Variability of methane content and fluxes in the rybinsk reservoir based on field observations in different seasons of the year

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The formation of methane fluxes in the Rybinsk reservoir and the variability of its content in water were investigated during several field campaigns on the reservoir in different seasons. The Rybinsk reservoir is a very large, relatively shallow, low-flow, mesotrophic-eutrophic, morphologically complex basin-valley type reservoir with perennial flow regulation, created on the Upper Volga in 1941. In total, water and air sampling was carried out at 71 stations to determine methane concentration, which was combined with measurements of water column characteristics . As a result, a network of reference stations was established, where regular measurements are made, as well as additional stations in the water area and river estuaries. For control purposes, water samples were taken at the hydroelectric power plant units and downstream of the Sheksninskaya HPP dam, placed within the Rybinsk city. In general, the Rybinsk reservoir is characterised by relatively low methane concentrations - at most stations the average content of dissolved CH4 in water does not exceed 20 µl/l. The lowest concentrations were observed during the winter period. Methane fluxes from the surface of the Rybinsk reservoir vary from 4 to 718 mgC-CH4 m-2 day-1. Specific fluxes in summer period are larger than those measured in autumn, also in summer the spatial variability of the measured fluxes is more significant. Flux values depend on reservoir stratification, oxygen content in water, organic matter in bottom sediments and other factors. Methane degassing through the dam is significantly less than the fluxes from the surface.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Lomov

Obukhov Institute of Atmosphere Physics RAS; Lomonosov Moscow State University, Faculty of Geography;RCC MSU, Laboratory of Supercomputer Modelling of Natural and Climatic Processes

Хат алмасуға жауапты Автор.
Email: lomson620@mail.ru
Ресей, Pyzhevsky per., 3, Moscow, 119017; Leninskie Gory, d. 1, Moscow, 119991; Leninskie Gory, d. 1/4, Moscow, 119234

N. Frolova

Obukhov Institute of Atmosphere Physics RAS; Lomonosov Moscow State University, Faculty of Geography

Email: lomson620@mail.ru
Ресей, Pyzhevsky per., 3, Moscow, 119017; Leninskie Gory, d. 1, Moscow, 119991

V. Efimov

Obukhov Institute of Atmosphere Physics RAS; Lomonosov Moscow State University, Faculty of Geography

Email: lomson620@mail.ru
Ресей, Pyzhevsky per., 3, Moscow, 119017; Leninskie Gory, d. 1, Moscow, 119991

I. Repina

Obukhov Institute of Atmosphere Physics RAS; RCC MSU, Laboratory of Supercomputer Modelling of Natural and Climatic Processes

Email: lomson620@mail.ru
Ресей, Pyzhevsky per., 3, Moscow, 119017; Leninskie Gory, d. 1/4, Moscow, 119234

