Optimization of enterprise production programs taken into account of uncertainty

封面

如何引用文章

全文:

详细

The branch and bound method used to select the optimal production program is considered, based on the calculation of the upper, lower and current upper estimates when analyzing various options for production programs. An upper bound for the number of feasible solutions to the problem under consideration is given. Models for choosing an optimal production program in conditions of production expansion are considered, as well as issues of analyzing the stability of these programs when changing the initial data of the model and when changing the criterion for the optimality of the model. The use of models for selecting the optimal production program within the framework of project management at enterprises will ensure increased efficiency of activities, including at the stages of planning and implementation of projects, classification and selection of a method for implementing projects.

全文:

Введение. Одной из задач производственного планирования является выбор оптимальной производственной программы предприятия. В условиях динамически изменяющейся внешней среды такой выбор – непростая задача, требующая для решения использования математико-статистических методов и моделей [1, 2].

Статические методы и модели выбора таких программ, в том числе методы оценки риска доходности этих программ и риска упущенной выгоды, рассмотрены в [3, 4]. Динамические модели выбора оптимальной производственной программы, методы оптимизации загрузки оборудования при выпуске продукции, заданной производственной программой, оценки устойчивости расписаний при изменении параметров задачи представлены в [57]. Динамические и статические модели и методы управления ограниченными ресурсами на транспорте излагаются в [810]. В [11–13] приведены точные и приближенные алгоритмы построения оптимальных расписаний для планирования работы многопроцессорной вычислительной техники. Модели и методы управления ограниченными ресурсами, которые сводятся к решению минимаксных задач, описаны в [14–20].

В настоящей статье для выбора оптимальной производственной программы предприятия предлагается использование метода ветвей и границ, основанного на вычислении верхней, нижней и текущих верхних оценок при анализе различных вариантов производственных программ, дана верхняя оценка количества допустимых решений рассматриваемой задачи. Также представлены модели выбора оптимальной производственной программы в условиях расширения производства, вопросы анализа устойчивости этих программ при изменении исходных данных модели и при изменении критерия оптимальности модели.

Предложенные методы и модели могут использоваться в том числе в рамках проектного управления на предприятиях, обеспечивая возможность выбора оптимального метода управления проектом, эффективное выполнение мероприятий на этапах планирования и реализации проектов [21, 22].

1. Постановка задачи и метод решения. Рассмотрим следующую модель выбора оптимальной производственной программы:

i=1 n a i x i i=1 n b i x i Z пост max, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGHbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiaadIhapaWaaS baaSqaa8qacaWGPbaapaqabaGccqGHsislpeWaaybCaeqal8aabaWd biaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabgg HiLdaakiaadkgapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaamiE a8aadaWgaaWcbaWdbiaadMgaa8aabeaakiabgkHiTiaadQfadaWgaa WcbaGaam4peiaad6dbcaWGbrGaamOqeaqabaGccqGHsgIRciGGTbGa aiyyaiaacIhacaGGSaaaaa@5293@  (1.1)

i=1 n l ij x i   L j ,  j=  1, M, ¯    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGSbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacaWG4b WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgsMiJkaaKdkacaWG mbWdamaaBaaaleaapeGaamOAaaWdaeqaaOWdbiaacYcacaa5GcGaaq oOaiaadQgacqGH9aqpcaa5GcWdamaanaaabaWdbiaaigdacaGGSaGa aqoOaiaad2eacaGGSaaaaiaaKdkacaa5Gcaaaa@5174@  (1.2)

i=1 n t il x i   K l τ l ,   l=  1,K ¯  ,    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG0bWdamaaBaaaleaapeGaamyAaiaadYgaa8aabeaak8qacaWG4b WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgsMiJkaaKdkacaWG lbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiabes8a09aadaWgaa WcbaWdbiaadYgaa8aabeaak8qacaGGSaGaaqoOaiaaKdkacaa5GcGa amiBaiabg2da9iaaKdkapaWaa0aaaeaapeGaaGymaiaacYcacaWGlb aaaiaaKdkacaGGSaGaaqoOaiaaKdkacaa5Gcaaaa@57B5@  (1.3)

  x i P t i ,  i=  1,n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyizImQaamiuaiaadshapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaaiilaiaaKdkacaa5GcGaamyAaiabg2da9i aaKdkapaWaa0aaaeaapeGaaGymaiaacYcacaWGUbaaaiaacYcaaaa@42E3@  (1.4)

x i Z + ,  i=  1,n ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGSaGaaqoOaiaaKdkacaWGPbGaeyypa0JaaqoOa8aada qdaaqaa8qacaaIXaGaaiilaiaad6gaaaGaaiOlaaaa@419B@  (1.5)

Здесь использовались следующие обозначения: a i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@3359@  – цена продукции i -го вида; b i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@335A@  – переменные издержки на единицу продукции i -го вида; x i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@3370@  – объем выпуска продукции i –го вида; Zпост – постоянные издержки; l ij MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadYgapaWaaSbaaSqaa8qaca WGPbGaamOAaaWdaeqaaaaa@3453@  – норма потребления материальных ресурсов j-го вида при выпуске единицы продукции i -го вида; L j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qaca WGQbaapaqabaaaaa@3345@  – запасы материальных ресурсов j-го вида; t il MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadshapaWaaSbaaSqaa8qaca WGPbGaamiBaaWdaeqaaaaa@345D@  – норма времени загрузки оборудования l-го вида при выпуске единицы продукции  i -го вида; K l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadUeapaWaaSbaaSqaa8qaca WGSbaapaqabaaaaa@3346@  – число единиц оборудования l-го вида, участвующих в процессе производства; τ l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabes8a09aadaWgaaWcbaWdbi aadYgaa8aabeaaaaa@343B@  – эффективное время работы оборудования l-го вида на периоде планирования (0, Т); P t i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfacaWG0bWdamaaBaaale aapeGaamyAaaWdaeqaaaaa@3441@  – объем спроса на продукцию i -го вида; Z + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQfapaWaaWbaaSqabeaape Gaey4kaScaaaaa@3338@  – множество целых неотрицательных чисел.

1.1. Метод ветвей и границ для задачи выбора оптимальной производственной программы. Задача (1.1) – (1.5) является задачей линейной целочисленной оптимизации и для ее решения может быть использован метод ветвей и границ.

Шаг 1. Верхняя оценка задачи (1.1) – (1.5) Fв может быть получена путем замены ограничения (1.5) на ограничение (1.6) следующего вида:

  x i 0,  i=  1,n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG4bWdamaaBaaale aapeGaamyAaaWdaeqaaOWdbiabgwMiZkaaicdacaGGSaGaaqoOaiaa KdkacaWGPbGaeyypa0JaaqoOa8aadaqdaaqaa8qacaaIXaGaaiilai aad6gaaaaaaa@4154@  , (1.6)

Значение целевой функции на оптимальном решении задачи (1.1) – (1.4), (1.6) будем считать Fв.

Шаг 2. Нижняя оценка задачи (1.1) – (1.5) Fн может находиться путем выбора допустимого решения задачи (1.1) – (1.5) и вычисления значения целевой функции (1.1) на этом решении.

Шаг 3. Вычисление верхних текущих оценок. Если Fв = Fн, то решение задачи (1.1) – (1.5) получено. Если Fв > Fн, то начинаем формировать очередное допустимое решение с вычислением F в тек ( x ˜ ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaDa aaleaacaWGYqaabaGaamOqeiaadwdbcaWG6qaaaOGaaiikaiqadIha gaacaiaacMcaaaa@3C65@ . Здесь x ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiqadIhapaGbaGaaaaa@3246@  = ( x 1 ˜ ,,  x n ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamiEa8aadaWgaa WcbaWdbiaaigdaa8aabeaaaOGaay5adaWdbiaacYcacqGHMacVcaGG SaGaaqoOa8aadaaiaaqaa8qacaWG4bWdamaaBaaaleaapeGaamOBaa WdaeqaaaGccaGLdmaaaaa@3BC2@  ) – вектор, задающий объемы выпуска продукции, которые уже вошли в производственную программу.

Верхняя текущая оценка выполняется по следующей формуле:

F в тек ( x ˜ 1 ,..., x ˜ n )= i=1 n a i x ˜ i i=1 n b i x ˜ i Z пост + F в ( L ˜ j , τ l , Pt ˜ i ), MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaDa aaleaacaWGYqaabaGaamOqeiaadwdbcaWG6qaaaOGaaiikaiqadIha gaacamaaBaaaleaacaaIXaaabeaakiaacYcacaGGUaGaaiOlaiaac6 cacaGGSaGabmiEayaaiaWaaSbaaSqaaiaad6gaaeqaaOGaaiykaiab g2da9abaaaaaaaaapeWaaybCaeqal8aabaWdbiaadMgacqGH9aqpca aIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiaadggapaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGabmiEa8aagaacamaaBaaale aapeGaamyAaaWdaeqaaOGaeyOeI0YdbmaawahabeWcpaqaa8qacaWG PbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aa GccaWGIbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiqadIhapaGb aGaadaWgaaWcbaWdbiaadMgaa8aabeaakiabgkHiTiaadQfadaWgaa WcbaGaam4peiaad6dbcaWGbrGaamOqeaqabaGccqGHRaWkcaWGgbWa aSbaaSqaaiaadkdbaeqaaOGaaiikaiqadYeagaacamaaBaaaleaaca WGQbaabeaakiaacYcacqaHepaDdaWgaaWcbaGaamiBaaqabaGccaGG SaWaaacaaeaacaWGqbGaamiDaaGaay5adaWaaSbaaSqaaiaadMgaae qaaOGaaiykaiaacYcaaaa@6EEA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcaa@35F7@  (1.7)

L j ˜ = L j i=1 n x ˜ i l ij ,  j= 1, M ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamita8aadaWgaa WcbaWdbiaadQgaa8aabeaaaOGaay5adaWdbiabg2da9iaadYeapaWa aSbaaSqaa8qacaWGQbaapaqabaGcpeGaeyOeI0YaaybCaeqal8aaba WdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiab ggHiLdaakiqadIhapaGbaGaadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacaWGSbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacaGG SaGaaqoOaiaaKdkacaWGQbGaeyypa0ZdamaanaaabaWdbiaaigdaca GGSaGaaqoOaiaad2eaaaGaaiilaaaa@4E9F@

K l τ i ˜ =  K l τ l i=1 n x ˜ i t il ,  l= 1, K ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadUeapaWaaSbaaSqaa8qaca WGSbaapaqabaGcdaaiaaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaWG PbaapaqabaaakiaawoWaa8qacqGH9aqpcaa5GcGaam4sa8aadaWgaa WcbaWdbiaadYgaa8aabeaak8qacqaHepaDpaWaaSbaaSqaa8qacaWG SbaapaqabaGcpeGaeyOeI0YaaybCaeqal8aabaWdbiaadMgacqGH9a qpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiqadIha paGbaGaadaWgaaWcbaWdbiaadMgaa8aabeaak8qacaWG0bWdamaaBa aaleaapeGaamyAaiaadYgaa8aabeaak8qacaGGSaGaaqoOaiaaKdka caWGSbGaeyypa0ZdamaanaaabaWdbiaaigdacaGGSaGaaqoOaiaadU eaaaGaaiilaaaa@5682@

Pt ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamiuaiaadshaa8 aacaGLdmaaaaa@33CA@  i P t i x ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabgsMiJkaadcfacaWG0bWdam aaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiqadIhapaGbaGaa aaa@3818@  i,

где F â L j ˜ ,   K l τ l ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qaca WGIdaapaqabaGcpeWaaeWaa8aabaWaaacaaeaapeGaamita8aadaWg aaWcbaWdbiaadQgaa8aabeaaaOGaay5adaWdbiaacYcacaa5GcGaaq oOaiaadUeapaWaaSbaaSqaa8qacaWGSbaapaqabaGcdaaiaaqaa8qa cqaHepaDpaWaaSbaaSqaa8qacaWGSbaapaqabaaakiaawoWaaaWdbi aawIcacaGLPaaaaaa@424C@  – верхняя оценка задачи (1.1) – (1.5) с учетом того, что объем материальных ресурсов равен L j ˜  ,  j= 1, M ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamita8aadaWgaa WcbaWdbiaadQgaa8aabeaaaOGaay5adaWdbiaaKdkacaGGSaGaaqoO aiaaKdkacaWGQbGaeyypa0ZdamaanaaabaWdbiaaigdacaGGSaGaaq oOaiaad2eaaaaaaa@3F4B@ , а эффективное время по каждому виду оборудования равно K l τ i ˜  ,  l= 1, K ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadUeapaWaaSbaaSqaa8qaca WGSbaapaqabaGcdaaiaaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaWG PbaapaqabaaakiaawoWaa8qacaa5GcGaaiilaiaaKdkacaa5GcGaam iBaiabg2da98aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGlbaa aaaa@4273@ . Здесь L j ˜ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamita8aadaWgaa WcbaWdbiaadQgaa8aabeaaaOGaay5adaaaaa@3411@  – остаток материальных ресурсов j-го вида после выпуска продукции в объеме x  ˜ =  x 1 ˜ , ,  x n ˜ ;  K l τ l ˜   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamiEaiaaKdkaa8 aacaGLdmaapeGaeyypa0JaaqoOamaabmaapaqaamaaGaaabaWdbiaa dIhapaWaaSbaaSqaa8qacaaIXaaapaqabaaakiaawoWaa8qacaGGSa GaaqoOaiabgAci8kaacYcacaa5GcWdamaaGaaabaWdbiaadIhapaWa aSbaaSqaa8qacaWGUbaapaqabaaakiaawoWaaaWdbiaawIcacaGLPa aacaGG7aGaaqoOaiaadUeapaWaaSbaaSqaa8qacaWGSbaapaqabaGc daaiaaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaWGSbaapaqabaaaki aawoWaa8qacaa5Gcaaaa@4EDC@   x  ˜ =  x 1 ˜ , ,  x n ˜ ;  K l τ l ˜   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamiEaiaaKdkaa8 aacaGLdmaapeGaeyypa0JaaqoOamaabmaapaqaamaaGaaabaWdbiaa dIhapaWaaSbaaSqaa8qacaaIXaaapaqabaaakiaawoWaa8qacaGGSa GaaqoOaiabgAci8kaacYcacaa5GcWdamaaGaaabaWdbiaadIhapaWa aSbaaSqaa8qacaWGUbaapaqabaaakiaawoWaaaWdbiaawIcacaGLPa aacaGG7aGaaqoOaiaadUeapaWaaSbaaSqaa8qacaWGSbaapaqabaGc daaiaaqaa8qacqaHepaDpaWaaSbaaSqaa8qacaWGSbaapaqabaaaki aawoWaa8qacaa5Gcaaaa@4EDC@  – остаток эффективного времени для оборудования вида l после выпуска продукции в объеме x  ˜ =  x 1 ˜ , ,  x n ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamiEaiaaKdkaa8 aacaGLdmaapeGaeyypa0JaaqoOamaabmaapaqaamaaGaaabaWdbiaa dIhapaWaaSbaaSqaa8qacaaIXaaapaqabaaakiaawoWaa8qacaGGSa GaaqoOaiabgAci8kaacYcacaa5GcWdamaaGaaabaWdbiaadIhapaWa aSbaaSqaa8qacaWGUbaapaqabaaakiaawoWaaaWdbiaawIcacaGLPa aacaGGUaaaaa@45A2@   x  ˜ =  x 1 ˜ , ,  x n ˜ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaaiaaqaaabaaaaaaaaapeGaamiEaiaaKdkaa8 aacaGLdmaapeGaeyypa0JaaqoOamaabmaapaqaamaaGaaabaWdbiaa dIhapaWaaSbaaSqaa8qacaaIXaaapaqabaaakiaawoWaa8qacaGGSa GaaqoOaiabgAci8kaacYcacaa5GcWdamaaGaaabaWdbiaadIhapaWa aSbaaSqaa8qacaWGUbaapaqabaaakiaawoWaaaWdbiaawIcacaGLPa aacaGGUaaaaa@45A2@

Если F â òåê   x 1 ˜ , ,  x n ˜ > F H MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaa0baaSqaa8qaca WGIdaapaqaa8qacaWGYdGaamy5aiaadQoaaaGccaa5GcWaaeWaa8aa baWaaacaaeaapeGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO Gaay5adaWdbiaacYcacaa5GcGaeyOjGWRaaiilaiaaKdkapaWaaaca aeaapeGaamiEa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOGaay5ada aapeGaayjkaiaawMcaaiabg6da+iaadAeapaWaaSbaaSqaa8qacaWG ibaapaqabaaaaa@4A77@ , то формирование производственной программы продолжается путем включения в производственную программу еще одной единицы продукции и дальнейшей вычисленной текущей верхней оценки.

