интеллектуальные системы управления, aнализ данных
- URL: https://bakhtiniada.ru/0005-2310/article/view/288756
- DOI: https://doi.org/10.31857/S0005231025040057
- EDN: https://elibrary.ru/CARLWN
- ID: 288756
Цитировать
Аннотация
Об авторах
Н. А СКВОРЦОВ
Федеральный исследовательский центр «Информатика и управление» РАН
Email: nskv@mail.ru
Москва
Список литературы
- Wand Y., Wang R. Anchoring data quality dimensions in ontological foundations // Communications of the ACM. New York: ACM, 1996. V. 39. No. 11. P. 86–95.
- Ballou D., Pazer H. Modeling data and process quality in multi-input, multioutput information systems // Management Sci. 1985. V. 31. No. 2. P. 150–162. https://doi.org/10.1287/mnsc.31.2.150
- Wang R., Strong D. Beyond accuracy: What data quality means to data consumers // J. Management Inform. Syst. 1996. V. 12. No. 4. P. 5–33. URL: http://www.jstor.org/stable/40398176
- Batini C., Scannapieco M. Data quality: concepts, methodologies and techniques. Heidelberg: Springer, 2006. 262 p. https://doi.org/10.1007/3-540-33173-5
- ГОСТ Р 56214-2014. Качество данных. Часть 1. Обзор. М.: Стандартинформ, 2015.
- ГОСТ Р 57773-2017. Пространственные данные. Качество данных. М.: Стандартинформ, 2017.
- Wilkinson M., Dumontier M., Aalbersberg I., et al. The FAIR Guiding principles for scientific data management and stewardship // Sci. Data 2016. V. 3. Article 160018. https://doi.org/10.1038/sdata.2016.18
- FAIR data maturity model. Specification and guidelines. Version 1.0. RDA FAIR Data Maturity Model Working Group. Geneva: Zenodo, 2020. https://doi.org/10.15497/rda00050
- FAIRsFAIR. Fostering FAIR Data Practices in Europe. URL: https://www.fairsfair.eu/
- Devaraju A., Mokrane M., Cepinskas L., et al. From conceptualization to implementation: FAIR Assessment of Research Data Objects // Data Sci. J. 2021. V. 20. No. 1. Article 4. https://doi.org/10.5334/dsj-2021-004
- The FAIR cookbook for FAIR doers. URL: https://faircookbook.elixir-europe.org/
- Harrow J., Drysdale R., Smith A., et al. ELIXIR: providing a sustainable infrastructure for life science data at European scale // Bioinformatics. Oxford: Oxford University, 2021. V. 37. No. 16. P. 2506–2511. https://doi.org/10.1093/bioinformatics/btab481
- ELIXIR Platforms. URL: https://elixir-europe.org/platforms
- Recommendations from the Data Quality Working Group. NASA ES DSWG, 2019. URL: https://www.earthdata.nasa.gov/esdis/esco/standards-andpractices/recommendations-from-the-data-quality-working-group
- Data Quality Working Group’s comprehensive recommendations for data producers and distributors. NASA ES DSWG, 2019. URL: https://www.earthdata.nasa.gov/s3fs-public/imported/ESDS-RFC-033.pdf
- ESIP Information Quality Cluster. Earth Science Information Partners (ESIP). URL: http://wiki.esipfed.org/index.php/Information_Quality
- Peng G., Privette J., Kearns E., et al. A unified framework for measuring stewardship practices applied to digital environmental datasets // Data Sci. J. 2015. V. 13. No. 2. P. 231–253. https://doi.org/10.2481/dsj.14-049
- ISO 19157-1:2023 Geographic information - Data quality. Part 1. General requirements. Geneva: ISO, 2023. URL: https://www.iso.org/standard/78900.html
- Sirotnak C., Cook J. The total economic impact of Talend. Cost savings and business benefits enabled by Talend Solutions. Cambridge: Forrester, 2023. URL: https://www.talend.com/lp/the-total-economic-impact-of-talend/
