A Variant of the Local Similarity Theory and Approximations of Vertical Profiles of Turbulent Moments of the Atmospheric Convective Boundary Layer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The approximation of the turbulent moments of the atmospheric convective layer is based on a variant of the local similarity theory using the concepts of the semi-empirical theory of Prandtl turbulence. In the proposed variant of the local similarity theory, the second moment of vertical velocity and the “spectral” Prandtl mixing length are used as basic parameters. This approach allows us to extend Prandtl’s theory to turbulent moments of vertical velocity and buoyancy and additionally offer more than ten new approximations. The comparison of the proposed approximation with other variants of the theory of local similarity is considered. It is shown that the selected basic parameters significantly improve the agreement between the local similarity approximations and experimental data. The approximations are consistent with observations in the turbulent convective layer of the atmosphere, the upper boundary of which nearly corresponds to the lower boundary of the temperature inversion. Analytical approximations of local similarity can find applications in the construction of high-order moment closures in the vortex of resolving numerical turbulence models, as well as in the construction of “mass-flux” parametrization.

Texto integral

Acesso é fechado

Sobre autores

A. Vulfson

Institute of Water Problems of the Russian Academy of Sciences; National Research University “Higher School of Economics”

Autor responsável pela correspondência
Email: vulfson@iwp.ru
Rússia, Gubkina str., 3, Moscow, 119333; Myasnitskaya str., 20, Moscow, 101000