Если F â òåê   x 1 ˜ , ,  x n ˜   F Í MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaa0baaSqaa8qaca WGIdaapaqaa8qacaWGYdGaamy5aiaadQoaaaGccaa5GcWaaeWaa8aa baWaaacaaeaapeGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO Gaay5adaWdbiaacYcacaa5GcGaeyOjGWRaaiilaiaaKdkapaWaaaca aeaapeGaamiEa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOGaay5ada aapeGaayjkaiaawMcaaiabgsMiJkaaKdkacaWGgbWdamaaBaaaleaa peGaamyZaaWdaeqaaaaa@4D2F@ , то данная программа не будет оптимальной и исключается из дальнейшего рассмотрения.

Если F â òåê   x 1 ˜ , ,  x n ˜ >  F Í MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaa0baaSqaa8qaca WGIdaapaqaa8qacaWGYdGaamy5aiaadQoaaaGccaa5GcWaaeWaa8aa baWaaacaaeaapeGaamiEa8aadaWgaaWcbaWdbiaaigdaa8aabeaaaO Gaay5adaWdbiaacYcacaa5GcGaeyOjGWRaaiilaiaaKdkapaWaaaca aeaapeGaamiEa8aadaWgaaWcbaWdbiaad6gaa8aabeaaaOGaay5ada aapeGaayjkaiaawMcaaiabg6da+iaaKdkacaWGgbWdamaaBaaaleaa peGaamyZaaWdaeqaaaaa@4C82@  остается до момента, когда ни одну единицу продукции невозможно включить в производственную программу, не нарушив одно из ограничений (1.2) – (1.5), то вычисляется значение целевой функции (1.1) на сформированной производственной программе. Обозначим это значение:

F * >  F Í MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaaWbaaSqabeaape GaaiOkaaaakiabg6da+iaaKdkacaWGgbWdamaaBaaaleaapeGaamyZ aaWdaeqaaaaa@37FF@  – значение F Í MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaaSbaaSqaa8qaca WGndaapaqabaaaaa@33A2@  сдвигается вправо и становится равным F * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaaWbaaSqabeaape GaaiOkaaaaaaa@32F0@ ;

F * =  F â MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaaWbaaSqabeaape GaaiOkaaaakiabg2da9iaaKdkacaWGgbWdamaaBaaaleaapeGaamO4 aaWdaeqaaaaa@3812@  – задача (1.1) – (1.5) решена;

F * <  F â MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAeapaWaaWbaaSqabeaape GaaiOkaaaakiabgYda8iaaKdkacaWGgbWdamaaBaaaleaapeGaamO4 aaWdaeqaaaaa@3810@  – переходим к анализу очередного допустимого решения.

Решение задачи (1.1) – (1.5) будет получено, если:

а) при очередной корректировке Fн ее значение совпадает с Fв;

б) все варианты формирования производственных программ исследованы, тогда в качестве оптимального решения выбирается та программа, которая соответствует последнему (максимальному) значению Fн.

1.2. Верхняя оценка числа допустимых производственных программ. Верхняя оценка объема выпуска по каждому виду продукции определяется исходя из ограничений (1.2) – (1.5).

Так, если мы определяем максимальный объем выпуска продукции первого вида, исходя из ограничений на материальные ресурсы, то этот объем θ max 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeI7aX9aadaqhaaWcbaWdbi aab2gacaqGHbGaaeiEaaWdaeaapeGaaGymaaaaaaa@36D6@  задается следующей формулой: θ max 1 = min j=  1,M ¯ L j l 1j  . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeI7aX9aadaqhaaWcbaWdbi aab2gacaqGHbGaaeiEaaWdaeaapeGaaGymaaaakiabg2da98aadaWf qaqaa8qaciGGTbGaaiyAaiaac6gaaSWdaeaapeGaamOAaiabg2da9i aaKdkapaWaa0aaaeaapeGaaGymaiaacYcacaWGnbaaaaWdaeqaaOWd bmaacmaapaqaa8qadaWcaaWdaeaapeGaamita8aadaWgaaWcbaWdbi aadQgaa8aabeaaaOqaa8qacaWGSbWdamaaBaaaleaapeGaaGymaiaa dQgaa8aabeaaaaaak8qacaGL7bGaayzFaaGaaqoOaiaac6caaaa@4B3A@

Максимальный объем выпуска продукции первого вида r max 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qaca qGTbGaaeyyaiaabIhaa8aabaWdbiaaigdaaaaaaa@3617@  при ограничениях на производственные мощности вычисляется как

r max 1 = min l= 1,k ¯ k l τ l t 1l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkhapaWaa0baaSqaa8qaca qGTbGaaeyyaiaabIhaa8aabaWdbiaaigdaaaGccqGH9aqppaWaaCbe aeaapeGaciyBaiaacMgacaGGUbaal8aabaWdbiaadYgacqGH9aqppa Waa0aaaeaapeGaaGymaiaacYcacaWGRbaaaaWdaeqaaOWdbmaacmaa paqaa8qadaWcaaWdaeaapeGaam4Aa8aadaWgaaWcbaWdbiaadYgaa8 aabeaak8qacqaHepaDpaWaaSbaaSqaa8qacaWGSbaapaqabaaakeaa peGaamiDa8aadaWgaaWcbaWdbiaaigdacaWGSbaapaqabaaaaaGcpe Gaay5Eaiaaw2haaaaa@4A32@ .

Таким образом, максимальный выпуск продукции первого вида x 1 max MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaqGTbGaaeyyaiaabIhaaaaaaa@361D@  рассчитывается следующим образом:

x 1 max =min r max 1 ,  θ max 1 ,  p t 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaa0baaSqaa8qaca aIXaaapaqaa8qacaqGTbGaaeyyaiaabIhaaaGccqGH9aqpcaqGTbGa aeyAaiaab6gadaGadaWdaeaapeGaamOCa8aadaqhaaWcbaWdbiaab2 gacaqGHbGaaeiEaaWdaeaapeGaaGymaaaakiaacYcacaa5GcGaeqiU de3damaaDaaaleaapeGaaeyBaiaabggacaqG4baapaqaa8qacaaIXa aaaOGaaiilaiaaKdkacaa5GcGaamiCaiaadshapaWaaSbaaSqaa8qa caaIXaaapaqabaaak8qacaGL7bGaayzFaaaaaa@5004@ .

Аналогично определяется максимальный объем выпуска по другим видам продукции:

  x i max = min i= 1, n ¯ r max i ,  θ max i ,  p t i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaa0baaSqaa8qaca WGPbaapaqaa8qacaqGTbGaaeyyaiaabIhaaaGccqGH9aqppaWaaCbe aeaapeGaciyBaiaacMgacaGGUbaal8aabaWdbiaadMgacqGH9aqppa Waa0aaaeaapeGaaGymaiaacYcacaa5GcGaamOBaaaaa8aabeaak8qa daGadaWdaeaapeGaamOCa8aadaqhaaWcbaWdbiaab2gacaqGHbGaae iEaaWdaeaapeGaamyAaaaakiaacYcacaa5GcGaeqiUde3damaaDaaa leaapeGaaeyBaiaabggacaqG4baapaqaa8qacaWGPbaaaOGaaiilai aaKdkacaa5GcGaamiCaiaadshapaWaaSbaaSqaa8qacaWGPbaapaqa baaak8qacaGL7bGaayzFaaaaaa@577D@ .

Таким образом, количество допустимых производственных программ задачи (1.1) – (1.5) не превысит числа N:

N=  i=1 n x i max +1   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6eacqGH9aqpcaa5GcWaay bCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWGUbaa n8aabaWdbiabg+Givdaakmaabmaapaqaa8qacaWG4bWdamaaDaaale aapeGaamyAaaWdaeaapeGaaeyBaiaabggacaqG4baaaOGaey4kaSIa aGymaaGaayjkaiaawMcaaiaaKdkaaaa@44C5@ .

Наряду с критерием прибыли (целевая функция (1.1)) при выборе производственной программы может использоваться критерий рентабельности следующего вида:

i=1 n a i x i i=1 n b i x i Z пост / i=1 n b i x i + Z пост max. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaqa aaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWd aeaapeGaamOBaaqdpaqaa8qacqGHris5aaGccaWGHbWdamaaBaaale aapeGaamyAaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaa paqabaGccqGHsislpeWaaybCaeqal8aabaWdbiaadMgacqGH9aqpca aIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakiaadkgapaWa aSbaaSqaa8qacaWGPbaapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbi aadMgaa8aabeaakiabgkHiTiaadQfadaWgaaWcbaGaam4peiaad6db caWGbrGaamOqeaqabaaakiaawIcacaGLPaaacaGGVaWaaeWaaeaape WaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qacaWG Ubaan8aabaWdbiabggHiLdaakiaadkgapaWaaSbaaSqaa8qacaWGPb aapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaakiab gUcaRiaadQfadaWgaaWcbaGaam4peiaad6dbcaWGbrGaamOqeaqaba aakiaawIcacaGLPaaacqGHsgIRciGGTbGaaiyyaiaacIhacaGGUaaa aa@6B5E@  (1.8)

Очевидно, критерий (1.8) есть отношение прибыли к затратам.

Как будет показано ниже, при определенных условиях оптимальные производственные программы по критериям (1.1) и (1.8) совпадают.

2. Устойчивость при нелинейном изменении доходности производственной программы от инфляции.

Пусть в задаче (1.1) – (1.5) маржинальный доход c i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@335B@  равен:

c i = a i + b i . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyypa0Jaamyya8aadaWgaaWcbaWdbiaadMga a8aabeaak8qacqGHRaWkcaWGIbWdamaaBaaaleaapeGaamyAaaWdae qaaOWdbiaac6caaaa@3AA0@         

Здесь a i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadggapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@3359@  – цена продукции i -го вида; b i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@335A@  – переменные издержки при выпуске продукции i -го вида. Будем полагать, что c i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@335B@  зависит от уровня инфляции ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4baa@32EE@  следующим образом:

c i ξ = c i + φ i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMca aiabg2da9iaadogapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaey 4kaSIaeqOXdO2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaa paqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@419C@ ,

d φ i ξ dξ 0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaeq OXdO2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qa cqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaadsgacqaH+oaEaaGaey yzImRaaGimaiaacYcaaaa@3EC8@  

φ i 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgaa8aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjkaiaawMca aiabg2da9iaaicdaaaa@386C@ ,

X _ ¯ = x 1 , ..., x l ,..., x N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqdaaqaaabaaaaaaaaapeGabmiwa8aagaqhaa aapeGaeyypa0ZaaiWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGa aGymaaaakiaacYcacaa5GcGaaiOlaiaac6cacaGGUaGaaiilaiaadI hapaWaaWbaaSqabeaapeGaeS4eHWgaaOGaaiilaiaac6cacaGGUaGa aiOlaiaacYcacaWG4bWdamaaCaaaleqabaWdbiaad6eaaaaakiaawU hacaGL9baaaaa@44DC@ .

Множество X _ ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqdaaqaaabaaaaaaaaapeGabmiwa8aagaqhaa aaaaa@324C@  задает перечень всех производственных программ. Допустим, что x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaeS4eHWgaaaaa@33A5@  – оптимальное решение при ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaicdaaa a@34AE@ , которое обозначили через

f j ξ = i=1 n c i ξ x i j ,  j= 1,N ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aad6gaa0WdaeaapeGaeyyeIuoaaOGaam4ya8aadaWgaaWcbaWdbiaa dMgaa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaa GaamiEa8aadaqhaaWcbaWdbiaadMgaa8aabaWdbiaadQgaaaGccaGG SaGaaqoOaiaaKdkacaWGQbGaeyypa0ZdamaanaaabaWdbiaaigdaca GGSaGaamOtaaaacaGGUaaaaa@4FF4@

Тогда переход на новую оптимальную производственную программу x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@  при каком-то значении ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4baa@32EE@  возможен, если:

а) существует интервал ξ 1 , ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacqaH+oaEpa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiabe67a49aadaWg aaWcbaWdbiaaikdaa8aabeaaaOWdbiaawUfacaGLDbaaaaa@39D1@ , на котором

d f k ξ dξ > d f l ξ dξ ; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH+aGpda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaamiBaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaGaai4oaaaa@45F1@

б) существует ξ * ξ 1 , ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaOGaeyicI48aamWaa8aabaWdbiabe67a49aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaGGSaGaeqOVdG3damaaBaaaleaape GaaGOmaaWdaeqaaaGcpeGaay5waiaaw2faaaaa@3E1C@ , для которого f k ξ * = f l ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape Gaam4Aaaaakmaabmaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaapeGa aiOkaaaaaOGaayjkaiaawMcaaiabg2da9iaadAgapaWaaWbaaSqabe aapeGaamiBaaaakmaabmaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaa peGaaiOkaaaaaOGaayjkaiaawMcaaaaa@3F72@ ;

в) d f k ξ dξ > d f l ξ dξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH+aGpda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaamiBaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaaaaa@4532@   при c i = a i + b i . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyypa0Jaamyya8aadaWgaaWcbaWdbiaadMga a8aabeaak8qacqGHRaWkcaWGIbWdamaaBaaaleaapeGaamyAaaWdae qaaOWdbiaac6caaaa@3AA0@ .

