Characterization of the Fine Valence XPS Structure of Actinide Dioxides on the Basis of the Electronic Structure Modeling
- Authors: Teterin Y.A1,2, Putkov A.E2, Ryzhkov M.V3, Maslakov K.I1, Teterin A.Y.2, Ivanov K.E2, Kalmykov S.N2, Petrov V.G1
-
Affiliations:
- Lomonosov Moscow State University
- National Research Center "Kurchatov Institute"
- Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 61, No 9-10 (2025)
- Pages: 570–581
- Section: Articles
- URL: https://bakhtiniada.ru/0002-337X/article/view/378974
- DOI: https://doi.org/10.7868/S3034558825050055
- ID: 378974
Cite item
Abstract
About the authors
Yu. A Teterin
Lomonosov Moscow State University; National Research Center "Kurchatov Institute"Moscow, Russian Federation; Moscow, Russian Federation
A. E Putkov
National Research Center "Kurchatov Institute"Moscow, Russian Federation
M. V Ryzhkov
Institute of Solid State Chemistry, Ural Branch of the Russian Academy of SciencesYekaterinburg, Russian Federation
K. I Maslakov
Lomonosov Moscow State UniversityMoscow, Russian Federation
A. Yu Teterin
National Research Center "Kurchatov Institute"
Email: antonxray@yandex.ru
Moscow, Russian Federation
K. E Ivanov
National Research Center "Kurchatov Institute"Moscow, Russian Federation
S. N Kalmykov
National Research Center "Kurchatov Institute"Moscow, Russian Federation
V. G Petrov
Lomonosov Moscow State UniversityMoscow, Russian Federation
References
- Katz J.J., Seaborg G.T., MorssKatz J.J., Seaborg G.T., Morss L.R. The chemistry of the actinide elements. L.; N.Y.: Chapman and Hall, 1986.
- Teterin Yu.A., Teterin A.Yu. Structure of X-ray photoelectron spectra of light actinide compounds // Russ. Chem. Rev. 2004. V. 73. P. 541. https://doi.org/10.1070/RC2004v07n06ABEH000821
- Legg F., Harding L.M., Lewis J.C., Nicholls R., Green H., Steele H., Springell R. Epitaxial light actinide oxide thin films // Thin Solid Films. 2024. V. 790. P. 140194. http://dx.doi.org/10.2139/ssrn.4573818
- Rai B.K., Bretana A., Morrison G., Greer R., Gofryk K., zur Loye H.-C. Crystal structure and magnetism of actinide oxides: a review // Rep. Prog. Phys. 2024. V. 87. № 6. P. 066501. https://doi.org/10.48550/arXiv.2403.01634
- Pereiro F.A., Galley S.S., Jackson J.A., Shafer J.C. Contemporary assessment of energy degeneracy in orbital mixing with tetravalent f-block compounds // Inorg. Chem. 2024. V. 63. P. 9687. https://doi.org/10.1021/acs.inorgchem.3c03828
- Ryzhkov M.V., Kupryazhkin A.Ya. First-principles study of electronic structure and insulating properties of uranium and plutonium dioxides // J. Nucl. Mater. 2009. V. 384. P. 226. https://doi.org/10.1016/j.jnucmat.2008.11.011
- Teterin Yu.A., Tetetrin A.Yu. Modern X-ray spectral methods in the study of the electronic structure of actinide compounds: uranium oxide uO2 as an example // Nucl. Techn. Rad. Prot. 2004. V. 2. P. 3. https://doi.org/10.2298/NTRP0402003T
- Wang D., van Gunstren W., Chain Z. Recent advances in computational actinoid chemistry // Chem. Soc. Rev. 2012. V. 41. P. 5836. https://doi.org/10.1039/c2cs15354h
- Wang J., Ewing R.C., Becker U. Electronic structure and stability of hyperstoichiometric uO2+x under pressure // Phys. Rev. B. 2013. V. 88. P. 024109. https://doi.org/10.1103/PhysRevB.88.024109
- Wen X.-D., Martin R.L., Henderson T.M., Scuseria G.E. Density functional theory studies of the electronic structure of solid state actinide oxides // Chem. Rev. 2013. V. 113. P. 1063. https://doi.org/10.1021/cr300374y
- Zaitsevskii A., Skripnikov L.V., Titov A.V. Chemical bonding and effective atomic states of actinides in higher oxide molecules // Mendeleev Commun. 2016. V. 26. P. 307. https://doi.org/10.1016/j.mencom.2016.07.013
- Gouder T., Seibert A., Havela L., Rebizant J. Search for higher oxides of Pu: A photoemission study // Surf. Sci. 2007. V. 601. P. L77. https://doi.org/10.1016/j.susc.2007.04.259
- Seibert A., Gouder T., Huber F. Formation and stability of actinide oxides: a valence band photoemission study // Radiochim. Acta. 2009. V. 97. № 4–5. P. 247. https://doi.org/10.1524/ract.2009.1605
- Idriss H. Surface reactions of uranium oxide powder, thin films and single crystals // Surf. Sci. Rep. 2010. V. 65. P. 67. https://doi.org/10.1016/j.surfrep.2010.01.001
- Veal B.W., Diamond H., Hoekstra H.R. X-ray photoelectron-spectroscopy study of oxides of the transuranium elements Np, Pu, Am, Cm, Bk and Cf // Phys. Rev. B. 1977. V. 15. P. 2929. https://doi.org/https://doi.org/10.1103/PhysRevB.15.2929
- Rosen A., Ellis D.E. Relativistic molecular calculations in the Dirac–Slater model // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892
- Adachi H. Relativistic molecular orbital theory in the Dirac–Slater model // Technol. Rep. Osaka univ. 1972. V. 1392. P. 569.
