Empirical system of ionic radii specialized for 24 cations and anion F− in refractory fluorides MFM
- Authors: Sobolev B.P.1, Sulyanova E.A.1
-
Affiliations:
- Institute of Crystallography of A.V. Shubnikov Kurchatov Complex of Crystallography and Photonics, National Research Center 'Kurchatov Institute'
- Issue: Vol 61, No 1–2 (2025)
- Pages: 46-63
- Section: Articles
- URL: https://bakhtiniada.ru/0002-337X/article/view/307078
- DOI: https://doi.org/10.31857/S0002337X25010051
- EDN: https://elibrary.ru/kepbur
- ID: 307078
Cite item
Abstract
Эмпирическая система ионных радиусов (ЭСИР) специализирована для 24 катионов элементов I–III групп (M+ =Li,Na,K;M2+ =Ca,Sr,Ba,Cd;R3+ =Sc,Y,La) и периода 6 (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), а также F−в тугоплавких MFm. Эти фториды и фазы в системах MFm–RF3 — основа фторидного материаловедения. Расширенная СИР включает ЭСИР дляY3+,La3+, 14Ln3+и F−в RF3(R — редкоземельные элементы). Радиусы катионов (r+) и F−(rF)обеих СИР получены из единого источникаMFm. ЭСИР дляR3+рассчитана с точностью ±0.0017 Å из кратчайших расстояний (F–F)minи (R–F)minв 18 RF3двух модификаций. Из (F–F)minдля HoF3–LuF3rF = 1.253(2) Å одинаков для обеих ЭСИР. Радиусыr+и rFне зависят от типа структуры и не требуют поправок. Расширенная ЭСИР применима к 325 системам6 типов:MF–MʹF,MF–MʹF2, MF–(R,Ln)F3,MF2–MʹF2,MF2–(R,Ln)F3, (R,Ln)F3–(R,Ln)ʹF3и образующимся в них фазам.
About the authors
B. P. Sobolev
Institute of Crystallography of A.V. Shubnikov Kurchatov Complex of Crystallography and Photonics, National Research Center 'Kurchatov Institute'
Author for correspondence.
Email: sulyanova.e@crys.ras.ru
Academician Kurchatov Square, 1, Moscow, 119991 Russia
E. A. Sulyanova
Institute of Crystallography of A.V. Shubnikov Kurchatov Complex of Crystallography and Photonics, National Research Center 'Kurchatov Institute'
Email: sulyanova.e@crys.ras.ru
Academician Kurchatov Square, 1, Moscow, 119991 Russia
References
- Sobolev B.P., Sulyanova E.A.Lanthanide contraction in LnF3(Ln = Ce-Lu) and its chemical and structural consequences: part 1: location of YF3in the LnF3series according to its chemical and structural characteristics //Int. J. Mol. Sci.2023. V. 24. P. 17013. https://doi.org/10.3390/ijms242317013
- Sobolev B.P., Sulyanova E.A.Lanthanide contraction in LnF3(Ln = Ce-Lu) and its chemical and structural consequences: part 2: specialized empirical system of R3+(R = Y, La, and 14Ln) and F1−ionic radii for RF3series //Int. J. Mol. Sci.2023. V. 24. P. 17080. https://doi.org/10.3390/ijms242317080
- Nomenclature of Inorganic Chemistry IUPAC Recommendations 2005. The Royal Society of Chemistry: UK. 2005. 366 p. https://old.iupac.org/publications/books/author/
- connelly.html
- Lande A. Uber die Grosse der Atome // Z. Phys. 1920. V. 1. № 3. P.191–197.
- Goldschmidt V.M., Barth T., Lunde G., Zachariasen W.Geochemische Verteilungsgesetze der Elemente. Part VII. Die Gesetze der Chrysatllochemie; Jacob Dybwad: Oslo. 1926. V. 7.P.1–117.
- Pauling L. The sizes of ions and the structure of ioniccrystals // J. Am. Chem. Soc. 1927. V. 49. № 3. P. 765–790. https://doi.org/10.1021/ja01402a019
- Zachariasen W.H.A set of empirical crystal radii for ions with inert gas configuration // Z. Kristallogr.1931. V. 80. № 10. P.137–153. https://doi.org/10.1524/zkri.1931.80.1.137
- Kordes E. Ionenradien und Periodisches System. II. Mitteilung. Berechnung der Ionenradien mit Hilfe Atomphysikalischer Größen // Z. Phys.Chem.В. 1941. V. 48. № 1. P.91–107. https://doi.org/10.1515/zpch-1941-4811.