Если условие в) не выполняется, то возможна следующая ситуация (рис. 1).

 

Рис. 1. Отсутствие перехода на новую производственную программу

 

Не соблюдается условие в) для перехода на новую оптимальную производственную программу. На рис. 1 существует ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@ , для которого f l ξ * = f k ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamiBaaaakmaabmaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaapeGa aiOkaaaaaOGaayjkaiaawMcaaiabg2da9iaadAgapaWaaWbaaSqabe aapeGaam4Aaaaakmaabmaapaqaa8qacqaH+oaEpaWaaWbaaSqabeaa peGaaiOkaaaaaOGaayjkaiaawMcaaaaa@3F72@ , но d f k ξ dξ d f l ξ dξ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGHKjYOda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaamiBaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaGaaiilaaaa@468F@

поэтому переход на любую оптимальную производственную программу в точке ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@  не происходит.

В ситуации нелинейного роста c i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMca aaaa@36E0@  возможно несколько переходов от одной оптимальной производственной программы к другой (рис. 2).

 

Рис. 2. Несколько переходов от оптимальной производственной программы xl к оптимальной производственной программе xk и обратно

 

3. Анализ устойчивости модели к изменению критерия. Пусть есть множество допустимых значен X _ ¯ = x 1 , ..., x l ,..., x N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqdaaqaaabaaaaaaaaapeGabmiwa8aagaqhaa aapeGaeyypa0ZaaiWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGa aGymaaaakiaacYcacaa5GcGaaiOlaiaac6cacaGGUaGaaiilaiaadI hapaWaaWbaaSqabeaapeGaeS4eHWgaaOGaaiilaiaac6cacaGGUaGa aiOlaiaacYcacaWG4bWdamaaCaaaleqabaWdbiaad6eaaaaakiaawU hacaGL9baaaaa@44DC@  для оптимальных моделей (1.1) – (1.5) и (1.8), (1.2) – (1.5). Очевидно, в силу того, что системы ограничений в моделях (1.1) – (1.5) и (1.8), (1.2) – (1.5) совпадают, множество допустимых решений у этих моделей также будет одно и то же.

Допустим, что x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaeS4eHWgaaaaa@33A5@  является оптимальным решением для модели (1.1) – (1.5). Очевидно, что если переменные издержки b i =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyypa0JaaGimaaaa@3534@ , то x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaeS4eHWgaaaaa@33A5@  будет оптимально и для модели (1.8), (1.2) – (1.5), так как в этом случае критерий (1.8) – это целевая функция (1.1), умноженная на константу.

В каком диапазоне можно менять значения показателей b i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgapaWaaSbaaSqaa8qaca WGPbaapaqabaaaaa@335A@ , умножая их на λ >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeU7aSjaaKdkacqGH+aGpca aIWaaaaa@3627@  так, чтобы оптимальное решение для критериев (1.1) и (1.8) совпадали, иллюстрирует следующий численный эксперимент.

Пусть существует пекарня, которая выпускает четыре вида продукции (табл. 1).

 

Таблица 1. Виды продукции пекарни

Продукт

Цена, руб.

Переменные затраты, руб.

1

400

300

2

50

35

3

200

150

4

150

110

 

Постоянные издержки составляют 5000 руб/мес.

Нормы потребления ресурсов для производства продукции пекарни, их запасы, нормы времени выработки, эффективное время работы оборудования и месячный спрос на продукцию представлены в табл. 2–6 соответственно.

 

Таблица 2. Нормы потребления ресурсов

Ресурс

Продукт

1

2

3

4

1

0.4 кг

0.05 кг

0.21 кг

0.17 кг

2

0.1 кг

0.01 кг

0.12 кг

0.08 кг

3

150 кв. см

50 кв. см

90 кв. см

75 кв. см

4

2 шт.

0.25 шт.

1 шт.

0.75 шт.

 

Таблица 3. Запасы материальных ресурсов

Ресурс

1

2

3

4

200 кг

120 кг

70 000 кв. см

850 шт.

 

Таблица 4. Нормы времени выработки

Оборудование

Продукт

1

2

3

4

1

25 мин

10 мин

15 мин

12 мин

2

14 мин

6 мин

9 мин

11 мин

3

7 мин

2 мин

3 мин

4 мин

 

Таблица 5. Эффективное время работы оборудования

Оборудование

Эффективное время работы, ч

К

1

9.09

K1 = 1

2

11.36

K2 = 1

3

7.6

K3 = 1

 

Таблица 6. Месячный спрос на продукцию, шт.

Продукт

1

2

3

4

200

250

400

350

 

Тогда числовой пример выглядит следующим образом.

1. Прибыль и рентабельность:

  100 x 1 +15 x 2 +50 x 3 +40 x 4 5000 max MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIWaGaaGimaiaadI hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGymaiaa iwdacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiwdacaaIWaGaamiEa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHRaWkcaaI0aGaaGimaiaadIhapaWaaSbaaSqaa8qacaaI0aaapa qabaGcpeGaeyOeI0IaaGynaiaaicdacaaIWaGaaGimaiaaKdkacqGH sgIRcaqGTbGaaeyyaiaabIhaaaa@4D3D@ ,

100 x 1 +15 x 2 +50 x 3 +40 x 4 5000 300 x 1 +35 x 2 +150 x 3 +110 x 4 +5000 max. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaGaaG imaiaaicdacaWG4bWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiab gUcaRiaaigdacaaI1aGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabe aak8qacqGHRaWkcaaI1aGaaGimaiaadIhapaWaaSbaaSqaa8qacaaI ZaaapaqabaGcpeGaey4kaSIaaGinaiaaicdacaWG4bWdamaaBaaale aapeGaaGinaaWdaeqaaOWdbiabgkHiTiaaiwdacaaIWaGaaGimaiaa icdaa8aabaWdbmaabmaapaqaa8qacaaIZaGaaGimaiaaicdacaWG4b WdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbiabgUcaRiaaiodacaaI 1aGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGHRaWkca aIXaGaaGynaiaaicdacaWG4bWdamaaBaaaleaapeGaaG4maaWdaeqa aOWdbiabgUcaRiaaigdacaaIXaGaaGimaiaadIhapaWaaSbaaSqaa8 qacaaI0aaapaqabaaak8qacaGLOaGaayzkaaGaey4kaSIaaGynaiaa icdacaaIWaGaaGimaaaacqGHsgIRcaqGTbGaaeyyaiaabIhacaGGUa aaaa@659B@

2. Ограничение на материальные ресурсы: 0.4 x 1 +0.05 x 2 +0.21 x 3 +0.17 x 4 200, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGinaiaadI hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGimaiaa c6cacaaIWaGaaGynaiaadIhapaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaey4kaSIaaGimaiaac6cacaaIYaGaaGymaiaadIhapaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaIXa GaaG4naiaadIhapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaeyiz ImQaaGOmaiaaicdacaaIWaGaaiilaaaa@4BF6@

0.1 x 1 +0.01 x 2 +0.12 x 3 +0.08 x 4 120, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaicdacaGGUaGaaGymaiaadI hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGimaiaa c6cacaaIWaGaaGymaiaadIhapaWaaSbaaSqaa8qacaaIYaaapaqaba GcpeGaey4kaSIaaGimaiaac6cacaaIXaGaaGOmaiaadIhapaWaaSba aSqaa8qacaaIZaaapaqabaGcpeGaey4kaSIaaGimaiaac6cacaaIWa GaaGioaiaadIhapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaeyiz ImQaaGymaiaaikdacaaIWaGaaiilaaaa@4BF0@

  150 x 1 +50 x 2 +90 x 3 +75 x 4 70 000, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaI1aGaaGimaiaadI hapaWaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaey4kaSIaaGynaiaa icdacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRi aaiMdacaaIWaGaamiEa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qa cqGHRaWkcaaI3aGaaGynaiaadIhapaWaaSbaaSqaa8qacaaI0aaapa qabaGcpeGaeyizImQaaG4naiaaicdacaa5GcGaaGimaiaaicdacaaI WaGaaiilaaaa@4AC5@

2 x 1 +0,25 x 2 +1 x 3 +0,75 x 4 850. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaWG4bWdamaaBaaale aapeGaaGymaaWdaeqaaOWdbiabgUcaRiaaicdacaGGSaGaaGOmaiaa iwdacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiabgUcaRi aaigdacaWG4bWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUca RiaaicdacaGGSaGaaG4naiaaiwdacaWG4bWdamaaBaaaleaapeGaaG inaaWdaeqaaOWdbiabgsMiJkaaiIdacaaI1aGaaGimaiaac6caaaa@486F@

3. Ограничение на производственную мощность (оборудование). Для расчетов берем 22 рабочих дня:

25 60 x 1 + 10 60 x 2 + 15 60 x 3 + 12 60 x 4 9.0922, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIYaGaaG ynaaWdaeaapeGaaGOnaiaaicdaaaGaamiEa8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaaGymaiaaicdaa8 aabaWdbiaaiAdacaaIWaaaaiaadIhapaWaaSbaaSqaa8qacaaIYaaa paqabaGcpeGaey4kaSYaaSaaa8aabaWdbiaaigdacaaI1aaapaqaa8 qacaaI2aGaaGimaaaacaWG4bWdamaaBaaaleaapeGaaG4maaWdaeqa aOWdbiabgUcaRmaalaaapaqaa8qacaaIXaGaaGOmaaWdaeaapeGaaG OnaiaaicdaaaGaamiEa8aadaWgaaWcbaWdbiaaisdaa8aabeaak8qa cqGHKjYOcaaI5aGaaiOlaiaaicdacaaI5aGaeyyXICTaaGOmaiaaik dacaGGSaaaaa@52A1@

14 60 x 1 + 6 60 x 2 + 9 60 x 3 + 11 60 x 4 11.3622, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaaIXaGaaG inaaWdaeaapeGaaGOnaiaaicdaaaGaamiEa8aadaWgaaWcbaWdbiaa igdaa8aabeaak8qacqGHRaWkdaWcaaWdaeaapeGaaGOnaaWdaeaape GaaGOnaiaaicdaaaGaamiEa8aadaWgaaWcbaWdbiaaikdaa8aabeaa k8qacqGHRaWkdaWcaaWdaeaapeGaaGyoaaWdaeaapeGaaGOnaiaaic daaaGaamiEa8aadaWgaaWcbaWdbiaaiodaa8aabeaak8qacqGHRaWk daWcaaWdaeaapeGaaGymaiaaigdaa8aabaWdbiaaiAdacaaIWaaaai aadIhapaWaaSbaaSqaa8qacaaI0aaapaqabaGcpeGaeyizImQaaGym aiaaigdacaGGUaGaaG4maiaaiAdacqGHflY1caaIYaGaaGOmaiaacY caaaa@51E5@

7 60 x 1 + 2 60 x 2 + 3 60 x 3 + 4 60 x 4 7.622. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaaI3aaapa qaa8qacaaI2aGaaGimaaaacaWG4bWdamaaBaaaleaapeGaaGymaaWd aeqaaOWdbiabgUcaRmaalaaapaqaa8qacaaIYaaapaqaa8qacaaI2a GaaGimaaaacaWG4bWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbiab gUcaRmaalaaapaqaa8qacaaIZaaapaqaa8qacaaI2aGaaGimaaaaca WG4bWdamaaBaaaleaapeGaaG4maaWdaeqaaOWdbiabgUcaRmaalaaa paqaa8qacaaI0aaapaqaa8qacaaI2aGaaGimaaaacaWG4bWdamaaBa aaleaapeGaaGinaaWdaeqaaOWdbiabgsMiJkaaiEdacaGGUaGaaGOn aiabgwSixlaaikdacaaIYaGaaiOlaaaa@4EFB@

4. Ограничение на спрос на продукцию:

x 1 200, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyizImQaaGOmaiaaicdacaaIWaGaaiilaaaa @37EC@   x 2 250, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyizImQaaGOmaiaaiwdacaaIWaGaaiilaaaa @37F2@

x 3 400, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyizImQaaGinaiaaicdacaaIWaGaaiilaaaa @37F0@

x 4 350. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aI0aaapaqabaGcpeGaeyizImQaaG4maiaaiwdacaaIWaGaaiOlaaaa @37F7@

5. Ограничение на решения (целочисленное, положительное):

x 1 Z + , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGSaaaaa@37A2@  

x 2 Z + , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIYaaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGSaaaaa@37A3@  

x 3 Z + , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aIZaaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGSaaaaa@37A4@  

x 4 Z + . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca aI0aaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGUaaaaa@37A7@

Вычислим значения прибыли и рентабельности переходов λ (рис. 3):

λ min [0;0.33], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaab2gacaqGPbGaaeOBaaqabaGccqGHiiIZcaqGBbGaaeim aiaabUdacaqGWaGaaeOlaiaabodacaqGZaGaaeyxaiaabYcaaaa@42E0@

λ 1 [0.34;0.54), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabgdaaeqaaOGaeyicI4Saae4waiaabcdacaqGUaGaae4m aiaabsdacaqG7aGaaeimaiaab6cacaqG1aGaaeinaiaabMcacaqGSa aaaa@42B4@

λ 2 [0.54;0.55), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabkdaaeqaaOGaeyicI4Saae4waiaabcdacaqGUaGaaeyn aiaabsdacaqG7aGaaeimaiaab6cacaqG1aGaaeynaiaabMcacaqGSa aaaa@42B8@

λ 3 [0.55;0.86], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabodaaeqaaOGaeyicI4Saae4waiaabcdacaqGUaGaaeyn aiaabwdacaqG7aGaaeimaiaab6cacaqG4aGaaeOnaiaab2facaqGSa aaaa@42F2@

λ 4 (0.86;1.2), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabsdaaeqaaOGaeyicI4SaaeikaiaabcdacaqGUaGaaeio aiaabAdacaqG7aGaaeymaiaab6cacaqGYaGaaeykaiaabYcaaaa@41D2@

λ 5 [1.2;1.3), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabwdaaeqaaOGaeyicI4Saae4waiaabgdacaqGUaGaaeOm aiaabUdacaqGXaGaaeOlaiaabodacaqGPaGaaeilaaaa@4149@