Zhe Li

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences

Email: lomson620@mail.ru
ҚХР, 266 Fangzheng Avenue, Chongqing, 400714

Liu Yang

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences

Email: lomson620@mail.ru
ҚХР, 266 Fangzheng Avenue, Chongqing, 400714

Әдебиет тізімі

  1. Аверина А. А., Антипов Н. Е., Виногоров А. А., Воловодов А. А., Головнин К. И., Кузнеченко И. А., Овчинникова О. В., Петров Н. А., Полухин С. И., Сушинцев И. М., Хорошева А. С., Ефимов В. А., Ломов В. А., Фролова Н. Л. Оценка общего содержания метана в Рыбинском водохранилище в зимний период и расчет отдельных составляющих баланса метана // В сб. Исследования молодых географов: сборник статей участников зимних студенческих экспедиций. М. 2022. С. 71–80.
  2. Балабанова З. М. Гидрохимическая характеристика Камского водохранилища 1954–1959 // Тр. Уральского отд. ГосНИОРХ. 1961. Т. 5. С. 38–104.
  3. Гарькуша Д. Н., Фёдоров Ю. А. Факторы формирования концентраций метана в водных экосистемах. Ростов-на-Дону; Таганрог: Издательство Южного федерального университета, 2021. 366 с.
  4. Гречушникова М. Г., Репина И. А., Степаненко В. М. и др. Пространственно-временные изменения содержания и эмиссии метана в водохранилищах с различным коэффициентом водообмена // Известия Русского географического общества. 2018. Т. 150. № 5. С. 14–33.
  5. Дзюбан А. Н. Метан и процессы его трансформации в воде некоторых притоков Рыбинского водохранилища // Водные ресурсы. 2011. Т. 38. № 5. С. 571–576.
  6. Дзюбан А. Н. Деструкция органического вещества и цикл метана в донных отложениях внутренних водоемов. Ярославль: Принтхаус, 2010. 174 с.
  7. Дзюбан А. Н. Метан в поверхностных водах как показатель их качества // Вода: химия и экология. 2012. № 7. C. 7–12.
  8. Дзюбан А. Н. Метан и микробиологические процессы его трансформации в воде верхневолжских водохранилищ // Водные ресурсы. 2002. Т. 29. № 1. С. 68–78.
  9. Дзюбан А. Н. Микробиологические процессы круговорота органического вещества в донных отложениях водохранилищ Волжско-Камского каскада // Водные ресурсы. 1999. Т. 26. № 4. С. 262–271.
  10. Дзюбан А. Н. Микробиологические процессы превращения метана и деструкция органического вещества в грунтах водохранилищ Волги и Камы // Гидробиол. журн. 2004. Т. 40. № 2. С. 72–77.
  11. Дзюбан А. Н. Численность бактерий и процессы превращения метана в донных отложениях водохранилищ Волги и Камы // Микробиология. 1998. Т. 67. Вып. 4. С. 473–475.
  12. Дзюбан А. Н. Экологические аспекты исследований содержания метана в природных водах // Вода: химия и экология. 2012. № 11. С. 10–15.
  13. Литвинов А. С., Рощупко В. Ф. Многолетние и сезонные колебания уровня Рыбинского водохранилища и их роль в функционировании его экосистемы // Водные ресурсы. 2007. Том 34. № 1. С. 29–40.
  14. Литвинов А. С., Степанова И. Э. Зависимость содержания органического вещества и биогенных элементов от гидрологических условий в Рыбинском водохранилище // Водное хозяйство России. 2015. № 3. С. 20–31.
  15. Сайт РусГидро. http://www.rushydro.ru/hydrology/informer/
  16. Сорокин Ю. И. Метан и водород в воде волжских водохранилищ // Тр. Инст. Биол. Водохр. 1960. Т. 3. № 6. С. 50–58.
  17. Федоров Ю. А, Тамбиева Н. С., Гарькуша Д. Н. Метан как показатель экологического состояния пресноводных водоемов (на примере озер Валдай и Ужин) // Метеорология и гидрология. 2004. № 6. С. 88–96.
  18. Федоров Ю. А., Тамбиева Н. С., Гарькуша Д. Н., Хорошевская В. О. Метан в водных экосистемах. Ростов-на-Дону–Москва: Ростиздат, 2005. 329 с.
  19. Bastviken D., Tranvik L., Downing J., Crill P., Enrich-Prast A. Freshwater Methane Emissions Offset the Continental Carbon Sink // USA: Science. 2011. V. 331. P. 6013–6063.
  20. Bazhin N. Methane Emission from Bottom Sediments // Chemistry for Sustainable Development. 2003. V. 11. P. 577–580.
  21. Cole J., Prairie Y. T., Caraco N. F. et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget // Ecosystems. 2007. V. 10. P. 171–184.
  22. Dean W. E., Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands // Geology. 1998. V. 26(6). P. 535–538.
  23. Deemer B. R., Holgerson M. A. Drivers of methane flux differ between lakes and reservoirs, complicating global upscaling efforts // J. of Geophysical Research: Biogeosciences. 2021. V. 126. Issue 4.
  24. Deemer B., Harrison A., Li S., Beaulieu J., Delsontro T. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis // Springer. BioScience, 2016. V. 66. № 11. P. 949–964.
  25. Demarty M., Bastien J., Tremblay A., Hesslein R. H., and Gill R. Greenhouse gas emissions from boreal reservoirs in Manitoba and Quebec, Canada, measured with automated systems // Environmental Science & Technology. 2009. V. 43. P. 8908–8915.