P. Nikolaev

National University of Science and Technology MISIS

Email: vulfson@iwp.ru
Rússia, Leninsky Prosp., 4, p. 1, Moscow, 11904

Bibliografia

  1. Вульфсон А.Н., Бородин О.О. Система конвективных термиков как обобщенный ансамбль броуновских частиц // Успехи физических наук. 2016. Т. 186. № 2. С. 113–124.
  2. Вульфсон А. Уравнения глубокой конвекции в сухой атмосфере // Известия АН СССР. Физика атмосферы и океана. 1981. Т. 17. № 8. С. 873–876.
  3. Вульфсон А., Володин И., Бородин О. Локальная теория подобия и универсальные профили турбулентных характеристик конвективного пограничного слоя // Метеорология и гидрология. 2004. № 10. С. 5–15.
  4. Обухов А.М. Турбулентность в температурно-неоднородной атмосфере // Тр. Ин-та теорет. геофизики АН СССР. 1946. Т. 1. С. 95–115.
  5. Abdella K., Mcfarlane N. A new second-order turbulence closure scheme for the planetary boundary layer // J. Atmos. Sci. 1997. V. 54. № 14. P. 1850–1867.
  6. Ansmann A., Fruntke J., Engelmann R. Updraft and down draft characterization with Doppler lidar: cloud-free versus cumuli-topped mixed layer // Atmos. Chem. Phys. 2010. P. 14.
  7. Barenblatt G.I. Scaling, Self-similarity, and Intermediate Asymptotics. Cambridge University Press, 1996.
  8. Buckingham E. On physically similar systems; Illustrations of the use of dimensional equations // Phys. Rev. 1914. V. 4. № 4. P. 345–376.
  9. Caughey S.J., Palmer S.G. Some aspects of turbulence structure through the depth of the convective boundary layer // Quarterly J. Royal Meteorological Society. 1979. V. 105. № 446. P. 811–827.
  10. Deardorff J.W., Willis G.E. Further results from a laboratory model of the convective planetary boundary layer // Boundary-Layer Meteorology. 1985. V. 32. № 3. P. 205–236.
  11. Degrazia G.A. et al. Eddy diffusivities for the convective boundary layer derived from LES spectral data // Atmos. Pollut. Res. 2015. V. 6. № 4. P. 605–611.
  12. Fodor K., Mellado J.P. New insights into wind shear effects on entrainment in convective boundary layers using conditional analysis // J. Atmos. Sci. 2020. V. 77. № 9. P. 3227–3248.
  13. Gryanik V.M., Hartmann J.A. Turbulence closure for the convective boundary layer based on a two-scale massflux approach // J. Atmos. Sci. 2002. V. 59. № 18. P. 2729–2744.
  14. Hanna S.R. A method of estimating vertical eddy transport in the planetary boundary layer using characteristics of the vertical velocity spectrum // J. Atmos. Sci. 1968. V. 25. № 6. P. 1026–1033.
  15. Hinze J.O. Turbulence. McGraw-Hill Book Company, Inc., New York, NY, 1975. 790 с.
  16. Holtslag A.A.M., Moeng C.-H. Eddy Diffusivity and countergradient transport in the convective atmospheric boundary layer // J. Atmos. Sci. 1991. V. 48. № 14. P. 1690–1698.
  17. Kader B.A., Yaglom A.M. Mean fields and fluctuation moments in unstably stratified turbulent boundary layers // J. Fluid Mech. 1990. V. 212. № 151. P. 637–662.
  18. Kaimal J.C. et al. Turbulence structure in the convective boundary layer. // J. Atmos. Sci. 1976. V. 33. № 11. P. 2152–2169.
  19. Kristensen L. et al. A simple model for the vertical transport of reactive species in the convective atmospheric boundary layer // Boundary-Layer Meteorology. 2010. V. 134. № 2. P. 195–221.
  20. Lenschow D.H. et al. A comparison of higher-order vertical velocity moments in the convective boundary layer from lidar with In situ measurements and large-eddy simulation // Boundary-Layer Meteorology. 2012. V. 143. № 1. P. 107–123.
  21. Lenschow D.H., Wyngaard J.C., Pennell W.T. Mean-field and second-moment budgets in a baroclinic, convective boundary layer. // J. Atmos. Sci. 1980. V. 37. № 6. P. 1313–1326.
  22. Mahrt L. On the shallow motion approximations // J. Atmos. Sci. 1986. V. 43. № 10. P. 1036–1044.
  23. Monin A.S., Yaglom A.M. Mechanics of turbulence. Statistical Fluid Mechanics. Cambridge: MIT Press. 1975.
  24. Noh Y. et al. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data // Boundary-Layer Meteorology. 2003. V. 107. № 2. P. 401–427.
  25. Prandtl L. 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz // ZAMM Journal of Applied Mathematics and Mechanics // ZAMM. 1925. V. 5. № 2. P. 136–139.
  26. Prandtl L. Meteorogische anwendung der stromungslehre // Beitr. Phys. fr. Atmoshare. 1932. V. 19. № 3. P. 188– 202.
  27. Schmidt H., Schumann U. Coherent structure of the convective boundary layer derived from large-eddy simulations // J. Fluid Mech. 1989. V. 200. № D11. P. 511–562.
  28. Sorbjan Z. Comments on “scaling the atmospheric boundary layer” // Boundary-Layer Meteorology. 1987. V. 38. № 4. P. 411–413.
  29. Sorbjan Z. Evaluation of local similarity functions in the convective boundary layer // Journal of Applied Meteorology. 1991. V. 30. № 12. P. 1565–1583.
  30. Sorbjan Z. Local similarity in the convective boundary layer (CBL) // Boundary-Layer Meteorology. 1988. V. 45. № 3. P. 237–250.
  31. Sorbjan Z. On similarity in the atmospheric boundary layer // Boundary-Layer Meteorology. 1986. V. 34. № 4. P. 377–397.
  32. Sorbjan Z. Similarity scales and universal profiles of statistical moments in the convective boundary layer // J. Appl. Meteorol. 1990. V. 29. № 8. P. 762–775.
  33. Spiegel E.A., Veronis G. On the Boussinesq Approximation for a Compressible Fluid // ApJ. 1960. V. 131. P. 442.
  34. Vulfson A.N., Borodin O.O. Brownian ensemble of random-radius buoyancy vortices and Maxwell velocity distribution in a turbulent convective mixed-layer // Phys. Fluids. 2018. V. 30. № 9. P. 095103.
  35. Vulfson A., Nikolaev P. Local similarity theory of convective turbulent layer using “spectral” Prandtl mixing length and second moment of vertical velocity // J. Atmos. Sci. 2022. V. 79. № 1. P. 101–118.
  36. Wilson D.K. An alternative function for the wind and temperature gradients in unstable surface layers // Boundary-Layer Meteorology. 2001. V. 99. № 1. P. 151– 158.
  37. Wood C.R. et al. Turbulent flow at 190 m height above London during 2006–2008: a climatology and the applicability of similarity theory // Boundary-Layer Meteorology. 2010. V. 137. № 1. P. 77–96.
  38. Zeman O., Lumley J.L. Modeling buoyancy driven mixed layers // J. Atmos. Sci. 1976. Т. 33. № 10. С. 1974– 1988.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The vertical structure of the convective boundary layer of the atmosphere and the dependence of the average potential temperature on height according to measurements in the Minnesota-1973 experiment, see [Kaimal et al., 1976]. I – the surface layer of the atmosphere; II – the mixing layer; III – the inversion layer.