λ 6 [1.3;1.43), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabAdaaeqaaOGaeyicI4Saae4waiaabgdacaqGUaGaae4m aiaabUdacaqGXaGaaeOlaiaabsdacaqGZaGaaeykaiaabYcaaaa@4202@

λ 7 [1.43;2.9), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabEdaaeqaaOGaeyicI4Saae4waiaabgdacaqGUaGaaein aiaabodacaqG7aGaaeOmaiaab6cacaqG5aGaaeykaiaabYcaaaa@420A@

λ 8 [2.9;+). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaabIdaaeqaaOGaeyicI4Saae4waiaabkdacaqGUaGaaeyo aiaabUdacaqGRaGaeyOhIuQaaeykaiaab6caaaa@415A@

 

Рис. 3. График расположения переходов λ

 

Результаты вычислений представлены в табл. 7:

 

Таблица 7. Результаты вычислений для переходов λ

λ

Решения

0 ≤ λ ≤ 0.33

Решения сохраняются: xр = (200; 0; 400; 53), xпр = (200; 0; 400; 53)

0.34 ≤ λ < 0.54

Решения по прибыли не изменяются, решения по рентабельности изменяются: xпр = (200; 0; 400; 53), xр = (200; 0; 152; 350)

0.54 ≤ λ < 0.55

Решения по прибыли не изменяются, решения по рентабельности изменяются: xпр = (200; 0; 400; 53), xр = (200; 0; 155; 347)

0.55 ≤ λ ≤ 0.86

Решения изменяются по  рентабельности:

xпр = (200; 0; 400; 53), xр = (200; 1; 152; 350)

0.86 < λ < 1.2

Решения изменяются по рентабельности:

xпр = (200; 0; 400; 53), xр = (200; 250; 13; 350)

1.2 ≤ λ < 1.3

Решения изменяются по прибыли:

xпр = (200; 0; 155; 347), xр = (200; 250; 13; 350)

1.3 ≤ λ < 1.43

Решения изменяются по прибыли:

xпр = (200; 250; 13; 350), xр = (200; 250; 13; 350)

1.43 ≤ λ < 2.9

Решение по прибыли становится равным 0:

xпр = (0;0;0;0), xр = (200;250;13;350)

λ ≥ 2.9

Решение по рентабельности становится равным 0, далее обе функции принимают значения 0: xпр = (0; 0; 0; 0), xр = (0; 0; 0; 0)

 

4. Оптимизация производственной программы в условиях расширения производства. Рассмотрим ситуацию, когда наряду с традиционной продукцией предприятие будет выпускать еще и новые виды продукции: n+1, …, n1. Для этого потребуются дополнительные материальные ресурсы: М+1, М+2, …, М1 и дополнительное оборудование: К+1, …, К1. Для приобретения дополнительного объема материальных ресурсов и дополнительных единиц оборудования вычисляются инвестиции в объемах V1 и V2 соответственно.

Задача выбора оптимальной производственной программы в этом случае формулируется следующим образом:

i=1 n a i x i i=1 n b i x i Z пост max, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaa d6gaa0WdaeaapeGaeyyeIuoaaOGaamyya8aadaWgaaWcbaWdbiaadM gaa8aabeaak8qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOGa eyOeI0YdbmaawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdae aapeGaamOBaaqdpaqaa8qacqGHris5aaGccaWGIbWdamaaBaaaleaa peGaamyAaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapa qabaGccqGHsislcaWGAbWaaSbaaSqaaiaad+dbcaWG+qGaamyqeiaa dkebaeqaaOGaeyOKH4QaciyBaiaacggacaGG4bGaaiilaaaa@5781@  (4.1)

i=1 n l ij α i   L j + Z j ,  j= 1,M ¯ ,     MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGSbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacqaHXo qypaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyizImQaaqoOaiaa dYeapaWaaSbaaSqaa8qacaWGQbaapaqabaGcpeGaey4kaSIaamOwa8 aadaWgaaWcbaWdbiaadQgaa8aabeaak8qacaGGSaGaaqoOaiaaKdka caWGQbGaeyypa0ZdamaanaaabaWdbiaaigdacaGGSaGaamytaaaaca GGSaGaaqoOaiaaKdkacaa5GcGaaqoOaaaa@553A@  (4.2)

  i=n+1 n 1 l ij α i Z j ,  j= M+1, M 1 ¯ ,    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaamOBaiabgUcaRiaaigdaa8aabaWdbiaad6gapaWaaSba aWqaa8qacaaIXaaapaqabaaaneaapeGaeyyeIuoaaOGaamiBa8aada WgaaWcbaWdbiaadMgacaWGQbaapaqabaGcpeGaeqySde2damaaBaaa leaapeGaamyAaaWdaeqaaOWdbiabgsMiJkaadQfapaWaaSbaaSqaa8 qacaWGQbaapaqabaGcpeGaaiilaiaaKdkacaa5GcGaamOAaiabg2da 98aadaqdaaqaa8qacaWGnbGaey4kaSIaaGymaiaacYcacaWGnbWdam aaBaaaleaapeGaaGymaaWdaeqaaaaak8qacaGGSaGaaqoOaiaaKdka caa5Gcaaaa@54D7@  (4.3)

  i=1 n t ie x i K e + y e τ e ,  e= 1,K ¯ ,     MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG0bWdamaaBaaaleaapeGaamyAaiaadwgaa8aabeaak8qacaWG4b WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgsMiJoaabmaapaqa a8qacaWGlbWdamaaBaaaleaapeGaamyzaaWdaeqaaOWdbiabgUcaRi aadMhapaWaaSbaaSqaa8qacaWGLbaapaqabaaak8qacaGLOaGaayzk aaGaeqiXdq3damaaBaaaleaapeGaamyzaaWdaeqaaOWdbiaacYcaca a5GcGaaqoOaiaadwgacqGH9aqppaWaa0aaaeaapeGaaGymaiaacYca caWGlbaaaiaacYcacaa5GcGaaqoOaiaaKdkacaa5Gcaaaa@57ED@  (4.4)

i=n+1 n 1 t ie x i y e τ e ,  e= K+1, K 1 ¯ ,       MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaamOBaiabgUcaRiaaigdaa8aabaWdbiaad6gapaWaaSba aWqaa8qacaaIXaaapaqabaaaneaapeGaeyyeIuoaaOGaamiDa8aada WgaaWcbaWdbiaadMgacaWGLbaapaqabaGcpeGaamiEa8aadaWgaaWc baWdbiaadMgaa8aabeaak8qacqGHKjYOcaWG5bWdamaaBaaaleaape GaamyzaaWdaeqaaOWdbiabes8a09aadaWgaaWcbaWdbiaadwgaa8aa beaak8qacaGGSaGaaqoOaiaaKdkacaWGLbGaeyypa0Zdamaanaaaba WdbiaadUeacqGHRaWkcaaIXaGaaiilaiaadUeapaWaaSbaaSqaa8qa caaIXaaapaqabaaaaOWdbiaacYcacaa5GcGaaqoOaiaaKdkacaa5Gc GaaqoOaiaaKdkaaaa@5BFE@  (4.5)

j=1 M 1 Z j β j V 1 ,        MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGQb Gaeyypa0JaaGymaaWdaeaapeGaamyta8aadaWgaaadbaWdbiaaigda a8aabeaaa0qaa8qacqGHris5aaGccaWGAbWdamaaBaaaleaapeGaam OAaaWdaeqaaOWdbiabek7aI9aadaWgaaWcbaWdbiaadQgaa8aabeaa k8qacqGHKjYOcaWGwbWdamaaBaaaleaapeGaaGymaaWdaeqaaOWdbi aacYcacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5Gcaa aa@4CC4@  (4.6)

e=1 K 1 y e γ e V 2 ,      MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGLb Gaeyypa0JaaGymaaWdaeaapeGaam4sa8aadaWgaaadbaWdbiaaigda a8aabeaaa0qaa8qacqGHris5aaGccaWG5bWdamaaBaaaleaapeGaam yzaaWdaeqaaOWdbiabeo7aN9aadaWgaaWcbaWdbiaadwgaa8aabeaa k8qacqGHKjYOcaWGwbWdamaaBaaaleaapeGaaGOmaaWdaeqaaOWdbi aacYcacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaaaa@49CD@  (4.7)

x i P t i ,  i= 1,  n 1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyizImQaamiuaiaadshapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaaiilaiaaKdkacaa5GcGaamyAaiabg2da98 aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGUbWdamaaBaaaleaa peGaaGymaaWdaeqaaaaak8qacaGGSaaaaa@4412@  (4.8)                 

x i Z + ,  i= 1,  n 1 ¯ ,      MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGSaGaaqoOaiaaKdkacaWGPbGaeyypa0Zdamaanaaaba WdbiaaigdacaGGSaGaaqoOaiaad6gapaWaaSbaaSqaa8qacaaIXaaa paqabaaaaOWdbiaacYcacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaa aa@4A66@  (4.9)

  y e Z + ,         e= 1,  K 1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMhapaWaaSbaaSqaa8qaca WGLbaapaqabaGcpeGaeyicI4SaamOwa8aadaahaaWcbeqaa8qacqGH RaWkaaGccaGGSaGaaqoOaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5Gc GaaqoOaiaaKdkacaa5GcGaamyzaiabg2da98aadaqdaaqaa8qacaaI XaGaaiilaiaaKdkacaWGlbWdamaaBaaaleaapeGaaGymaaWdaeqaaa aaaaa@4C7E@ ,

Z j 0,        j= 1,  M 1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQfapaWaaSbaaSqaa8qaca WGQbaapaqabaGcpeGaeyyzImRaaGimaiaacYcacaa5GcGaaqoOaiaa Kdkacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaiaadQgacqGH9aqppa Waa0aaaeaapeGaaGymaiaacYcacaa5GcGaamyta8aadaWgaaWcbaWd biaaigdaa8aabeaaaaaaaa@49CA@  .

5. Анализ устойчивости в условиях расширения производства. Рассмотрим ситуацию роста маржинального дохода C i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMca aaaa@36C0@  при росте инфляции ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4baa@32EE@  в модели (4.1) – (4.9). Будем считать C i ξ =  a i ξ   b i  ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMca aiabg2da9iaaKdkacaWGHbWdamaaBaaaleaapeGaamyAaaWdaeqaaO Wdbmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGHsislcaa5 GcGaamOya8aadaWgaaWcbaWdbiaadMgacaa5GcaapaqabaGcpeWaae Waa8aabaWdbiabe67a4bGaayjkaiaawMcaaaaa@48AC@ , а в общем случае:

    C i ξ =  C i 0 +  φ i ξ ,  i= 1, n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWGdbWdamaaBaaale aapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qacqaH+oaEaiaawIca caGLPaaacqGH9aqpcaa5GcGaam4qa8aadaWgaaWcbaWdbiaadMgaa8 aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjkaiaawMcaaiabgUca RiaaKdkacqaHgpGApaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaae Waa8aabaWdbiabe67a4bGaayjkaiaawMcaaiaacYcacaa5GcGaaqoO aiaadMgacqGH9aqppaWaa0aaaeaapeGaaGymaiaacYcacaa5GcGaam OBaaaaaaa@5214@  .   (5.1)      

Здесь

  d φ i ξ dξ  0,  φ i 0 =0 è  φ i ξ >0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaeq OXdO2damaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapaqaa8qa cqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaadsgacqaH+oaEaaGaaq oOaiabgwMiZkaaicdacaGGSaGaaqoOaiabeA8aQ9aadaWgaaWcbaWd biaadMgaa8aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjkaiaawM caaiabg2da9iaaicdacaa5GcGaami6aiaaKdkacqaHgpGApaWaaSba aSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaay jkaiaawMcaaiabg6da+iaaicdaaaa@55DA@  ;

C i 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaa aaa@35B7@  – маржинальный доход в начальный момент времени t= 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadshacqGH9aqpcaa5GcGaaG imaaaa@356A@ .

Пусть X _ ¯ =  x 1 , ,  x N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqdaaqaaabaaaaaaaaapeGabmiwa8aagaqhaa aapeGaeyypa0JaaqoOamaacmaapaqaa8qacaWG4bWdamaaCaaaleqa baWdbiaaigdaaaGccaGGSaGaaqoOaiabgAci8kaacYcacaa5GcGaam iEa8aadaahaaWcbeqaa8qacaWGobaaaaGccaGL7bGaayzFaaaaaa@4166@  – множество допустимых производственных программ в модели  (4.1) – (4.9), x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaeS4eHWgaaaaa@33A5@  – оптимальная производственная программа.

Изменение целевой функции (1.1) на решении x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaeS4eHWgaaaaa@33A5@ , при росте инфляции можно описать следующей функцией:

f j ξ = i=1 n С i ξ x i l + Z пост . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aad6gaa0WdaeaapeGaeyyeIuoaaOGaamyiemaaBaaaleaacaWGPbaa beaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacaWG4bWaa0 baaSqaaiaadMgaaeaacaWGSbaaaOGaey4kaSIaamOwamaaBaaaleaa caWG=qGaamOpeiaadgebcaWGcraabeaakiaac6caaaa@4C38@  (5.2)          

Аналогичным образом можно задать значение целевой функции (4.1) на любой другой производственной программе x j     j= 1, N ¯ ; jl MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamOAaaaakiaaKdkacaa5GcWaaeWaa8aabaWdbiaaKdkacaWGQbGa eyypa0ZdamaanaaabaWdbiaaigdacaGGSaGaaqoOaiaad6eaaaGaai 4oaiaaKdkacaWGQbGaeyiyIKRaeS4eHWgacaGLOaGaayzkaaaaaa@45BC@ :

f j ξ = i=1 n С i ξ x i j + Z пост . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aad6gaa0WdaeaapeGaeyyeIuoaaOGaamyiemaaBaaaleaacaWGPbaa beaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacaWG4bWaa0 baaSqaaiaadMgaaeaacaWGQbaaaOGaey4kaSIaamOwamaaBaaaleaa caWG=qGaamOpeiaadgebcaWGcraabeaakiaac6caaaa@4C36@  (5.3)

Возникает вопрос: если x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@  было оптимально при ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaicdaaa a@34AE@ , останется ли оно оптимальным при изменении ξ 0,θ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabgIGiopaabmaapa qaa8qacaaIWaGaaiilaiabeI7aXbGaayjkaiaawMcaaaaa@393A@ ?

