Iterative Learning Control of Stochastic Multi-Agent Systems with Variable Reference Trajectory and Topology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In modern smart manufacturing, robots are often connected via a network, and their task can change according to a predetermined program. Iterative learning control (ILC) is widely used for robots executing high-precision operations. Under network conditions, the efficiency of ILC algorithms may decrease if the program is restructured. In particular, the learning error may temporarily increase to an unacceptable value when changing the reference trajectory. This paper considers a networked system with the following features: the reference trajectory and parameters change between passes according to a known program, agents are subjected to random disturbances, and measurements are carried out with noise. In addition, the network topology changes due to the disconnection of some agents from the network and the connection of new agents to the network according to a given program. A distributed ILC design method is proposed based on vector Lyapunov functions for repetitive processes in combination with Kalman filtering. This method ensures the convergence of the learning error and reduces its increase caused by changes in the reference trajectory and network topology. The effectiveness of the proposed method is confirmed by an example.

About the authors

A. S. Koposov

Alekseev Arzamas Polytechnic Institute, Nizhny Novgorod State Technical University

Email: koposov96@yandex.ru
Arzamas, Nizhny Novgorod oblast, Russia

P. V. Pakshin

Alekseev Arzamas Polytechnic Institute, Nizhny Novgorod State Technical University

Author for correspondence.
Email: pakshinpv@gmail.com
Arzamas, Nizhny Novgorod oblast, Russia

References

  1. Saez M.A., Maturana F.P., Barton K., Tilbury D.M. Context-sensitive modeling and analysis of cyber-physical manufacturing systems for anomaly detection and diagnosis // IEEE Transaction on Automation Science and Engineering. 2020. V. 17. No. 1. P. 29-40.
  2. Balta E.C., Tilbury D.M., Barton K. Switch Based Iterative Learning Control for Tracking Iteration Varying References // IFAC PapersOnLine. 2020. V 53. No. 2. P. 1493-1498.
  3. Tsypkin Ya.Z. Adaptation and Learning in Automatic Systems. New York: Academic Press, 1971.
  4. Arimoto S., Kawamura S., Miyazaki F. Bettering operation of robots by learning // Journal of Robotic Systems. 1984. V. 1. No. 2. P. 123-140.
  5. Bristow D.A., Tharayil M., Alleyne A. A survey of iterative learning control // IEEE Control Systems Magazine. 2006. V. 26. No. 3. P. 96-114.
  6. Ahn H.S., Chen Y.Q., Moore K.L. Iterative learning control: Brief survey and categorization // IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews. 2007. V. 37. No. 6. P. 1099-1121.
  7. Pakshin P., Emelianova J., Emelianov M. Iterative learning control of stochastic linear systems under switching of the reference trajectory and parameters // Proccedings of the 29th Mediterranean Conference on Control and Automation. 2021. P. 1311-1316. 2021. Bari, Puglia, Italy.
  8. Pakshin P., Emelianova J., Rogers E., Galkowski K. Iterative learning control of stochastic linear systems with reference trajectory switching // Proceedings of the 60th IEEE Conference on Decision and Control. 2021. P. 6565-6570.
  9. Ahn H.S., Chen Y.Q. Iterative learning control for multi-agent formation // In Proc. ICROS-SICE Int. Joint Conf. 2009. P. 3111-3116.
  10. Liu Q., Bristow D.A. An iteration-domain lter for controlling transient growth in iterative learning control // Proc. 2010 Amer. Control Conf. 2010. P. 2039-2044.
  11. Liu Y., Jia Y. An iterative learning approach to formation control of multi-agent systems // Systems & Control Letters. 2012. V. 61. P. 148-154.
  12. Yang S., Xu J.X., Huang D., Tan Y. Optimal iterative learning control design for multi-agent systems consensus tracking // Systems & Control Letters. 2014. V. 69 P. 80-89.
  13. Li J., Li J. Adaptive iterative learning control for coordination of second-order multi-agent systems // Int. J. Robust Nonlinear Control. 2014. V. 24. P. 3282-3299.
  14. Meng D., Du W., Jia Y. Data-driven consensus control for networked agents: an iterative learning control-motivated approach // IET Control Theory & Applications. 2015. V. 9. P. 2084-2096.
  15. Yu X., Hou Z., Polycarpou M.M. Distributed Data-Driven Iterative Learning Consensus Tracking for Nonlinear Discrete-Time Multiagent Systems // IEEE Transactions on Automatic Control. 2022. V. 67. No. 7. P. 3670-3677.
  16. Hock A., Schoellig A. Distributed iterative learning control for multi-agent systems // Autonomous Robots. 2019. V. 43. P. 1989-2010.
  17. Pakshin P.V., Emelianova J.P., Emelianov M.A. (2018). Iterative learning control design for multiagent systems based on 2D models // Automation and Remote Control. 2018. V. 79. No. 6. P. 1040-1056.
  18. Pakshin P.V., Koposov A.S., Emelianova J.P. Iterative learning control of a multiagent system under random perturbations // Automation and Remote Control, (2020). 81(3), 483-502.
  19. Ahn H.S., Moore K.L., Chen Y.Q. Iterative Learning Control. Robustness and Monotonic Convergence for Interval Systems. Lecture Notes in Control and Information Sciences. Springer-Verlag: London, 2007.
  20. Hock A., Schoellig A. Distributed iterative learning control for a team of quad-rotors // Proceedings of the 55th IEEE Conference on Decision and Control. 2016. P. 4640-4646.
  21. Sun S., Endo T., Matsuno F. Iterative learning control based robust distributed algorithm for non-holonomic mobile robots formation // IEEE Access. 2018. V. 6. P. 61904-61917.
  22. Koposov A., Emelianova J., Pakshin P. Iterative learning control of multi-agent systems under changing network con guration // IFAC PapersOnLine, 2021. V. 54. No. 20. P. 669-674.
  23. Koposov A., Emelianova J., Pakshin P. Iterative learning control of multi-agent systems under changing reference trajectoty // IFAC PapersOnLine, 2022. V. 55. No. 12. P. 759-764.
  24. Pakshin P., Emelianova J. Iterative learning control design for discrete-time stochastic switched systems // Autom. Remote Control. 2020. V. 81. No. 11. P. 2011-2025.
  25. Apkarian J., Karam P., Levis M. Workbook on Flexible Link Experiment for MatlabR/Simulink Users. Quanser, 2011.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».