Effect of the addition of the transition phase Al2O3 on the sintering kinetics and properties of ceramics based on α-Al2O3

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Методом алкоксотехнологии проведено осаждение аморфизированной высокодисперсной фазы оксида алюминия в количестве до 5 мас.% на поверхность частиц коммерческого порошка α-Al2O3. Проведено исследование продукта гидролиза и синтезированных двухкомпонентных порошков a-Al2O3/Al2O3* методами рентгенофазового анализа и просвечивающей электронной микроскопии. Фаза- допант равномерно распределяется по объему образца в виде наночастиц размером < 10 нм и отдельных скоплений частиц размером 50–100 нм. Прокаливание порошков приводит к превращению добавки в a-Al2O3 в интервале температур 1100–1200°С, делая возможным получение однофазной корундовой керамики. Изготовлены керамические образцы методами свободного спекания и электроимпульсного плазменного спекания (ЭИПС). Образцы керамик, спеченные методом ЭИПС, имеют близкие значения относительной плотности ~99%. При свободном спекании сопоставимая плотность может быть достигнута при введении 5 мас.% допанта.

Sobre autores

T. Pozdova

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

D. Permin

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

M. Boldin

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

M. Nazmutdinov

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

A. Atopshev

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

E. Lantsev

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

E. Isupova

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

A. Murashov

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

K. Rubtsova

Nizhny Novgorod State University named after N.I. Lobachevsky

Email: pozdova@unn.ru
Gagarin Ave, 23, bld. 3, Nizhny Novgorod, 603022 Russia

A. Moskvychev

A. V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: pozdova@unn.ru
Ulyanova St, 46, Nizhny Novgorod, 603155 Russia

N. Tabachkova

A. M. Prokhorov Institute of General Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: pozdova@unn.ru
Vavilova St, 38, Moscow, 119991 Russia