Продифференцируем f l ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamiBaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@36C8@  и f j ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@36C6@  по ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4baa@32EE@  с учетом соотношения (5.1). Получаем

   d f l ξ dξ = i=1 n d φ i ξ dξ x i l ,      MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaa5GcWaaSaaa8aaba WdbiaadsgacaWGMbWdamaaCaaaleqabaWdbiaadYgaaaGcdaqadaWd aeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqaa8qacaWGKbGaeqOVdG haaiabg2da9maawahabeWcpaqaa8qacaWGPbGaeyypa0JaaGymaaWd aeaapeGaamOBaaqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaapeGaam izaiabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qadaqadaWd aeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqaa8qacaWGKbGaeqOVdG haaiaadIhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaWGSbaaaOGa aiilaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5Gcaaaa@5B1C@  (5.4)

            d f j ξ dξ = i=1 n d φ i ξ dξ x i j . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaa5GcGaaqoOaiaaKd kacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5GcWaaSaa a8aabaWdbiaadsgacaWGMbWdamaaCaaaleqabaWdbiaadQgaaaGcda qadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqaa8qacaWGKbGa eqOVdGhaaiabg2da9maawahabeWcpaqaa8qacaWGPbGaeyypa0JaaG ymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGcdaWcaaWdaeaa peGaamizaiabeA8aQ9aadaWgaaWcbaWdbiaadMgaa8aabeaak8qada qadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqaa8qacaWGKbGa eqOVdGhaaiaadIhapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaWGQb aaaOGaaiOlaaaa@6132@    

Если φ i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgaa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzk aaaaaa@37B5@  линейные функции:

   d f l ξ dξ d f j ξ dξ ,   ξ 0,θ ,    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaa5GcWaaSaaa8aaba WdbiaadsgacaWGMbWdamaaCaaaleqabaWdbiaadYgaaaGcdaqadaWd aeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqaa8qacaWGKbGaeqOVdG haaiabgwMiZoaalaaapaqaa8qacaWGKbGaamOza8aadaahaaWcbeqa a8qacaWGQbaaaOWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaa WdaeaapeGaamizaiabe67a4baacaGGSaGaaqoOaiaaKdkacqGHaiIi caa5GcGaeqOVdGNaeyicI48aaeWaa8aabaWdbiaaicdacaGGSaGaeq iUdehacaGLOaGaayzkaaGaaiilaiaaKdkacaa5GcGaaqoOaaaa@5C5E@  (5.5)

то легко понять, что производственная программа x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@  остается оптимальной для всех решений  ξ 0,θ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacqaH+oaEcqGHiiIZda qadaWdaeaapeGaaGimaiaacYcacqaH4oqCaiaawIcacaGLPaaaaaa@3AC0@ . Если же существует K, K= 1, N ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadUeacaGGSaGaaqoOaiaadU eacqGH9aqppaWaa0aaaeaapeGaaGymaiaacYcacaa5GcGaamOtaaaa caGGSaaaaa@3AAB@  такое, что

   d f k ξ dξ > d f l ξ dξ ,   ξ 0,θ ,     MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaa5GcWaaSaaa8aaba WdbiaadsgacaWGMbWdamaaCaaaleqabaWdbiaadUgaaaGcdaqadaWd aeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqaa8qacaWGKbGaeqOVdG haaiabg6da+maalaaapaqaa8qacaWGKbGaamOza8aadaahaaWcbeqa a8qacaWGSbaaaOWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaa WdaeaapeGaamizaiabe67a4baacaGGSaGaaqoOaiaaKdkacqGHaiIi caa5GcGaeqOVdGNaeyicI48aaeWaa8aabaWdbiaaicdacaGGSaGaeq iUdehacaGLOaGaayzkaaGaaiilaiaaKdkacaa5GcGaaqoOaiaaKdka aaa@5D27@  (5.6)

то при определенном значении ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@  оптимальной становится программа x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@ .

Значение ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@  определяется из следующего уравнения:

  f k ξ = f l ξ    MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWGMbWdamaaCaaale qabaWdbiaadUgaaaGcdaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzk aaGaeyypa0JaamOza8aadaahaaWcbeqaa8qacaWGSbaaaOWaaeWaa8 aabaWdbiabe67a4bGaayjkaiaawMcaaiaaKdkacaa5Gcaaaa@41FC@ .                                            (5.7)

В силу линейности φ i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgaa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzk aaaaaa@37B5@  уравнение (5.7) будет иметь единственное решение, которое мы обозначим ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@ .

Таким образом, при ξ ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabgsMiJkabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaaaa@3760@  оптимальным будет решение x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@ , при ξ ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabgwMiZkabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaaaa@3771@  – решение x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@ , при ξ= ξ *   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaOGaaqoOaaaa@3841@  – решение x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@  и x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@ . Область изменения ξ * 0, ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaOGaeyicI48aamWaa8aabaWdbiaaicdacaGGSaGaeqOV dG3damaaCaaaleqabaWdbiaacQcaaaaakiaawUfacaGLDbaaaaa@3BB8@  [ ξ * 0, ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaOGaeyicI48aamWaa8aabaWdbiaaicdacaGGSaGaeqOV dG3damaaCaaaleqabaWdbiaacQcaaaaakiaawUfacaGLDbaaaaa@3BB8@  ] – область устойчивости для решения x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@ .

Если существует несколько производственных программ x K 1 ,,  x K M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4sa8aadaWgaaadbaWdbiaaigdaa8aabeaaaaGcpeGaaiilaiab gAci8kaacYcacaa5GcGaamiEa8aadaahaaWcbeqaa8qacaWGlbWdam aaBaaameaapeGaamytaaWdaeqaaaaaaaa@3C2E@ , для которых выполняется условие (5.6), то решается М уравнений, находятся решения ξ 1 ,, ξ M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaWgaaWcbaWdbi aaigdaa8aabeaak8qacaGGSaGaeyOjGWRaaiilaiabe67a49aadaWg aaWcbaWdbiaad2eaa8aabeaaaaa@39FA@  и в качестве точки перехода на новую оптимальную производственную программу выбирается точка ξ * =min ξ 1 ,, ξ M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaOGaeyypa0JaaeyBaiaabMgacaqGUbWaaiWaa8aabaWd biabe67a49aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaey OjGWRaaiilaiabe67a49aadaWgaaWcbaWdbiaad2eaa8aabeaaaOWd biaawUhacaGL9baaaaa@42FE@ .

В силу линейности f j ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@36C6@  число переходов на новую оптимальную производственную программу будет конечно и не будет превышать числа N1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6eacqGHsislcaaIXaaaaa@33A6@ . Если же φ i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgaa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzk aaaaaa@37B5@  нелинейны, то нелинейны и f j ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@36C6@   i= 1, n ¯ ; j= 1, N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacaWGPbGaey ypa0ZdamaanaaabaWdbiaaigdacaGGSaGaaqoOaiaad6gaaaGaai4o aiaaKdkacaWGQbGaeyypa0ZdamaanaaabaWdbiaaigdacaGGSaGaaq oOaiaad6eaaaaacaGLOaGaayzkaaaaaa@4109@ . Тогда количество переходов от одной оптимальной производственной программы к другой может быть бесконечным при ξ 0; MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabgIGiopaabmaapa qaa8qacaaIWaGaai4oaiabg6HiLcGaayjkaiaawMcaaaaa@3904@  уже для N=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6eacqGH9aqpcaaIYaaaaa@33C0@ .

Приведем пример этой ситуации для случая, когда φ i ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgaa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzk aaaaaa@37B5@  кусочно-линейны (рис. 4).

 

Рис. 4. Несколько точек перехода от одной оптимальной производственной программы к другой в условиях расширения производства

 

Изменение оптимальной производственной программы может быть связано с ростом стоимости материальных ресурсов и стоимости оборудования при росте инфляции, а также  с падением спроса при росте инфляции. Рассмотрим ситуацию, когда цена материальных ресурсов зависит от инфляции следующим образом:

βj (ξ) = βj (0) + ψj (ξ),  5.8 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacaaI1aGaai OlaiaaiIdaaiaawIcacaGLPaaaaaa@3506@

где ψj (ξ) ≥ 0,"ξ и

d ψ j (ξ) dξ >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeqiYdK3aaSbaaSqaaiaadQgaaeqaaOGaaiikaiabe67a4jaa cMcaaeaacaWGKbGaeqOVdGhaaiabg6da+iaaicdacaGGUaaaaa@421F@

Здесь βj(0) – стоимость материального ресурса j в начальный момент времени t = 0. В этом случае неравенство (4.6) можно переписать в следующем виде:

С учетом того, что с ростом ξ правая часть неравенства (5.9) растет, а объем инвестиций V1 не меняется, можно вычислить такое ξτ, при котором

Дальнейший рост инфляции приведет к тому, что объем затрат на материальные ресурсы (левая часть равенства (5.10)) станет больше, чем объем инвестиций V 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAfapaWaaSbaaSqaa8qaca aIXaaapaqabaaaaa@331B@ . Следовательно, невозможно обеспечить производственную программу x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@  (оптимальную в момент времени t) необходимым объемом материальных ресурсов и, следовательно, предприятие будет выпускать продукцию в меньших объемах, т. е. необходим переход при уровне инфляции ξτ от производственной программы x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@  к новой программе x τ , τ= 1, N ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaeqiXdqhaaOGaaiilaiaaKdkacqaHepaDcqGH9aqppaWaa0aaaeaa peGaaGymaiaacYcacaa5GcGaamOtaaaacaGGUaaaaa@3DEA@

Аналогичная ситуация при росте цен на оборудование. Если их изменение происходит по закону, описываемому следующей формулой:

 γl (ξ) = γl (0) + χl (ξ), (5.11)  

где χl (ξ) ≥ 0, χl (ξ) = 0 и

d χ l (ξ) dξ >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaeq4Xdm2aaSbaaSqaaiaadYgaaeqaaOGaaiikaiabe67a4jaa cMcaaeaacaWGKbGaeqOVdGhaaiabg6da+iaaicdacaGGUaaaaa@420A@

то существует ξj при котором неравенство (4.7) будет иметь вид

l=1K1Ylγl(ξγ)=V2 (5.12)

Следовательно, при ξ = ξγ также будет переход на новую оптимальную производственную программу Xγ.

Наконец, естественно предположить, что спрос P t i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadcfacaWG0bWdamaaBaaale aapeGaamyAaaWdaeqaaaaa@3441@  будет падать с ростом инфляции. Пусть это падение описывается формулой

Pti (ξ) = Pti (0) – Qi (ξ), (5.13)                                              

где Qi (ξ) = 0 при ξ = 0; Qi (ξ) ≥ 0 при ξ > 0;

dQ(ξ) dξ >0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca WGKbGaamyuaiaacIcacqaH+oaEcaGGPaaabaGaamizaiabe67a4baa cqGH+aGpcaaIWaGaaiOlaaaa@4002@

для ξ ∈ (0, θ).

Рассмотрим (4.8) с учетом (5.13):

xiPti(ξ), i=1,n1¯ ,                             (5.14)

Так как xl оптимально, при ξ = 0 также должно выполняться

 xilPti(ξ), i=1,n1¯ (5.15)

Так как правая часть в (5.15) уменьшается с ростом ξ, то существует ξp и существует γ , такие, что

xil=Ptγ(ξp) (5.16)

Следовательно, при ξ > ξp производственная программа xl перестает быть допустимой и, следовательно, предприятие вынуждено снижать объем выпуска, переходя к другой производственной программе x p , p= 1, N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiCaaaakiaacYcacaa5GcGaamiCaiabg2da98aadaqdaaqaa8qa caaIXaGaaiilaiaaKdkacaWGobaaaaaa@3B98@ .

Таким образом, при изменении маржинального дохода Сi(ξ), i= 1, n 1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabg2 da9maanaaabaGaaGymaiaacYcacaWGUbWaaSbaaSqaaiaaigdaaeqa aaaakiaacYcaaaa@3BFC@  на материальные ресурсы β j (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadQgaaeqaaOGaaiikaiabe67a4jaacMcaaaa@3BDA@ , j =  1,  M 1 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQgacaa5GcGaeyypa0Jaaq oOa8aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGnbWdamaaBaaa leaapeGaaGymaaWdaeqaaaaaaaa@3B34@ , цен на оборудование γ l (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4SdC2aaS baaSqaaiaadYgaaeqaaOGaaiikaiabe67a4jaacMcaaaa@3BE2@  , l =  1,  K 1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadYgacaa5GcGaeyypa0Jaaq oOa8aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGlbWdamaaBaaa leaapeGaaGymaaWdaeqaaaaak8qacaGGSaaaaa@3BFE@  и спроса P t i (ξ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuaiaads hadaWgaaWcbaGaamyAaaqabaGccaGGOaGaeqOVdGNaaiykaaaa@3C06@  , i =  1,  n 1 ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMgacaa5GcGaeyypa0Jaaq oOa8aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGUbWdamaaBaaa leaapeGaaGymaaWdaeqaaaaak8qacaGGSaaaaa@3C1E@  под влиянием инфляции ξ произойдет переход на новую оптимальную производственную программу. Константы n 1 ,  M 1 ,  K 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaad6gapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaaiilaiaaKdkacaWGnbWdamaaBaaaleaapeGa aGymaaWdaeqaaOWdbiaacYcacaa5GcGaam4sa8aadaWgaaWcbaWdbi aaigdaa8aabeaaaaa@3B9F@  определены нами в начале разд. 4. Уровень инфляции ξ, при котором произойдет этот переход вычисляется по формуле

ξ = min c, ξβ, ξγ, ξp}.

