Estimation of the anthropogenic component of greenhouse gas fluxes from the surface of energy reservoirs in the Russian Federation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The paper assesses anthropogenic emissions and absorptions of greenhouse gases from energy reservoirs in the Russian Federation based on the results of field measurements in 2021–2023. Measurements of methane fluxes from the surface of reservoirs were carried out by employees of the Institute of Atmospheric Physics of the Russian Academy of Sciences in the shallow and deep-water parts of the basins of nine reservoirs (Kolymskoye, Bureiskoye, Volgogradskoye, Boguchanskoye, Zeyskoye, Kuibyshevskoye, Rybinskoe, Chirkeyskoe, Sayano-Shushenskoe). Based on these measurements and modeling data, we analyzed and compared the obtained results with the methane emission factors presented in the methodological documents of the Intergovernmental Panel on Climate Change (IPCC). We have developed adjusted coefficients using Tiers 1 and 2 methods according to the IPCC. The results show that the revised national factors are on average 63% lower than the default IPCC factors. A methodology for assessing the anthropogenic component of the greenhouse gas balance due to reservoir construction using Tier 3 method has been developed based on carbon balance calculations and the difference between the parameters of the reservoir water and the river before it. Using the example of the Rybinsk Reservoir, we assessed the anthropogenic component of the greenhouse gas flow, corresponding to a net absorption of 0.18 kg CO2-eq/m2/year. A conclusion has been made about the possibility of a negative carbon footprint of electricity from large hydroelectric power plants.

Негізгі сөздер

Авторлар туралы

A. Romanovskaya

Yu. A. Izrael Institute of Global Climate and Ecology

Хат алмасуға жауапты Автор.
Email: an_roman@igce.ru
Ресей, Glebovskaya str., 20B, Moscow, 107258

P. Polumieva

Yu. A. Izrael Institute of Global Climate and Ecology

Email: an_roman@igce.ru
Ресей, Glebovskaya str., 20B, Moscow, 107258

I. Repina

Obukhov Institute of Atmospheric Physics of the RAS; Lomonosov Moscow State University

Email: an_roman@igce.ru

Research Computing Centre

Ресей, Pyzhevskiy per., 3, bld. 1, Moscow, 119017; Leninskie gory, 1, bld. 4, Moscow, 119991

A. Trunov

Yu. A. Izrael Institute of Global Climate and Ecology

Email: an_roman@igce.ru
Ресей, Glebovskaya str., 20B, Moscow, 107258

V. Stepanenko

Lomonosov Moscow State University

Email: an_roman@igce.ru

Research Computing Centre

Ресей, Leninskie gory, 1, bld. 4, Moscow, 119991

V. Lomov

Obukhov Institute of Atmospheric Physics of the RAS; Lomonosov Moscow State University

Email: an_roman@igce.ru

Research Computing Centre

Ресей, Pyzhevskiy per., 3, bld. 1, Moscow, 119017; Leninskie gory, 1, bld. 4, Moscow, 119991