  26. Diem Т. Methane dynamics in oxic and anoxic aquatic systems. Dissertation submitted to ETH Zurich for the degree of Doctor of Sciences. Zurich, 2008. 99 p. Available at: http://e-collection.library.ethz.ch/eserv/eth:41846/eth-41846–02.pdf (accessed May 10, 2016)
  27. Fearnside P. Greenhouse gas emissions from hydroelectric dams: Controversies Provide a Springboard for Rethinking a Supposedly ‘Clean’ Energy Source. An Editorial Comment // Clim. Change. 2006. V. 75. P. 103–109.
  28. Fedorov M. P., Elistratov V. V., Maslikov V. I., Sidorenko G. I., Chusov A. N., Atrashenok V. P., Molodsov D. V., Savvichev A. S., Zinchenko A. V. Reservoir Greenhouse Gas Emissions at Russian HPP // Power Technology and Engineering. 2015. V. 49. No. 1. P. 33–39.
  29. Gash J., Goldenfum J. et al. Greenhouse gas emissions related to freshwater reservoirs // The World Bank Contract 7150219. 2010. 166 р.
  30. Gruca-Rokosz R., Tomaszek J. Methane and Carbon Dioxide in the Sediment of a Eutrophic Reservoir: Production Pathways and Diffusion Fluxes at the Sediment–Water Interface // Water, Air and Soil Pollution. 2015. V. 226. P. 16–32.
  31. Guerin F., Abril G. Significance of pelagic aerobic methane oxidation in the methane and carbon budget of a tropical reservoir // J. of Geophysical Research. 2007. V. 112. P. 3006–3020.
  32. Harby A., Overjordet I. B. CEDREN –Funnel traps for GHG bubbling in reservoirs. Procedures of operation. SINTEF, 2014. 7 p.
  33. Harrison J., Deemer B., Birchfield M., O`Malley M. Reservoir Water-Level Drawdowns Accelerate and Amplify Methane Emission // Washington: Environmental Science and Technology. 2016. V. 1. P. 1–11.
  34. Kemenes A., Melack J., Forsberg B. Downstream emissions of CH4 and CO2 from hydroelectric reservoirs (Tucuruí, Samuel, and Curuá-Una) in the Amazon basin // Columbia: Inland Waters. 2016. V. 6. P. 295–302.
  35. Li S., Zhang Q. Carbon emission from global hydroelectric reservoirs revisited // Environmental science and pollution research international. 2014. V. 21. Pp, 131–137.
  36. Liikanen A., Murtoniemi T., Tanskanen H., Väisänen T., Martikainen P. Effects of temperature and oxygen availability on greenhouse gas and nutrient dynamics in sediment of a eutrophic mid-boreal lake // Biogeochemistry. 2002. V. 59. № 3. P. 269–286.
  37. Lomov V., Grechushnikova M., Kazantsev V., Repina I. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk reservoir in summer period // E3S Web of Conferences IV Vinogradov Conference. 2020. V. 163. P. 03010.
  38. Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.) IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2021. 2391 P.
  39. McCully P. Loosening the hydroindustry’s grip on reservoir greenhouse gas emissions research 2006. Available at: https://www.internationalrivers.org/files/attached-files/fizzyscience2006.pdf (accessed May 10, 2016).
  40. Miller B., Arntzen E., Goldman A., Richmond M. Methane Ebullition in Temperate Hydropower Reservoirs and Implications for US Policy on Greenhouse Gas Emissions // USA: Environmental Management. 2017. V. 60. P. 1–15.
  41. Ostrovsky I., McGinnis D., Lapidus L., Eckert W. Quantifying gas ebullition with echosounder: the role of methane transport by bubbles in a medium-sized lake // USA: Limnology and Oceanography: Methods. 2008. V. 6. P. 105–118.
  42. Rosa L. P., Schaeffer R. Greenhouse gas emissions from powerdams // Ambio. 1994. V. 23(2). P. 164–165.
  43. Rosentreter J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S., Song, C., Eyre, B. D. Half of global methane emissions come from highly variable aquatic ecosystem sources //Nature Geoscience. 2021. V. 14. № 4. P. 225–230.
  44. Rudd J. W.M., Harris R., Kelly C. A., Hecky R. E. Are hydroelectric reservoirs significant sources of greenhouse gases? // Ambio. 1993. V. 22. P. 246–248.
  45. Soumis N., Duchemin E., Canuel R., Lucotte M. Greenhouse gas emissions from reservoirs of the western United States // Global Biogeochemical Cycles. 2004. V. 18, GB3022.
  46. Striegl Robert G., Michmerhuizen Catherine M., Survey U. S. Geological. Hydrologic influence on methane and carbon dioxide dynamics at two northcentral Minnesota lakes // Limnol. Oceanogr. 1998.V. 43. № 7. P. 1519–1529.
  47. Tortajada C., Altinbilek D., Biswas K. Impact of large dams: A Global Assessment. Berlin: Water Recourses Development and Management. 2012. 410 p.
  48. Tranvik L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate // Limnol. Oceanogr. 2009. V. 54. P. 2298–2314.
  49. Tremblay A., Roehm C., Varfalvy L., Garneau M. Greenhouse Gas Emissions – Fluxes and Processes. Berlin: Springer, 2005. 732 p.
  50. Tremblay A., Varfalvy L., Roehm C. and Garneau M. (eds.) Greenhouse Gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer, New York, 2005. 732 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Layout of sampling stations on the Rybinsk Reservoir during the 2021–2022 expeditions and reservoir zones with different depth ranges.