- Gunnarsson O., Lundqvist B.I. Exchange and correlation in atoms, molecules and solids by the spin-density-functional formalism // Phys. Rev. B. 1976. V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
- Pyykko P., Toivonen H. Tables of representation and rotation matrices for the relativistic irreducible representations of 38 point groups // Acta Acad. Aboensis. Ser. B. 1983. V. 43. 50 p.
- Varshalovish D.A., Moskalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988. 439 p.
- Teterin Yu.A., Ryzhkov M.V., Putkov A.E., Maslakov K.I., Teterin A.Yu., Ivanov K.E., Kalmykov S.N., Petrov V.G. Chemical bond nature and structure of X-ray photoelectron spectrum of PaO2 // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 881. https://doi.org/10.1134/S0036023622060274
- Тетерин Ю.А., Маслаков К.И., Рыжков М.В., Трапарич О.А., Вукчевич Л., Тетерин А.Ю., Панов А.Д. Природа химической связи в диоксиде урана uO2 // Радиохимия. 2005. Т. 47. № 3. С. 193.
- Maslakov K.I., Teterin Yu.A., Ryzhkov M.V., Popel A.J., Teterin A.Yu., Ivanov K.E., Kalmykov S.N., Petrov V.G., Farnan I. The nature of the chemical bond in uO2 // Int. J. Quantum Chem. 2019. P. 119:e26040. https://doi.org/10.1002/qua.26040.
- Ryzhkov M.V., Kovalenko M.A., Kupryazhkin A.Ya., Gupta S.K. Electronic structure and effective charges on atoms near anion point defects in uranium dioxide // Comp. Condens Matter. 2019. V. 18. P. e00353-9. https://doi.org/10.1016/j.cocom.2018.e00353
- Ryzhkov M.V., Kovalenko M.A., Kupryazhkin A.Ya., Gupta S.K. Transformation of electron density distribution induced by the cation point defects in uranium dioxide // J. Radioanal. Nucl. Chem. 2020. V. 325. P. 253. https://doi.org/10.1007/s10967-020-07228-z
- Teterin Yu.A., Teterin A.Yu., Ivanov K.E., Ryzhkov M.V., Maslakov K.I., Kalmykov St.N., Petrov V.G., Enina D.A. X-ray photoelectron spectra structure and chemical bond nature in NpO2 // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
- Teterin Yu.A., Maslakov K.I., Teterin A.Yu., Ivanov K.E., Ryzhkov M.V., Petrov V.G., Enina D.A., Kalmykov St.N. Electronic structure and chemical bonding in PuO2 // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
- Gelius U., Allan C.J., Johansson G., Siegbahn H., Allison D.A., Siegbahn K. The ESCA spectra of benzene and Thei-electronic series, thiophene, pyrrole and furan // Phys. Scr. 1971. V. 3. P. 237. https://doi.org/10.1088/0031-8949/3/5/008
- Yarzhemsky V.G., Nefedov V.I., Amusya M.Ya., Cherepkov N.A., Chernysheva L.V. Relative intensities in X-ray photoelectron spectra part VIII // J. Electron. Spectr. Relat. Phenom. 1981. V. 23. № 2. P. 175. https://doi.org/10.1016/0368-2048(81)80033-3
- Yarzhemsky V.G., Teterin A.Yu., Teterin Yu.A., Trzhaskovskaya M.B. Photoionization cross sections of ground and excited valence levels of actinides // Nucl. Techn. Rad. Prot. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP1202103Y
- Putkov A.E., Teterin Yu.A., Ryzhkov M.V., Teterin A.Yu., Maslakov K.I., Ivanov K.E., Kalmykov S.N., Petrov V.G. Electronic structure and nature of chemical bonds in BkO2 // Russ. J. Phys. Chem. A. 2021. V. 95. № 6. P. 1169. https://doi.org/10.1134/S0036024421060212
Supplementary files