Әдебиет тізімі

  1. Законнов В.В. Аккумуляция биогенных элементов в донных отложениях водохранилищ Волги // Органическое вещество донных отложений волжских водохранилищ. Труды ИБВВ РАН. 1993. Вып. 66(69). С. 3–16.
  2. Законнов В.В. Осадкообразование в водохранилищах Волжского каскада. Автореферат дисс. … доктора географических наук. Москва: Институт географии РАН, 2007. 52 с.
  3. Законнов В.В., Литвинов А.С., Законнова А.С. Пространственно-временная трансформация грунтового комплекса водохранилищ Волги. Сообщение 2. Результаты мониторинга донных отложений и последствия понижения уровня Рыбинского водохранилища // Водное хозяйство России. 2015. № 4. С. 21–35.
  4. Иванов В.А., Чалов С.Р. Соотношение компонентов баланса наносов для больших рек: эрозия и аккумуляция, русловая и водосборная эрозия. Почвенные и земельные ресурсы: традиционные и инновационные подходы к изучению и управлению // Материалы международной научно-практической конференции. 2023. С. 69–72.
  5. Карнаухова Г.А. Процессы осадкообразования в водохранилищах ангарского каскада. Автореферат диссертации на соискание ученой степени доктора географических наук. Иркутск: Институт географии им. В.Б. Сочавы Сибирского отделения Российской академии наук, 2009. 63 с.
  6. МГЭИК (2006). Руководящие принципы национальных инвентаризаций парниковых газов МГЭИК 2006 года. Программа МГЭИК по национальным кадастрам парниковых газов. Под ред. Игглестон Х.С., Буэндиа Л., Мива К., Нгара Т. Танабе К. Япония: ИГЕС.
  7. Отчет о научно-исследовательской работе по теме «Измерение выбросов парниковых газов и оценка поглощающей способности гидроэнергетических объектов», этап 1, Москва, 2021. 242 с.
  8. Отчет о научно-исследовательской работе по теме «Измерение выбросов парниковых газов и оценка поглощающей способности гидроэнергетических объектов», этап 3, Москва, 2024. 211 с.
  9. Репина И.А., Терский П.Н., Горин С.Л., Агафонова С.А., Ахмерова Н.Д., Василенко А.Н., Гречушникова М.Г., Фролова Н.Л., Казанцев В.С., Шестеркин В.П. Натурные измерения эмиссии метана на крупнейших водохранилищах России в 2021 г. Начало масштабных исследований // Водные ресурсы. 2022. Т. 49. № 6. С. 713–718.
  10. Рижинашвили А.Л. Показатели содержания органических веществ и компоненты карбонатной системы в природных водах в условиях интенсивного антропогенного воздействия // Вестник СПбГУ. 2008. сер.4. Физика, химия. № 4. С. 90–101.
  11. Рыбинское водохранилище и его жизнь. Л: Наука, 1972. 364 с.
  12. Степаненко В.М., Гречушникова М.Г., Репина И.А. Численное моделирование эмиссии метана из водохранилища // Фундаментальная и прикладная климатология. 2020. Т. 2. С. 76–99.
  13. Barros N., Cole J., Tranvik L. et al. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude // Nature Geosci. 4. 2011. P. 593–596.
  14. Bastviken D., Nygren J., Schenk J., Parellada Massana R., Duc N. T. Technical note: Facilitating the use of low-cost methane (CH4) sensors in flux chambers – calibration, data processing, and an open-source make-it-yourself logger // Biogeosciences. 17. 2020. P. 3659–3667.
  15. Bastviken D., Tranvik L., Downing J., Crill P., Enrich-Prast A. Freshwater Methane Emissions Offset the Continental Carbon Sink // USA: Science. 2011. V. 331. P. 6013–6063.
  16. Berga L. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review // Engineering. V. 2. Issue 3. 2016. P. 313–318.
  17. Bretz K.A., Jackson A.R., Rahman S., Monroe J.M., Hotchkiss E.R. Integrating ecosystem patch contributions to stream corridor carbon dioxide and methane fluxes // J. Geophys. Res. Biogeosci. 2021. V. 126. P. 1–17.
  18. Bussmann I., Koedel U., Schütze C., Kamjunke N., Koschorreck M. Spatial Variability and Hotspots of Methane Concentrations in a Large Temperate River // Front. Environ. Sci. 2022. V. 10. P. 1–14.
  19. Campeau A., Lapierre J.-F., Vachon D., del Giorgio P.A. Regional contribution of CO2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Québec // Global Biogeochem. Cycles. 2014. V. 28. P. 57–69.
  20. Ciesla M., Gruca-Rokosz R., Bartoszek L. Significance of organic matter in the process of aggregation of suspended sediments in retention reservoirs // Sci. Total Environ. 2022. V. 815. P. 1–11.
  21. Clark J.A., Jafarov E.E., Tape K.D. et al. Thermal modeling of three lakes within the continuous permafrost zone in Alaska using the lake 2.0 model // Geoscientific Model Development. 2022. V. 15. P. 7421–7448.
  22. Crawford J.T., Loken L.C., West W.E., Crary B., Spawn S.A., Gubbin N., Jones S.E., Striegl R.G., Stanley E.H. Spatial heterogeneity of within‐stream methane concentrations // J. Geophys. Res.-Biogeosci. 2017. V. 122. 1036–1048.
  23. Deemer B.R., Harrison J.A., Li S., Beaulieu J.J., Del Sontro T., Barros N. et al. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis // BioScience. 2016. V. 66(11). P. 949–964.
  24. EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2020. U.S. Environmental Protection Agency, EPA 430-R-22-003. 2022. https://www.epa.gov/ghgemissions/draft-inventory-us-greenhouse-gas-emissions-and-sinks-1990-2020.
  25. Fearnside P. Greenhouse gas emissions from hydroelectric dams: Reply to Rosa et al. // Clim. Change. 2006. № 75. P. 103–109.
  26. Fearnside P.M. Hydroelectric dams in the Brazilian Amazon as sources of greenhouse gases // Environ. Conserv. 1995. № 22. P. 7–19.
  27. Giles J. Methane quashes green credentials of hydropower // Nature. 2006.V. 444. P. 524–525.