- Chien M., Medd J. Magic Quadrant for Augmented Data Quality Solutions. Stamford: Gartner, 2024. URL: https://www.gartner.com/en/documents/5257863
- Furber C. Data quality management with semantic technologies. Thesis. Wiesbaden: Springer Gabler, 2016. https://doi.org/10.1007/978-3-658-12225-6
- Berners-Lee T., Hendler J., Lassila O. The Semantic Web // Scientific American 2001. V. 284. No. 5. P. 34–43. URL: https://www.jstor.org/stable/26059207
- Cyganiak R., Wood D., Lanthaler M. (eds.). RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation. Wakefield: W3C, 2014. URL: http://www.w3.org/TR/rdf11-primer/
- Furber C., Hepp M. Towards a vocabulary for data quality management in Semantic Web architectures // Proceedings of the 1st International Workshop on Linked Web Data Management (LWDM2011). New York: ACM, 2011. P. 1–8. https://doi.org/10.1145/1966901.1966903
- Hartig O., Zhao J. Provenance Vocabulary Core Ontology Specification. San Diego: SourceForge, 2012. URL: https://trdf.sourceforge.net/provenance/ns.html
- Taleb I., Taleb, Serhani M., Bouhaddioui C., et al. Big data quality framework: a holistic approach to continuous quality management // J. of Big Data 2021. V. 8. Article 76. https://doi.org/10.1186/s40537-021-00468-0
- Gallo R. Data quality with FAIR principles, an introduction. The Hyve, 2024. URL: https://www.thehyve.nl/articles/data-quality-with-fair-principles
- Skvortsov N. The principles of data reuse in research infrastructures // Proceedings of the International Conference Common Digital Space of Scientific Knowledge: Problems and Solutions (CDSSK 2020). Aachen: CEUR WS, 2021. V. 2990. P. 62–74. URL: https://ceur-ws.org/Vol-2990/rpaper6.pdf
- PROV-Overview: An overview of the PROV family of documents. W3C Working Group Note. Wakefield: W3C, 2013. URL: http://www.w3.org/TR/prov-overview/
- Data on the Web Best Practices: Data quality vocabulary. W3C Working Group Note. Wakefield: W3C, 2016. URL: https://www.w3.org/TR/vocab-dqv/
- Albertoni R., Isaac A. (eds.). Data catalog vocabulary (DCAT), Version 3. W3C Recommendation. Wakefield: W3C, 2024. URL: https://www.w3.org/TR/vocab-dcat/
- Alam S., Albareti F., Prieto C., et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: Final data from SDSS-III // Astrophys. J. Suppl. Ser. 2015. V. 219. No. 1. P. 12. https://doi.org/10.1088/0067-0049/219/1/12
- Lawrence A., Warren S., Almaini O., et al. The UKIRT Infrared Deep Sky Survey (UKIDSS) // Mon. Not. R. Astron. Soc. 2007. V. 379. No. 4. P. 1599–1617. https://doi.org/10.1111/j.1365-2966.2007.12040.x
- Bianchi L., Herald J., Efremova B., et al. GALEX catalogs of UV sources: statistical properties and sample science applications: hot white dwarfs in the Milky Way // Astrophys. Space Sci. 2011. V. 335. No. 1. P. 161–169. https://doi.org/10.1007/s10509-010-0581-x
- Bianchi L., Shiao B., Thilker D. Revised catalog of GALEX ultraviolet sources. I. The All-Sky Survey: GUVcat_AIS // Astrophys. J. Suppl. Ser. 2017. V. 230. No. 2. P. 24. https://doi.org/10.3847/1538-4365/aa7053
- Malkov O., Dluzhnevskaya O., Karpov S., et al. Cross catalogue matching with Virtual Observatory and parameterization of stars // Open Astronomy 2012. V. 21. No. 3. P. 319–330. https://doi.org/10.1515/astro-2017-0390
- Gray J., Szalay A., Budavari T., et al. Cross-Matching Multiple Spatial Observations and Dealing with Missing Data. Microsoft Technical Report, MSR-TR-2006-175. Redmond: Microsoft Research, 2006. https://doi.org/10.48550/arXiv.cs/0701172
Дополнительные файлы