6. Динамическая модель выбора оптимальной производственной программы. Рассмотрим ситуацию, когда материальные ресурсы поступают динамически на вход производственной системы с интенсивностью L j t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qaca WGQbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@3600@ , j =  1, M ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQgacaa5GcGaeyypa0Jaaq oOa8aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGnbaaaaaa@3A1F@ . В этом случае интенсивность выпуска конечной продукции также будет задана динамически как x i t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa aaa@362B@ , i = 1, n ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaabMgacaa5GcGaeyypa0Zdam aanaaabaWdbiaaigdacaGGSaGaaqoOaiaad6gaaaGaaiilaaaa@3967@  и задача выбора оптимальной производственной программы может быть сформулирована следующим образом

i=1 n 0 T C i t x i t dt max.        MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc daGfWbqabSWdaeaapeGaaGimaaWdaeaapeGaamivaaqdpaqaa8qacq GHRiI8aaGccaWGdbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaa bmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaamiEa8aadaWgaaWcba WdbiaadMgaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaa wMcaaiaadsgacaWG0bGaaqoOaiabgkziUkaab2gacaqGHbGaaeiEai aac6cacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5Gcaa aa@5934@  (6.1)

Здесь C i t = a i t   b i t MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa cqGH9aqpcaWGHbWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabm aapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyOeI0IaaqoOaiaadkga paWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbiaads haaiaawIcacaGLPaaaaaa@4342@

= i=1 n l ij 0 t x i t d t 0 t L j t dt,  j =  1, M ¯ ,  t 0,T ,      MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGSbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qadaGfWb qabSWdaeaapeGaaGimaaWdaeaapeGaamiDaaqdpaqaa8qacqGHRiI8 aaGccaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbmaabmaapa qaa8qaceWG0bWdayaafaaapeGaayjkaiaawMcaaiaadsgaceWG0bWd ayaafaWdbiabgsMiJoaawahabeWcpaqaa8qacaaIWaaapaqaa8qaca WG0baan8aabaWdbiabgUIiYdaakiaadYeapaWaaSbaaSqaa8qacaWG QbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaca WGKbGaamiDaiaacYcacaa5GcGaaqoOaiaabQgacaa5GcGaeyypa0Ja aqoOa8aadaqdaaqaa8qacaaIXaGaaiilaiaaKdkacaWGnbaaaiaacY cacaa5GcGaaqoOaiabgcGiIiaadshacqGHiiIZdaqadaWdaeaapeGa aGimaiaacYcacaWGubaacaGLOaGaayzkaaGaaiilaiaaKdkacaa5Gc GaaqoOaiaaKdkacaa5Gcaaaa@736A@  (6.2)

i=1 n t il t 1 t 2 x i t d t   t 2 t 1 T k l τ l ,  l =  1, K ¯ ,      MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG0bWdamaaBaaaleaapeGaamyAaiaadYgaa8aabeaak8qadaGfWb qabSWdaeaapeGaamiDa8aadaWgaaadbaWdbiaaigdaa8aabeaaaSqa a8qacaWG0bWdamaaBaaameaapeGaaGOmaaWdaeqaaaqdbaWdbiabgU IiYdaakiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeWaaeWa a8aabaWdbiqadshapaGbauaaa8qacaGLOaGaayzkaaGaamizaiqads hapaGbauaapeGaeyizImQaaqoOamaalaaapaqaa8qacaWG0bWdamaa BaaaleaapeGaaGOmaaWdaeqaaOWdbiabgkHiTiaadshapaWaaSbaaS qaa8qacaaIXaaapaqabaaakeaapeGaamivaaaacaWGRbWdamaaBaaa leaapeGaamiBaaWdaeqaaOWdbiabes8a09aadaWgaaWcbaWdbiaadY gaa8aabeaak8qacaGGSaGaaqoOaiaaKdkacaWGSbGaaqoOaiabg2da 9iaaKdkapaWaa0aaaeaapeGaaGymaiaacYcacaa5GcGaam4saaaaca GGSaGaaqoOaiaaKdkacaa5GcGaaqoOaiaaKdkaaaa@6CE4@  (6.3)

t 1 ,  t 2   t 2 > t 1 ,    t 1 0,T ,    t 2 0,T , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabgcGiIiaadshapaWaaSbaaS qaa8qacaaIXaaapaqabaGcpeGaaiilaiaaKdkacaWG0bWdamaaBaaa leaapeGaaGOmaaWdaeqaaOWdbiaaKdkadaqadaWdaeaapeGaamiDa8 aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacqGH+aGpcaWG0bWdamaa BaaaleaapeGaaGymaaWdaeqaaaGcpeGaayjkaiaawMcaaiaacYcaca a5GcGaaqoOaiaaKdkacaWG0bWdamaaBaaaleaapeGaaGymaaWdaeqa aOWdbiabgIGiopaabmaapaqaa8qacaaIWaGaaiilaiaadsfaaiaawI cacaGLPaaacaGGSaGaaqoOaiaaKdkacaa5GcGaamiDa8aadaWgaaWc baWdbiaaikdaa8aabeaak8qacqGHiiIZdaqadaWdaeaapeGaaGimai aacYcacaWGubaacaGLOaGaayzkaaGaaiilaaaa@5B6C@

0 T x i t dt P t i ,  i =  1, n ¯ ,     MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaaIWa aapaqaa8qacaWGubaan8aabaWdbiabgUIiYdaakiaadIhapaWaaSba aSqaa8qacaWGPbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawI cacaGLPaaacaWGKbGaamiDaiabgsMiJkaaKdkacaWGqbGaamiDa8aa daWgaaWcbaWdbiaadMgaa8aabeaak8qacaGGSaGaaqoOaiaaKdkaca WGPbGaaqoOaiabg2da9iaaKdkapaWaa0aaaeaapeGaaGymaiaacYca caa5GcGaamOBaaaacaGGSaGaaqoOaiaaKdkacaa5GcGaaqoOaaaa@567B@  (6.4)

x i t 0,  i =  1, n ¯ .  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaa cqGHLjYScaaIWaGaaiilaiaaKdkacaa5GcGaamyAaiaaKdkacqGH9a qpcaa5GcWdamaanaaabaWdbiaaigdacaGGSaGaaqoOaiaad6gaaaGa aiOlaiaaKdkaaaa@47B3@  (6.5)

Неравенство (6.2) задает ограничения на потребление материальных ресурсов; неравенство (6.3) – ограничения на производственные мощности с учетом равномерной загрузки оборудования.

Задача (6.1) – (6.5) является задачей оптимального управления. Она может быть сведена к задаче линейной целочисленной оптимизации следующим образом. Разобьем интервал (0, T) на конечное число отрезков времени (дней) и будем полагать, что x iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaeqiXdqhapaqabaaaaa@3535@  – объем выпуска продукции в день с номером τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabes8a0baa@32F0@ , а L jτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadYeapaWaaSbaaSqaa8qaca WGQbGaeqiXdqhapaqabaaaaa@350A@  – объем поступления материальных ресурсов j MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQgaaaa@321A@  в день τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabes8a0baa@32F0@ . Тогда задача (6.2) – (6.5) может быть переписана следующим образом:     

i=1 n τ=1 T c iτ x iτ max,       MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc daGfWbqabSWdaeaapeGaeqiXdqNaeyypa0JaaGymaaWdaeaapeGaam ivaaqdpaqaa8qacqGHris5aaGccaWGJbWdamaaBaaaleaapeGaamyA aiabes8a0bWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGPbGaeq iXdqhapaqabaGcpeGaeyOKH4QaaeyBaiaabggacaqG4bGaaiilaiaa Kdkacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaaaa@5551@  (6.6)

где c iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbGaeqiXdqhapaqabaaaaa@3520@  – маржинальный доход от выпуска одной единицы продукции i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMgaaaa@3219@  в день τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabes8a0baa@32F0@ :

i=1 n τ=1 θ l ij x iτ τ=1 θ L jτ ,  j=  1, M ¯ ,   θ =  1, T ¯ ,   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc daGfWbqabSWdaeaapeGaeqiXdqNaeyypa0JaaGymaaWdaeaapeGaeq iUdehan8aabaWdbiabggHiLdaakiaadYgapaWaaSbaaSqaa8qacaWG PbGaamOAaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGPbGaeq iXdqhapaqabaGcpeGaeyizIm6aaybCaeqal8aabaWdbiabes8a0jab g2da9iaaigdaa8aabaWdbiabeI7aXbqdpaqaa8qacqGHris5aaGcca WGmbWdamaaBaaaleaapeGaamOAaiabes8a0bWdaeqaaOWdbiaacYca caa5GcGaaqoOaiaadQgacqGH9aqpcaa5GcWdamaanaaabaWdbiaaig dacaGGSaGaaqoOaiaad2eaaaGaaiilaiaaKdkacaa5GcGaaqoOaiab eI7aXjaaKdkacqGH9aqpcaa5GcWdamaanaaabaWdbiaaigdacaGGSa GaaqoOaiaadsfaaaGaaiilaiaaKdkacaa5Gcaaaa@7256@  (6.7)

i=1 n t il x iτ   1 T k l τ l ,  l =  1, K ¯ ,  τ = 1, T ¯ ,     MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG0bWdamaaBaaaleaapeGaamyAaiaadYgaa8aabeaak8qacaWG4b WdamaaBaaaleaapeGaamyAaiabes8a0bWdaeqaaOWdbiabgsMiJkaa KdkadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamivaaaacaWGRbWdam aaBaaaleaapeGaamiBaaWdaeqaaOWdbiabes8a09aadaWgaaWcbaWd biaadYgaa8aabeaak8qacaGGSaGaaqoOaiaaKdkacaWGSbGaaqoOai abg2da9iaaKdkapaWaa0aaaeaapeGaaGymaiaacYcacaa5GcGaam4s aaaacaGGSaGaaqoOaiaaKdkacqaHepaDcaa5GcGaeyypa0Zdamaana aabaWdbiaaigdacaGGSaGaaqoOaiaadsfaaaGaaiilaiaaKdkacaa5 GcGaaqoOaiaaKdkaaaa@6909@  (6.8)

τ=1 T x iτ P t i ,           MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacqaHep aDcqGH9aqpcaaIXaaapaqaa8qacaWGubaan8aabaWdbiabggHiLdaa kiaadIhapaWaaSbaaSqaa8qacaWGPbGaeqiXdqhapaqabaGcpeGaey izImQaamiuaiaadshapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGa aiilaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5GcGaaqoOaiaaKdkaca a5GcGaaqoOaiaaKdkaaaa@5130@  (6.9)

  x iτ   Z + ,  i =  1, n ¯ ,  τ = 1, T ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG4bWdamaaBaaale aapeGaamyAaiabes8a0bWdaeqaaOWdbiabgIGiolaaKdkacaWGAbWd amaaCaaaleqabaWdbiabgUcaRaaakiaacYcacaa5GcGaaqoOaiaadM gacaa5GcGaeyypa0JaaqoOa8aadaqdaaqaa8qacaaIXaGaaiilaiaa KdkacaWGUbaaaiaacYcacaa5GcGaaqoOaiabes8a0jaaKdkacqGH9a qppaWaa0aaaeaapeGaaGymaiaacYcacaa5GcGaamivaaaaaaa@54CD@  . (6.10)

Таким образом, задача (6.6) – (6.10) является задачей целочисленной линейной оптимизации, в которой переменные x iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbGaeqiXdqhapaqabaaaaa@3535@  задают объем выпуска продукции i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadMgaaaa@3219@  в день с номером τ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabes8a0baa@32F0@ .

7. Устойчивость решений динамической модели. Рассмотрим ситуацию, когда c iτ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbGaeqiXdqhapaqabaaaaa@3520@  могут меняться в зависимости от параметра ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4baa@32EE@  следующим образом: c iτ ξ = c iτ +  φ iτ ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbGaeqiXdqhapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjk aiaawMcaaiabg2da9iaadogapaWaaSbaaSqaa8qacaWGPbGaeqiXdq hapaqabaGcpeGaey4kaSIaaqoOaiabeA8aQ9aadaWgaaWcbaWdbiaa dMgacqaHepaDa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOa Gaayzkaaaaaa@4871@ , где φ iτ ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgacqaHepaDa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGL OaGaayzkaaaaaa@397A@  – возрастающая непрерывная функция и φ iτ 0 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgacqaHepaDa8aabeaak8qadaqadaWdaeaapeGaaGimaaGaayjk aiaawMcaaiabg2da9iaaicdaaaa@3A31@ . Рассмотрим ситуацию, когда φ iτ ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgacqaHepaDa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGL OaGaayzkaaaaaa@397A@  линейна и φ iτ ξ = c iτ a iτ ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgacqaHepaDa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGL OaGaayzkaaGaeyypa0Jaam4ya8aadaWgaaWcbaWdbiaadMgacqaHep aDa8aabeaakiabgEHiQiaadggadaWgaaWcbaWdbiaadMgacqaHepaD a8aabeaakiabgEHiQ8qacqaH+oaEaaa@461E@ .

Пусть x _ ¯ = x 1 , , x n   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaadaqdaaqaaabaaaaaaaaapeGabmiEa8aagaqhaa aapeGaeyypa0ZaaiWaa8aabaWdbiaadIhapaWaaWbaaSqabeaapeGa aGymaaaakiaacYcacaa5GcGaeyOjGWRaaiilaiaadIhapaWaaWbaaS qabeaapeGaamOBaaaakiaaKdkaaiaawUhacaGL9baaaaa@4020@  – множество допустимых решений задачи (6.6) – (6.10) и решение x l = x iτ l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaakiabg2da9iaadIhapaWaa0baaSqaa8qacaWGPbGaeqiX dqhapaqaa8qacaWGSbaaaaaa@3981@  оптимально при ξ=0, l= 1, N ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaicdaca GGSaGaaqoOaiaadYgacqGH9aqppaWaa0aaaeaapeGaaGymaiaacYca caa5GcGaamOtaaaacaGGSaaaaa@3D7F@  и обозначается через f l ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamiBaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaaaa@36C8@ :

f l ξ = i=1 n τ=1 T c iτ ξ x iτ l . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamiBaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aad6gaa0WdaeaapeGaeyyeIuoaaOWaaybCaeqal8aabaWdbiabes8a 0jabg2da9iaaigdaa8aabaWdbiaadsfaa0WdaeaapeGaeyyeIuoaaO Gaam4ya8aadaWgaaWcbaWdbiaadMgacqaHepaDa8aabeaak8qadaqa daWdaeaapeGaeqOVdGhacaGLOaGaayzkaaGaamiEa8aadaqhaaWcba WdbiaadMgacqaHepaDa8aabaWdbiaadYgaaaGccaGGUaaaaa@5273@

Тогда

d f l ξ dξ = τ=1 T i=1 n c iτ α iτ x iτ l . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGSbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH9aqpda GfWbqabSWdaeaapeGaeqiXdqNaeyypa0JaaGymaaWdaeaapeGaamiv aaqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyAaiabg2 da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaam4y a8aadaWgaaWcbaWdbiaadMgacqaHepaDa8aabeaak8qacqaHXoqypa WaaSbaaSqaa8qacaWGPbGaeqiXdqhapaqabaGcpeGaamiEa8aadaqh aaWcbaWdbiaadMgacqaHepaDa8aabaWdbiaadYgaaaGccaGGUaaaaa@57B1@

Для любого другого j= 1, N ¯ ,  jl MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadQgacqGH9aqppaWaa0aaae aapeGaaGymaiaacYcacaa5GcGaamOtaaaacaGGSaGaaqoOaiaaKdka caWGQbGaeyiyIKRaamiBaaaa@3E77@ ;

d f j ξ dξ = τ=1 T i=1 n c iτ α iτ x iτ j . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGQbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH9aqpda GfWbqabSWdaeaapeGaeqiXdqNaeyypa0JaaGymaaWdaeaapeGaamiv aaqdpaqaa8qacqGHris5aaGcdaGfWbqabSWdaeaapeGaamyAaiabg2 da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOGaam4y a8aadaWgaaWcbaWdbiaadMgacqaHepaDa8aabeaak8qacqaHXoqypa WaaSbaaSqaa8qacaWGPbGaeqiXdqhapaqabaGcpeGaamiEa8aadaqh aaWcbaWdbiaadMgacqaHepaDa8aabaWdbiaadQgaaaGccaGGUaaaaa@57AD@

Очевидно, что если существует такое k,  k= 1, N ¯ ,  k l, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadUgacaGGSaGaaqoOaiaaKd kacaWGRbGaeyypa0ZdamaanaaabaWdbiaaigdacaGGSaGaaqoOaiaa d6eaaaGaaiilaiaaKdkacaa5GcGaam4AaiaaKdkacqGHGjsUcaWGSb Gaaiilaaaa@455B@  такое, что

d f k ξ dξ > d f l ξ dξ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH+aGpda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaamiBaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaGaaiilaaaa@45E2@

то линейное уравнение f k ξ = f l ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape Gaam4Aaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpcaWGMbWdamaaCaaaleqabaWdbiaadYgaaaGcdaqadaWdaeaape GaeqOVdGhacaGLOaGaayzkaaaaaa@3D6A@  имеет одно положительное решение. Пусть это решение равно ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@ . Тогда очевидно, что при ξ 0, ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabgIGiopaabmaapa qaa8qacaaIWaGaaiilaiabe67a49aadaahaaWcbeqaa8qacaGGQaaa aaGccaGLOaGaayzkaaaaaa@3A4B@  оптимальной будет производственная программа x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@ ,  а при ξ> ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg6da+iabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaaaa@36B3@  оптимальной производственной программой будет x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@ . При ξ= ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaaaa@36B1@  оптимальной станет и программа x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@ , и программа x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@ , отрезок 0, ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacaaIWaGaai ilaiabe67a49aadaahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGaayzk aaaaaa@3704@  назовем областью устойчивости решения x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@ .