  28. Goldenfum J.A. GHG Measurement Guidelines for Freshwater Reservoirs. London: The International Hydropower Association (IHA), 2010. 138 p.
  29. Golub M., Thiery W., Marcé R. et al. A framework for ensemble modelling of climate change impacts on lakes worldwide: the isimip lake sector // Geoscientific Model Development. 2022. V. 15. P. 4597–4623.
  30. Greenhouse gas emissions in Finland 1990 to 2020. National Inventory Report under the UNFCCC and the Kyoto Protocol. 2022. 535 p.
  31. Tremblay A., Varfalvy L., Roehm C., Garneau M. Greenhouse Gas Emissions – Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series. New York: Springer, 2005. 732 p.
  32. Ion I.V., Ene A. Evaluation of Greenhouse Gas Emissions from Reservoirs // A Review. Sustainability. 2021. V. 13. P. 1–16.
  33. IPCC 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories / Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P. and Federici, S. (eds). IPCC: Switzerland, 2019.
  34. IPCC: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change / Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L. (eds.). Cambridge University Press: Cambridge, United Kingdom and New York, USA. 996 p.
  35. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation / Edenhofer O., Pichs-Madruga R., Sokona Y., Seyboth K., Matschoss P., Kadner S., Zwickel T., Eickemeier P., Hansen G., Schlömer S., C. von Stechow (eds.) / Cambridge University Press: Cambridge, United Kingdom and New York, USA, 2011. 246 p.
  36. IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change / Masson-Delmotte V., Zhai P., Pirani A., Connors S.L, Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E.,. Matthews J.B.R, Maycock T.K., Waterfield T., Yelekçi O., Yu R. and Zhou B. (eds.). Cambridge University Press: Cambridge, United Kingdom and New York, USA, 2021. 2391 p.
  37. Johnson M. S., Matthews E., Bastviken D., Deemer B., Du J., Genovese V. Spatiotemporal methane emission from global reservoirs// Journal of Geophysical Research: Biogeosciences. 2021. V. 126. P. 1–19.
  38. Kougias I. Hydropower Technology Development Report 2020. Luxembourg: Publications Office of the European Union, 2020. 44 p.
  39. Levasseur A., Mercier-Blais S., Prairie Y.T., Tremblay A., Turpin C. Improving the accuracy of electricity carbon footprint: Estimation of hydroelectric reservoir greenhouse gas emissions // Renewable and Sustainable Energy Reviews. 2021. V. 136. P. 1–15.
  40. Lobbes J.M., Fitznar H. P., Kattne G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean // Geochimica et Cosmochimica Acta. 2000.V. 64. № 17. P. 2973–2983.
  41. Lomov V., Stepanenko V., Grechushnikova M., Repina I. Mechanistic modeling of the variability of methane emissions from an artificial reservoir // Water. 2024. V. 16. № 1. P. 76.
  42. Matoušů A., Rulík M., Tušer M., Bednařík A., Šimek K., Bussmann I. et al. Methane Dynamics in a Large River: a Case Study of the Elbe River // Aquat. Sci. 2019. V. 81 (1). P. 1–12.
  43. National Inventory Report 1990–2020: Canada's Submission to the United Nations Framework Convention on Climate Change. ECCC (Environment and Climate Change Canada): Quebec, 2022.
  44. Niemirycz E. et. al. Riverine input of pollutants. Environmental Conditions in the Polish Zone of the Southern Baltic Sea // Maritime Branch Materials: Gdynia. 1985–2000.
  45. Niemirycz E., Gozdek J., Koszka-Maron D. Variability of Organic Carbon in Water and Sediments of the Odra River and Its Tributaries // Polish Journal of Environmental Studies. V. 15. № 4. 2006. P. 557–563.
  46. Robison A.L., Wollheim W.M., Turek B., Bova C., Snay C., Varner R.K. Spatial and temporal heterogeneity of methane ebullition in lowland headwater streams and the impact on sampling design // Limnol. Oceanogr. 2021. V. 66. P. 4063–4076.
  47. Rodríguez-García V.G., Palma-Gallardo L.O., Silva-Olmedo F., Thalasso F. A simple and low-cost open dynamic chamber for the versatile determination of methane emissions from aquatic surfaces // Limnol Oceanogr Methods. 2023. V. 21. P. 828–836.
  48. Rosa L.P., Dos santos M.A., Matvienko B., Dos Santos E.O., Sikar E. Greenhouse gas emissions from hydroelectric reservoirs in tropical regions // Clim. Change. 2004. V. 66. P. 9–21.
  49. Stanley E.H., Loken L.C., Oliver S.K, Casson N.J., Sponseller R.A., Wallin M., Zhang L., Rocher-Ros G. GRiMeDB: the Global River Methane Database of concentrations and fluxes // Earth Syst. Sci. Data. 2023. V. 15. P. 2879–2926.
  50. Stepanenko V., Mammarella I., Ojala A., Miettinen H., Lykosov V., Vesala T. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes // Geoscientific Model Development. 2016. V. 9. № 5. P. 1977–2006.
  51. Stepanenko V., Valerio G., Pilotti M. Horizontal pressure gradient parameterization for one-dimensional lake models // J. of Adv. in Modelling Earth Sys. 2020. V. 12. P. 21–63.
  52. Submission under the United Nations Framework Convention on Climate Change and the Kyoto Protocol 2022. National Inventory Report for the German Greenhouse Gas Inventory 1990–2020. Federal Environment Agency, 2022.
  53. Tranvik L.J., Downing J.A., Cotner J.B., Loiselle, S.A., Striegl R.G., Ballatore T.J., Weyhenmeyer G.A. Lakes and reservoirs as regulators of carbon cycling and climate // Limnology and Oceanography. 2009. № 54 (6–2). P. 2298–2314.
  54. Zhao Yiyang, Suning Liu, Haiyun Shi. Impacts of dams and reservoirs on local climate change: a global perspective // Environmental Research Letters. 2021. V. 16. № 10. Р. 1–13.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».