Жүктеу (416KB)
3. Fig. 2. Schematic diagram of a “floating chamber” for measuring the specific methane flow at the “water – atmosphere” boundary and a “bottom chamber” for measuring the specific methane flows at the “bottom sediment – ​​water” boundary.

Жүктеу (578KB)
4. Fig. 3. Change in water level (m), inflow (m³/s) and flow through the dam (m³/s) (according to data from [http://www.rushydro.ru/hydrology/informer/]).

Жүктеу (278KB)
5. Fig. 4. Characteristic distribution of oxygen content in the summer period of 2022 at stations of different depth zones of the Rybinsk Reservoir.

Жүктеу (133KB)
6. Fig. 5. Content of dissolved oxygen in water (mgO₂/l) (1) and water temperature (C⁰) (2) at station PB18

Жүктеу (163KB)
7. Fig. 6. Content of dissolved oxygen in water (mgO₂/l) (1) and water temperature (C⁰) (2) at station PB7.

Жүктеу (129KB)
8. Fig. 7. Average vertical concentration of methane at measurement stations for 4 field seasons on the Rybinsk Reservoir.

Жүктеу (236KB)
9. Fig. 8. Methane content at measurement stations in the surface and bottom horizons in the winter (A) and spring (B) seasons.

Жүктеу (158KB)
10. Fig. 9. Methane content at measurement stations in the surface and bottom horizons in the autumn (A) and summer (B) seasons.

Жүктеу (175KB)
11. Fig. 10. Specific methane fluxes into the atmosphere based on measurements in autumn (A) and summer (B).

Жүктеу (133KB)
12. Fig. 11. Distribution of specific methane flows from the surface of the Rybinsk Reservoir, divided into 4 area regions based on the results of autumn field studies.

Жүктеу (374KB)
13. Fig. 12. Distribution of specific methane flows from the surface of the Rybinsk Reservoir, divided into 4 area regions based on the results of the summer campaign.

Жүктеу (380KB)


Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».