Если φ iτ ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabeA8aQ9aadaWgaaWcbaWdbi aadMgacqaHepaDa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGL OaGaayzkaaaaaa@397A@  нелинейны, то соответственно

d f j ξ dξ = i=1 T τ=1 n d φ iτ ξ dξ x iτ j ,  j =  1, N ¯ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGQbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH9aqpda GfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaadsfa a0WdaeaapeGaeyyeIuoaaOWaaybCaeqal8aabaWdbiabes8a0jabg2 da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOWaaSaa a8aabaWdbiaadsgacqaHgpGApaWaaSbaaSqaa8qacaWGPbGaeqiXdq hapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaaWd aeaapeGaamizaiabe67a4baacaWG4bWdamaaDaaaleaapeGaamyAai abes8a0bWdaeaapeGaamOAaaaakiaacYcacaa5GcGaaqoOaiaadQga caa5GcGaeyypa0JaaqoOa8aadaqdaaqaa8qacaaIXaGaaiilaiaaKd kacaWGobaaaiaac6caaaa@67BB@

Если в этом случае x l MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaamiBaaaaaaa@3365@  оптимально при ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaicdaaa a@34AE@ , то для перехода на новое оптимальное решение x k MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape Gaam4Aaaaaaaa@3364@  необходимым условием является существование отрезка ξ 1 , ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacqaH+oaEpa WaaSbaaSqaa8qacaaIXaaapaqabaGcpeGaaiilaiabe67a49aadaWg aaWcbaWdbiaaikdaa8aabeaaaOWdbiaawUfacaGLDbaaaaa@39D1@ , на котором

d f k ξ dξ > d f l ξ dξ ,   ξ ξ 1 , ξ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH+aGpda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaamiBaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaGaaiilaiaaKdkacaa5GcGaeyiaIiIaaqoOaiabe67a 4jabgIGiopaadmaapaqaa8qacqaH+oaEpaWaaSbaaSqaa8qacaaIXa aapaqabaGcpeGaaiilaiabe67a49aadaWgaaWcbaWdbiaaikdaa8aa beaaaOWdbiaawUfacaGLDbaacaGGUaaaaa@57E3@

Достаточным условием выступает выполнение приведенных далее требований: a)   ξ 1 , ξ 2 ;  d f k ξ dξ > d f l ξ dξ ,  ξ ξ 1 , ξ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadggacaGGPaGaaqoOaiabgo GiKiaaKdkadaWadaWdaeaapeGaeqOVdG3damaaBaaaleaapeGaaGym aaWdaeqaaOWdbiaacYcacqaH+oaEpaWaaSbaaSqaa8qacaaIYaaapa qabaaak8qacaGLBbGaayzxaaGaai4oaiaaKdkadaWcaaWdaeaapeGa amizaiaadAgapaWaaWbaaSqabeaapeGaam4Aaaaakmaabmaapaqaa8 qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaadsgacqaH+oaEaaGa eyOpa4ZaaSaaa8aabaWdbiaadsgacaWGMbWdamaaCaaaleqabaWdbi aadYgaaaGcdaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaaaapaqa a8qacaWGKbGaeqOVdGhaaiaacYcacaa5GcGaeyiaIiIaaqoOaiabe6 7a4jabgIGiopaadmaapaqaa8qacqaH+oaEpaWaaSbaaSqaa8qacaaI XaaapaqabaGcpeGaaiilaiabe67a49aadaWgaaWcbaWdbiaaikdaa8 aabeaaaOWdbiaawUfacaGLDbaacaGGSaaaaa@66BA@

b)   ξ * ;  f k ξ * = f l ξ * ,    ξ * ξ 1 , ξ 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadkgacaGGPaGaaqoOaiabgo GiKiaaKdkacqaH+oaEpaWaaWbaaSqabeaapeGaaiOkaaaakiaacUda caa5GcGaamOza8aadaahaaWcbeqaa8qacaWGRbaaaOWaaeWaa8aaba Wdbiabe67a49aadaahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGaayzk aaGaeyypa0JaamOza8aadaahaaWcbeqaa8qacaWGSbaaaOWaaeWaa8 aabaWdbiabe67a49aadaahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGa ayzkaaGaaiilaiaaKdkacqGHaiIicaa5GcGaaqoOaiabe67a49aada ahaaWcbeqaa8qacaGGQaaaaOGaeyicI48aamWaa8aabaWdbiabe67a 49aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaeqOVdG3dam aaBaaaleaapeGaaGOmaaWdaeqaaaGcpeGaay5waiaaw2faaiaac6ca aaa@5DA8@

8. Анализ устойчивости производственной программы, пример. Рассмотрим следующую задачу:

i=1 n c i ξ x i max,     MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGJbWdamaaBaaaleaapeGaamyAamaabmaapaqaa8qacqaH+oaEai aawIcacaGLPaaaa8aabeaak8qacaWG4bWdamaaBaaaleaapeGaamyA aaWdaeqaaOWdbiabgkziUkaab2gacaqGHbGaaeiEaiaacYcacaa5Gc GaaqoOaiaaKdkacaa5Gcaaaa@4B16@  (8.1)

i=1 n l ij x i L j ;j= 1, M ¯ ,      MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWGSbWdamaaBaaaleaapeGaamyAaiaadQgaa8aabeaak8qacaWG4b WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgsMiJkaadYeapaWa aSbaaSqaa8qacaWGQbaapaqabaGcpeGaai4oaiaadQgacqGH9aqppa Waa0aaaeaapeGaaGymaiaacYcacaa5GcGaamytaaaacaGGSaGaaqoO aiaaKdkacaa5GcGaaqoOaiaaKdkaaaa@4FFD@  (8.2)

i=1 n t il x i   k l τ l  ;l= 1, K ¯ ,       MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaawahabeWcpaqaa8qacaWGPb Gaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGc caWG0bWdamaaBaaaleaapeGaamyAaiaadYgaa8aabeaak8qacaWG4b WdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgsMiJkaaKdkacaWG RbWdamaaBaaaleaapeGaamiBaaWdaeqaaOWdbiabes8a09aadaWgaa WcbaWdbiaadYgaa8aabeaak8qacaa5GcGaai4oaiaadYgacqGH9aqp paWaa0aaaeaapeGaaGymaiaacYcacaa5GcGaam4saaaacaGGSaGaaq oOaiaaKdkacaa5GcGaaqoOaiaaKdkacaa5Gcaaaa@57E4@  (8.3)

x i P t i ;i= 1, n ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyizImQaamiuaiaadshapaWaaSbaaSqaa8qa caWGPbaapaqabaGcpeGaai4oaiaadMgacqGH9aqppaWaa0aaaeaape GaaGymaiaacYcacaa5GcGaamOBaaaaaaa@3F36@   (8.4)

  x i Z + MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG4bWdamaaBaaale aapeGaamyAaaWdaeqaaOWdbiabgIGiolaadQfapaWaaWbaaSqabeaa peGaey4kaScaaaaa@38A1@  

c i ξ = a i ξ   b i ξ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadogapaWaaSbaaSqaa8qaca WGPbWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaaWdaeqaaOWd biabg2da9iaadggapaWaaSbaaSqaa8qacaWGPbWaaeWaa8aabaWdbi abe67a4bGaayjkaiaawMcaaaWdaeqaaOWdbiabgkHiTiaaKdkacaWG IbWdamaaBaaaleaapeGaamyAamaabmaapaqaa8qacqaH+oaEaiaawI cacaGLPaaaa8aabeaak8qacaGGUaaaaa@4672@  , (8.5)             

Пусть у задачи (8.1) – (8.5) есть два допустимых решения:

  x 1 = x 1 1 ,  x 2 1 = 1,2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG4bWdamaaCaaale qabaWdbiaaigdaaaGccqGH9aqpdaqadaWdaeaapeGaamiEa8aadaqh aaWcbaWdbiaaigdaa8aabaWdbiaaigdaaaGccaGGSaGaaqoOaiaadI hapaWaa0baaSqaa8qacaaIYaaapaqaa8qacaaIXaaaaaGccaGLOaGa ayzkaaGaeyypa0ZaaeWaa8aabaWdbiaaigdacaGGSaGaaGOmaaGaay jkaiaawMcaaaaa@4449@  и   x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaKdkacaWG4bWdamaaCaaale qabaWdbiaaikdaaaaaaa@34B6@  = x 1 2 ,  x 1 2 = 2,1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaabmaapaqaa8qacaWG4bWdam aaDaaaleaapeGaaGymaaWdaeaapeGaaGOmaaaakiaacYcacaa5GcGa amiEa8aadaqhaaWcbaWdbiaaigdaa8aabaWdbiaaikdaaaaakiaawI cacaGLPaaacqGH9aqpdaqadaWdaeaapeGaaGOmaiaacYcacaaIXaaa caGLOaGaayzkaaaaaa@3FB0@ ,

  C 1 0 =  C 1 =2;  C 2 0 =  C 2 =1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadoeapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeWaaeWaa8aabaWdbiaaicdaaiaawIcacaGLPaaa cqGH9aqpcaa5GcGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8 qacqGH9aqpcaaIYaGaai4oaiaaKdkacaWGdbWdamaaBaaaleaapeGa aGOmaaWdaeqaaOWdbmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaa Gaeyypa0JaaqoOaiaadoeapaWaaSbaaSqaa8qacaaIYaaapaqabaGc peGaeyypa0JaaGymaaaa@48AD@ .

Допустим также, что Ñ 1 ξ  è  Ñ 2 ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadgnapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMca aiaaKdkacaqGOdGaaqoOaiaadgnapaWaaSbaaSqaa8qacaaIYaaapa qabaGcpeWaaeWaa8aabaWdbiabe67a4bGaayjkaiaawMcaaiabgkHi Taaa@4270@  линейные функции:

Сi(ξ) = Сi + Сi * qi * ξ; i = 1,2; q1 = 1; q2 = 5,

f j ξ = i=1 n Ñ i ξ *  x i j ;j=1,2. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpdaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbi aad6gaa0WdaeaapeGaeyyeIuoaaOGaamy0a8aadaWgaaWcbaWdbiaa dMgaa8aabeaak8qadaqadaWdaeaapeGaeqOVdGhacaGLOaGaayzkaa GaaiOkaiaaKdkacaWG4bWdamaaDaaaleaapeGaamyAaaWdaeaapeGa amOAaaaakiaacUdacaWGQbGaeyypa0JaaGymaiaacYcacaaIYaGaai Olaaaa@4F52@

f j 0 = i=1 n Ñ i x i j = f 1 0 =1*2+2*1=4;  f 2 0 =2*2+1*1=5. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaamOAaaaakmaabmaapaqaa8qacaaIWaaacaGLOaGaayzkaaGaeyyp a0ZaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXaaapaqaa8qaca WGUbaan8aabaWdbiabggHiLdaakiaadgnapaWaaSbaaSqaa8qacaWG PbaapaqabaGcpeWaaeWaa8aabaWdbiaadIhapaWaa0baaSqaa8qaca WGPbaapaqaa8qacaWGQbaaaaGccaGLOaGaayzkaaGaeyypa0JaamOz a8aadaahaaWcbeqaa8qacaaIXaaaaOWaaeWaa8aabaWdbiaaicdaai aawIcacaGLPaaacqGH9aqpcaaIXaGaaiOkaiaaikdacqGHRaWkcaaI YaGaaiOkaiaaigdacqGH9aqpcaaI0aGaai4oaiaaKdkacaWGMbWdam aaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaaGimaaGaayjk aiaawMcaaiabg2da9iaaikdacaGGQaGaaGOmaiabgUcaRiaaigdaca GGQaGaaGymaiabg2da9iaaiwdacaGGUaaaaa@616C@   

Следовательно, при ξ=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaicdaaa a@34AE@  оптимальна программа x 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaaGOmaaaakiaac6caaaa@33EC@

Рассчитаем f 1 ξ =1 2+2*1*ξ +2  1+1*5*ξ =4+12ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGymaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpcaaIXaWaaeWaa8aabaWdbiaaikdacqGHRaWkcaaIYaGaaiOkai aaigdacaGGQaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaaGOmaiaa KdkadaqadaWdaeaapeGaaGymaiabgUcaRiaaigdacaGGQaGaaGynai aacQcacqaH+oaEaiaawIcacaGLPaaacqGH9aqpcaaI0aGaey4kaSIa aGymaiaaikdacqaH+oaEaaa@5111@ , f 2 ξ =2 2+2*1*ξ +1  1+1*5*ξ =5+9ξ, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGOmaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpcaaIYaWaaeWaa8aabaWdbiaaikdacqGHRaWkcaaIYaGaaiOkai aaigdacaGGQaGaeqOVdGhacaGLOaGaayzkaaGaey4kaSIaaGymaiaa KdkadaqadaWdaeaapeGaaGymaiabgUcaRiaaigdacaGGQaGaaGynai aacQcacqaH+oaEaiaawIcacaGLPaaacqGH9aqpcaaI1aGaey4kaSIa aGyoaiabe67a4jaacYcaaaa@510F@

d f 1 ξ dξ =12;  d f 2 ξ dξ =9. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaaIXaaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH9aqpca aIXaGaaGOmaiaacUdacaa5GcWaaSaaa8aabaWdbiaadsgacaWGMbWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaeqOVdGhaca GLOaGaayzkaaaapaqaa8qacaWGKbGaeqOVdGhaaiabg2da9iaaiMda caGGUaaaaa@4AFD@ , 