Bibliografia

  1. Yan T., Guo X., Zhang X., Wang Z., Shi J. Low temperature synthesis of nano alpha-alumina powder by two-step hydrolysis // Mater. Res. Bull. 2016. V. 73. P. 21–28. https://doi.org/10.1016/j.materresbull.2015.08.021
  2. Lallemant L., Fantozzi G., Garnier V., Bonnefont G. Transparent polycrystalline alumina obtained by SPS: green bodies processing effect // J. Eur. Ceram. Soc. 2012. V. 32. P. 2909–2915. https://doi.org/10.1016/j.jeurceramsoc.2012.02.041
  3. Alvarez-Clemares I., Mata-Osoro G., Fernández A., Lopez-Esteban S., Pecharroman C., Torrecillas R., Moya J.S. Ceria doped alumina by spark plasma sintering for optical applications // J. Eur. Ceram. Soc. 2012. V. 32. P. 2917–2924. https://doi.org/10.1016/j.jeurceramsoc.2012.02.037
  4. Maldonado C.S., De la Rosa J.R., Lucio-Ortiz C.J., Hernández-Ramírez A., Castillón Barraza F.F., Valente J.S. Low concentration Fe-doped alumina catalysts using sol-gel and impregnation methods: the synthesis, characterization and catalytic performance during the combustion of trichloroethylene // Materials. 2014. V. 7. P. 2062–2086. https://doi.org/10.3390/ma7032062
  5. Parish M.V., Pascucci M.R., Rhodes W.H. Aerodynamic IR domes of polycrystalline alumina // Proc. SPIE. 2005. V. 5786. P. 195–205. https://doi.org/10.1117/12.604596
  6. Номоев А.В., Бардаханов С.П., Буянтуев М.Д. Способ получения корундовой керамики: Патент РФ № 2465246 C2. Опубл. 27.10.2012.
  7. Shen Z., Johnsson M., Zhao Z., Nygren M. Spark plasma sintering of alumina // J. Am. Ceram. Soc. 2002. V. 85. № 8. P. 1921–1927. https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  8. Heuer A.H. The role of MgO in the sintering of alumina // J. Am. Ceram. Soc. 1979. V. 62. № 5-6. P. 317–318. https://doi.org/10.1111/j.1151-2916.1979.tb09496.x
  9. Рахаман М.Н. Технология получения керамик / Под ред. Чувильдеева В.Н., Болдина М.С., Пермина Д.А. Нижний Новгород: ННГУ им. Н.И. Лобачевского, 2022. 741 с.
  10. Wang C.-J., Huang C.-Y., Wu Y.-C. Two-step sintering of fine alumina–zirconia ceramics // Ceram. Int. V. 35. № 4. P. 1467–1472. https://doi.org/10.1016/j.ceramint.2008.08.001
  11. Jeong Y.K., Niihara K. Microstructure and mechanical properties of pressureless sintered Al2O3/SiC nanocomposites // Nanostruct. Mater. 1997. V. 9. № 1–8. P. 193–196. https://doi.org/10.1016/s0965-9773(97)00051-2
  12. Pillai S.K.C., Baron B., Pomeroy M.J., Hampshire S. Effect of oxide dopants on densification, microstructure and mechanical properties of alumina-silicon carbide nanocomposite ceramics prepared by pressureless sintering // J. Eur. Ceram. Soc. 2004. V. 24. № 12. P. 3317– 3326. https://doi.org/10.1016/j.jeurceramsoc.2003.10.024
  13. Chae J.H., Kim K.H., Choa Y.H., Matsushita J.-I., Yoon J.-W., Shim K.B. Microstructural evolution of Al2O3–SiC nanocomposites during spark plasma sintering // J. Alloys Compd. 2006. V. 413. № 1–2. P. 259–264. https://doi.org/10.1016/j.jallcom.2005.05.049
  14. Asl S.K., Rasouli D. Effect of TiO2 and MnO addition on the sintering and corrosion behavior of alumina // Am. J. Mater. Res. 2017. V. 4. P. 27–31.
  15. Саванина Н.Н., Русич М.Ю., Горчакова Л.И., Саломатина Л.И. Способ изготовления изделий из корундовой керамики: Патент РФ № 2 379 257 C1. Опубл. 17.10.2008.
  16. Nordahl C.S., Messing G.L. Sintering of α-Al2O3-seeded nanocrystalline γ-Al2O3 powders // J. Eur. Ceram. Soc. 2002. V. 22. № 4. P. 415–422. https://doi.org/10.1016/s0955-2219(01)00285-0
  17. Комоликов Ю.И., Кащеев И.Д., Земляной К.Г., Пудов В.И. Свойства керамики на основе Al2O3 с добавкой ультрадисперсного порошка Al2O3, синтезированного электрохимическим способом // Новые огнеупоры. 2019. Т. 7. С. 28–30. https://doi.org/10.17073/1683-4518-2019-7-28-30
  18. Степанов Е.И., Григорьев М.В., Кирко В.И. Влияние добавок ультрадисперсного Al2O3 на физико-механические свойства корундовой керамики // Журн. Сибирского федерального ун-та. Сер. Техника и технологии. 2008. Т. 2. C. 162–167.
  19. Geerts L., Geerts-Claes H., Skorikov A., Vermeersch J., Vanbutsele G., Galvita V., Constales D., Chandran C.V., Radhakrishnan S., Seo J.W., Breynaert E., Bals S., Sree S.P., Martens J.A. Spherical core–shell alumina support particles for model platinum catalysts // Nanoscale. 2021. V. 13. P. 4221–4232. https://doi.org/10.1039/D0NR08456E
  20. Eftekhari A., Movahedi B., Dini G., Milani M. Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3 @ amorphous alumina nanocomposite core/shell structure // J. Eur. Ceram. Soc. 2018. V. 38. № 9. P. 3297–3304. https://doi.org/10.1016/j.jeurceramsoc.2018.02.038
  21. Zakharchenya R.I., Vasilevskaya T.N. Influence of hydrolysis temperature on the hydrolysis products of aluminum alkoxides // J. Mater. Sci. 1994. V. 29. № 10. P. 2806–2812. https://doi.org/10.1007/BF00356837
  22. Yoldas B.E. Hydrolysis of aluminum alkoxides and bayerite conversion // J. Appl. Chem. Biotechnol. 2007. V. 23. № 11. P. 803–809. https://doi.org/10.1002/jctb.5020231103
  23. Дроботенко В.В., Балабанов С.С., Сторожева Т.И. Способ получения высокочистых алкоголятов алюминия: Патент РФ № 2395514 C1. Опубл. 27.07.2010.
  24. Scholz G., Stösser R., Klein J., Silly G., Buzaré J.Y., Laligant Y., Ziemer B. Local structural orders in nanostructured Al2O3 prepared by high-energy ball milling // J. Phys.: Condens. Matter. 2002. V. 14. P. 2101–2117. https://doi.org/10.1016/S0022-3093(01)00541-5
  25. Посельская Ю.В., Белая Е.А., Жеребцов Д.А., Викторов В.В., Тихонов С.С., Рябков Ю.И., Ковалев И.Н., Винник Д.А. Особенности термолиза нанодисперсного бемита, полученного гидролизом изопропилата алюминия // Неорган. материалы. 2018. Т. 54. № 12. С. 1308–1314. https://doi.org/10.1134/S0002337X1812014X
  26. Lannutti J.J., Clark D.E. Sol-gel derived alu- mina substrates // Ceram. Int. 1985. V. 11. № 3. P. 91–96. https://doi.org/10.1016/0272-8842(85)90003-3
  27. Поздеев В.А., Коньков С.А., Сычева О.А., Пирагев В.А. Способ гидролиза изопропоксида алюминния: Патент РФ № 2 555 907 C2. Опубл. 10.07.2015.
  28. Pierre A., Matthieu C. Structure and thermal behavior of nanocrystalline boehmite // Thermochim. Acta. 2005. V. 425. P. 75–89. https://doi.org/10.1016/j.tca.2004.06.009
  29. Su Q.C., Zhang S.H., Chen P.L., Li X.J., Fu J., Ma L.L. Characterization and analysis on the thermal transformation of boehmite synthesized by Yoldas method // Adv. Mater. Res. 2012. V. 532–533. P. 3–7. https://doi.org/10.4028/www.scientific.net/amr. 532-533.3
  30. Nampi P.P., Ghosh S., Warrier K.G. Calcination and associated structural modifications in boehmite and their influence on high temperature densification of alumina // Ceram. Int. 2011. V. 37. № 8. P. 3329–3334. https://doi.org/10.1016/j.ceramint.2011.04.129
  31. Lamouri S., Hamidouche M., Bouaouadja N., Belhouchet H., Garnier V., Fantozzi G., Trelkat J.F. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification // Bol. Soc. Esp. Ceram. Vidrio. 2016. V. 56. P. 47–54. http://doi.org/10.1016/j.bsecv.2016.10.001
  32. Двилис Э.С. Закономерности процессов консолидации порошковых систем при изменении условий деформации и физических воздействий: дис. докт. физ.-мат. наук: 01.04.07. Томск. 2014. 386 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».