Baixar (991B)
3. Fig. 2. The normalized vertical velocity spectrum at altitudes z/h = 0.21, z/h = 0.61 and z/h = 0.98. The shaded area represents the range of numerical simulation results [Schmidt, Schumann, 1989]. Geometric symbols represent measurements [Deardorff, Willis, 1985] at various heights. The thin dotted lines correspond to the inertial part of the spectrum for filtered measurements and are proportional to k–5/3. The data are multiplied by 0.1, 1.0 and 100 for the curves z/h = 0.21, z/h = 0.61 and z/h = 0.98, respectively.

Baixar (4KB)
4. Fig. 3. The change with height of the dimensionless wavelength ɅMw/h. The solid line corresponds to the approximation at the value of the coefficient βP = 1.2. The dashed line corresponds to the approximation proposed by [Caughey, Palmer, 1979]. Geometric symbols represent full-scale measurements [Caughey, Palmer, 1979]. The light circles correspond to the data of the experiment in Minnesota-1973. The black circles, triangles and squares correspond to the data of the experiment in Ashchurch-1974.

Baixar (2KB)
5. Fig. 4. The values of the dimensionless second moment of vertical velocity, according to [Ansmann et al., 2010]. The solid line corresponds to the approximation . The dashed line corresponds to the approximation [Zeman, Lumley, 1976] with a coefficient . The dotted and dashed lines correspond to [Sorbjan, 1986] and [Sorbjan, 1990] with coefficients and, respectively.

Baixar (3KB)
6. Fig. 5. Vertical profiles of dimensionless turbulence coefficients. The dotted line corresponds to the approximation of numerical calculations [Abdella, McFarlane, 1997]. The line of short strokes correspond to the approximation of numerical calculations [Holtslag, Moeng, 1991]. The line of long strokes corresponds to the approximation [Kristensen et al., 2010]. The solid line corresponds to the approximation at the coefficient value .

Baixar (3KB)
7. Fig. 6. The dimensionless moment of “bussinesque” buoyancy according to the full-scale experiment ARTIST-1999, presented in [Gryanik, Hartmann, 2002]. The solid line corresponds to an approximation with a coefficient .

Baixar (2KB)
8. Fig. 7. Dependence of the normalized moment of the third order on the normalized height z/h and its approximation by the analytical ratio (23). The dots are experimental data from ARTIST–1999 according to [Gryanik, Hartmann, 2002]. The solid line is an approximation with a coefficient .

Baixar (2KB)
9. Figure 8. Dependence of the normalized moment of the fourth order on the normalized height z/h and its approximation by the analytical ratio (24). The dots are experimental data from ARTIST–1999 according to [Gryanik, Hartmann, 2002]. The solid line is an approximation with a coefficient .

Baixar (2KB)


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».