т.е.

d f 1 ξ dξ =12;  d f 2 ξ dξ =9. MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaaIXaaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH9aqpca aIXaGaaGOmaiaacUdacaa5GcWaaSaaa8aabaWdbiaadsgacaWGMbWd amaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGaeqOVdGhaca GLOaGaayzkaaaapaqaa8qacaWGKbGaeqOVdGhaaiabg2da9iaaiMda caGGUaaaaa@4AFD@

d f 1 ξ dξ d f 2 ξ dξ . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaaIXaaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGHLjYSda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaaGOmaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaGaaiOlaaaa@4638@

Тогда есть ξ * 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaOGaeyyzImRaaGimaaaa@3672@ , при котором f 2   ξ * = f 1   ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGOmaaaakmaabmaapaqaa8qacaa5GcGaeqOVdG3damaaCaaaleqa baWdbiaacQcaaaaakiaawIcacaGLPaaacqGH9aqpcaWGMbWdamaaCa aaleqabaWdbiaaigdaaaGcdaqadaWdaeaapeGaaqoOaiabe67a49aa daahaaWcbeqaa8qacaGGQaaaaaGccaGLOaGaayzkaaaaaa@4214@ , начиная с которого f 1 ξ > f 2 ξ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGymaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH +aGpcaWGMbWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaape GaeqOVdGhacaGLOaGaayzkaaaaaa@3D02@ , ξ> ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg6da+iabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaaaa@36B3@ .  Следовательно, при ξ ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabgwMiZkabe67a49 aadaahaaWcbeqaa8qacaGGQaaaaaaa@3771@  оптимальной будет программа x 1 = 1,2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaaGymaaaakiabg2da9maabmaapaqaa8qacaaIXaGaaiilaiaaikda aiaawIcacaGLPaaacaGGUaaaaa@38C0@  Интервалом устойчивости в этом случае для x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaaGymaaaaaaa@332F@  станет (0, ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@  ). Для данного примера ξ * MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a49aadaahaaWcbeqaa8 qacaGGQaaaaaaa@33E8@  вычисляется путем решения уравнения:

f 1 ξ  = f 2 ξ  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGymaaaakmaabmaapaqaa8qacqaH+oaEcaa5GcaacaGLOaGaayzk aaGaeyypa0JaamOza8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8 aabaWdbiabe67a4jaaKdkaaiaawIcacaGLPaaaaaa@400C@

 4 + 12 ξ = 5 + 9 ξ

ξ = 1/3, т.е. ξ* = 1/3.

Пусть при ξ=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaikdaaa a@34B0@  промежуточное изменение коэффициентов q 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qaca aIXaaapaqabaaaaa@3336@  и q 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qaca aIYaaapaqabaaaaa@3337@  равно q1 = 1 и q2 = 5. Рассчитаем f1(ξ) и f2(ξ) для ξ=2: MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaikdaca GG6aaaaa@356E@

f 1 ξ =4+12*2=4+24=28 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGymaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpcaaI0aGaey4kaSIaaGymaiaaikdacaGGQaGaaGOmaiabg2da9i aaisdacqGHRaWkcaaIYaGaaGinaiabg2da9iaaikdacaaI4aaaaa@42BD@  ,

f 2 ξ =5+9*2=5+18=23 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGOmaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpcaaI1aGaey4kaSIaaGyoaiaacQcacaaIYaGaeyypa0JaaGynai abgUcaRiaaigdacaaI4aGaeyypa0JaaGOmaiaaiodaaaa@420A@  .

При изменении q 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qaca aIXaaapaqabaaaaa@3336@  и q 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadghapaWaaSbaaSqaa8qaca aIYaaapaqabaaaaa@3337@  как ξ=2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaikdaaa a@34B0@  получили следующее задание f1(ξ) и f2(ξ) :

для f1(ξ):

28=9*2+b=>b=10, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaI4aGaeyypa0JaaG yoaiaacQcacaaIYaGaey4kaSIaamOyaiabg2da9iabg6da+iaadkga cqGH9aqpcaaIXaGaaGimaiaacYcaaaa@3DC5@              

 f1(ξ) = 9ξ + 10 для ξ > 2,

для f2(ξ):

  23=12*2+b=>b=1, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaikdacaaIZaGaeyypa0JaaG ymaiaaikdacaGGQaGaaGOmaiabgUcaRiaadkgacqGH9aqpcqGH+aGp caWGIbGaeyypa0JaeyOeI0IaaGymaiaacYcaaaa@3EA7@           

f 2 ξ =12ξ1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadAgapaWaaWbaaSqabeaape GaaGOmaaaakmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaacqGH 9aqpcaaIXaGaaGOmaiabe67a4jabgkHiTiaaigdaaaa@3C7B@ ,

d f 2 ξ dξ > d f 1 ξ dξ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaalaaapaqaa8qacaWGKbGaam Oza8aadaahaaWcbeqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiabe67a 4bGaayjkaiaawMcaaaWdaeaapeGaamizaiabe67a4baacqGH+aGpda WcaaWdaeaapeGaamizaiaadAgapaWaaWbaaSqabeaapeGaaGymaaaa kmaabmaapaqaa8qacqaH+oaEaiaawIcacaGLPaaaa8aabaWdbiaads gacqaH+oaEaaGaaiilaaaa@4578@            

а следовательно,возникает точка перехода. Решаем уравнение:

12ξ1=9ξ+10, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaigdacaaIYaGaeqOVdGNaey OeI0IaaGymaiabg2da9iaaiMdacqaH+oaEcqGHRaWkcaaIXaGaaGim aiaacYcaaaa@3CA0@

ξ=11:3=3 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiabe67a4jabg2da9iaaigdaca aIXaGaaiOoaiaaiodacqGH9aqpcaaIZaWaaSaaa8aabaWdbiaaikda a8aabaWdbiaaiodaaaaaaa@3A6F@ .

Начиная с 3 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaaiodadaWcaaWdaeaapeGaaG OmaaWdaeaapeGaaG4maaaaaaa@33AF@  оптимальным будет снова решение x 2 . MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaaGOmaaaakiaac6caaaa@33EC@

Таким образом, область устойчивости для решения x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaaGymaaaaaaa@332F@  – это интервал 1 3 ;3 2 3   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qadaWcaaWdae aapeGaaGymaaWdaeaapeGaaG4maaaacaGG7aGaaG4mamaalaaapaqa a8qacaaIYaaapaqaa8qacaaIZaaaaiaaKdkaaiaawUfacaGLDbaaaa a@39CB@ , а область устойчивости для x 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbiaadIhapaWaaWbaaSqabeaape GaaGOmaaaaaaa@3330@  – интервал 0; 1 3   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIWaGaai 4oamaalaaapaqaa8qacaaIXaaapaqaa8qacaaIZaaaaiaaKdkaaiaa wUfacaGLDbaaaaa@3801@  и 3 2 3 ;  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBdbqedmvETj2BSbqeeuuDJXwAKbsr4rNCHbGeaGqik8fkY=xipgYl h9vqqj=hEeeu0xXdi9arFj0xirFj0dXdbba91qpK0=yr0RYxfr=Jbb f9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciaacaGaaeqa baqabeGadaaakeaaqaaaaaaaaaWdbmaadmaapaqaa8qacaaIZaWaaS aaa8aabaWdbiaaikdaa8aabaWdbiaaiodaaaGaai4oaiaaKdkacqaH EisPaiaawUfacaGLDbaaaaa@3974@  (рис. 5).

 

Рис. 5. Области устойчивости для решений задачи

 

Заключение. Предложено использование метода ветвей и границ, основанного на вычислении верхней, нижней и текущих верхних оценок при анализе различных вариантов производственных программ, который обеспечивает выбор оптимальной производственной программы предприятия. Представлена верхняя оценка числа допустимых производственных программ. Показано, что наряду с критерием прибыли при выборе производственной программы может использоваться критерий рентабельности. Показано, что при определенных условиях оптимальные производственные программы по критериям прибыли и рентабельности совпадают. Проведен анализ устойчивости производственных программ при изменениях исходных данных модели и критерия оптимальности модели, в том числе при нелинейном изменении доходности производственной программы от инфляции в условиях расширения производства.

Представлены различные модели выбора оптимальной производственной программы.  В рамках рассмотрения динамической модели выбора, описывающей ситуацию, при которой материальные ресурсы поступают динамически на вход производственной системы с интенсивностью выпуска конечной продукции, которая также задана динамически, сформулирована задача выбора оптимальной производственной программы.

Предлагаемые методы и модели можно использовать при реинжиниринге производственных и управленческих процессов, в рамках проектного управления на предприятиях для повышения эффективности производственных и управленческих процессов. Применение моделей позволит руководству предприятия более эффективно планировать реализацию проектов, оценивать объем необходимых для реализации проектов ресурсов, увидеть направления совершенствования процессов управления проектами, оптимизировать проектную деятельность.

×

作者简介

I. Borisov

FGOBU VO "Financial University under the Government of the Russian Federation"

编辑信件的主要联系方式.
Email: ilyaborisov2015@yandex.ru
俄罗斯联邦, Moscow

O. Kosorukov

Moscow State University named after. M. V. Lomonosov; Russian Academy of National Economy and Public Administration under the President of the Russian Federation; Russian Economic University named after G. V. Plekhanov

Email: kosorukovoa@mail.ru
俄罗斯联邦, Moscow; Moscow; Moscow

A. Mishchenko

FGOBU VO "Financial University under the Government of the Russian Federation"

Email: alnex4957@rambler.ru
俄罗斯联邦, Moscow

V. Tsurkov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences

Email: v.tsurkov@mail.ru
俄罗斯联邦, Moscow

参考

  1. Brucker P., Jurisch B., Jurisch M. Open Shop Problems with Unit Time Operations, ZOR // Methods and Models of Operations Research. 1993. V. 37. Р. 59–73.
  2. Coffman E.G., Nozari A., Yannakakis M. Optimal Scheduling of Products with Two Subassemblies on a Single Machine // Oper. Res. 1989. V. 37. Р. 426–436.
  3. Данилин В.И. Финансовое и операционное планирование в корпорации РАНХиГС. М., 2014.
  4. Мищенко А.В., Халиков М.А. Распределение ограниченных ресурсов в задаче оптимизации производственной деятельности предприятия // Изв. АН СССР. Техн. кибернетика. 1991. № 6.
  5. Мищенко Л.В., Пилюгина Л.В. Динамические модели управления научно-производственными системами // Вестн. МГТУ им. Н.Э. Баумана. Сер. Приборостроение. 2019. № 2.
  6. Мищенко А.В., Сушков Б.Г. Задача оптимального распределения ресурсов на сетевой модели при линейных ограничениях на время выполнения работ // ЖВМ и МФ. 1980. Т. 10. № 5.
  7. Мищенко А.В., Когаловский В.М. Проблемы устойчивости задач производственного планирования в машиностроении // Экономика и мат. методы. 1992. № 3.
  8. Мищенко А.В. Устойчивость решений в задаче перераспределения транспортных средств в случае экстренного закрытия движения на участке метрополитена // Изв. АН СССР. Техн. кибернетика. 1990. № 3.
  9. Мищенко А.В. Задача распределения транспортных средств по автобусным маршрутам при неточно заданной матрице корреспонденций пассажиропотока // Изв. АН СССР. Техн. кибернетика. 1992. № 2.
  10. Катюхина О.А., Мищенко А.В. Динамические модели управления транспортными ресурсами на примере организации работы автобусного парка // Аудит и финансовый анализ. 2016. № 2. C. 156–167.
  11. Косоруков Е.О., Фуругян М.Г. Некоторые алгоритмы распределения ресурсов в многопроцессорных системах // Вестн. МГУ. Сер. 15. Вычисл. математика и кибернетика. 2009. № 4. C. 34–37.
  12. Фуругян М.Г. Планирование вычислений в многопроцессорных АСУ реального времени с дополнительным ресурсом // АиТ. 2015. № 3.
  13. Косоруков Е.О., Фуругян М. Г. Алгоритмы распределения ресурсов в многопроцессорных системах с нефиксированными параметрами // Некоторые алгоритмы планирования вычислений и организации контроля в системах реального времени. М.: ВЦ РАН, 2011. С. 40–51.
  14. Mironov A.A., Tsurkov V.I. Transport-type Problems with a Criterion // AиT. 1995. №12. C. 109–118.
  15. Миронов А.А., Цурков В.И. Наследственно минимаксные матрицы в моделях транспортного типа / / Изв. РАН. ТиСУ. 1998. № 6. С. 104–121.
  16. Mironov A.A., Levkina TA., Tsurkov V.1. Minimax Estimations of Expectates of Are Weights in Integer Networks with Fixed Node Degrees // Applied and Computational Mathematics. 2009. V. 8. № 2. P. 216–226.
  17. Mironov A.A., Tsurkov V.I. Class of Distribution Problems with Minimax Criterion // Doklady Akademii Nauk. 1994. V. 336. № 1. P. 35–38.
  18. Tizik A.P., Tsurkov V.I. Iterative Functional Modification Method for Solving a Transportation Problem // Automation and Remote Control. 2012. V. 73. № 1. P. 134–143.
  19. Mironov A.A., Tsurkov V.I. Hereditarily Minimax Matrices in Models of Transportation Type // J. Computer and Systems Sciences International. 1998. V. 37. № 6. P. 927–944.
  20. Mironov A.A., Tsurkov V.I. Minimax in Transportation Models with Integral Constraints. I // J. Computer and Systems Sciences International. 2003. V. 42. № 4. P. 562–574.
  21. Борисов И.А. Методика сравнительного анализа и оптимального выбора варианта управления проектами // Альманах «Крым». 2023. № 38–4.
  22. Борисов И.А. Кластеризация проектов в целях повышения эффективности процессов проектного управления в ФНС России // Экономика и управление: проблемы, решения. 2023. № 8. Т. 3. С. 153–160.

补充文件

附件文件
动作
1. JATS XML
2. Formula 5.9

下载 (12KB)
3. Formula 5.10

下载 (13KB)
4. Fig. 1. No transition to a new production program

下载 (47KB)
5. Fig. 2. Several transitions from the optimal production program xl to the optimal production program xk and back

下载 (57KB)
6. Fig. 3. Graph of the location of λ transitions

下载 (31KB)
7. Fig. 4. Several transition points from one optimal production program to another under conditions of production expansion

下载 (70KB)
8. Fig. 5. Stability regions for solutions of the problem

下载 (91KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».