- Arhens L.H.The use of ionization potentials. Part 1. Ionic radii of the elements // Geochem. Cosmochem. Acta. 1952. V. 2. № 3. P.155–169. https://doi.org/10.1016/0016-7037(52)90004-5
- ShannonR.D. Revisedeffectiveionicradiiand systematicstudiesof interatomicdistancesin halidesand chalcogenides //ActaCrystallogr., Sect. A. 1976. V. 32. № 5. P.751–767. https://doi.org/10.1107/S0567739476001551
- Shannon R.D.,Prewitt C.T.Effectiveionicradiiin oxidesand fluorides //ActaCrystallogr., Sect. B. 1969. V. 25. № 5. P.925–946. https://doi.org/10.1107/S0567740869003220
- Batsanov S.S., Batsanov A.S. Introduction to structural chemistry. N.Y.:Springer, 2012. https://doi.org/10.1007/978-94-007-4771-5
- Бандуркин Г.А., Джуринский Б.Ф., Тананаев И.В.Особенности кристаллохимии соединений редкоземельных элементов. М.:Наука, 1984. 230 с.
- Sobolev B.P.High-temperature chemistry of Y, La and lanthanide trifluorides in RF3–RʹF3systems. Part 2. Phase diagrams of the studied systems // J. Solid State Chem. 2021. V. 298. P. 122078. https://doi.org/10.1016/j.jssc.2021.122078
- Sobolev B.P.The rareearthtrifluorides. Part 1. The high temperature chemistry of the rare earth trifluorides. Barcelona: Inst. d’Estudis Catalans, 2000.
- Sobolev B.P.The rareearthtrifluorides. Part 2.Introduction to material scienceof multicomponent fluoride crystals.Barcelona: Inst. d’Estudis Catalans, 2001.
- KaminskiiA.A. Lasercrystals,theirphysicsand properties.2nded.Berlin:Springer, 1991. 457 p. https://doi.org/10.1007/978-3-540-70749-3
- Каминский А.А., Антипенко Б.М. Многоуровневые функциональные схемы кристаллических лазеров. М.:Наука, 1989. 270 с.
- Barton C.J.,Redman J.D.,Strehlow R.A.Phaseequilibriain the systemsNaF–PuF3and NaF–CeF3 //J. Inorg.Nucl. Chem. 1961. V. 20.№ 1. P.45–52. https://doi.org/10.1016/0022-1902(61)80456-9
- Thoma R.E., Herbert G.M., Insley H. et al.Phase equilibria in the system sodium fluoride — yttrium fluoride // Inorg. Chem. 1963. V. 2.№ 5. P. 1005–1012. https://doi.org/10.1021/ic50009a030
- Barton C.J., Gilpatrick L.O., Brunton G.D. et al.Phase relations in the system KF — CeF3 // J. Inorg. Nucl. Chem. 1971. V. 33.№ 2. P.53–58. https://doi.org/10.1016/0022-1902(71)80372-X
- Thoma R.E. Binary systems of the lanthanide trifluorides with the alkali fluorides //Rev. Chim. Miner. 1973. V. 10.№ 1-2.P.363–382.
- Barton C.J., Gilpatrick L.O., Insley H.Phase equilibria in the systems BeF2–CeF3, LiF–CeF3and LiF–BeF2–CeF3 // J. Inorg. Nucl. Chem. 1974. V. 36. № 6.P.1271–1275. https://doi.org/10.1016/00221902(74)80063-1
- Barton C.J., Friedman H.A., Grimes W.R.et al.Phase equilibria in the alkali fluoride — uranium tetrafluoride fused salt systems: 1. The systems LiF–UF4and NaF–UF4 // J. Am. Ceram. Soc. 1958. V. 41.№ 2.P.63–69. https://doi.org/10.1111/j.1151-2916.1958.tb13520.x
- Thoma R.E.,Insley H.,Brunton G.D.Condensed equilibria in the uranium (III) — uranium (IV) fluoride system //J. Inorg.Nucl.Chem. 1974.V. 36. № 5.P. 1095–1098. https://doi.org/10.1016/0022-1902(74)80219-8
- Соболев Б.П. Нестехиометрия в неорганических фторидах:I. Нестехиометрия в системахMFm–RFn (m < n ≤ 4) // Кристаллография.2012.Т. 57. № 3.С.490–511.
- Tantardini C., Oganov A.R.Thermochemical electronegativities of the elements // Nat. Commun. 2021.V. 12.P. 2087. https://doi.org/10.1038/s41467-021-22429-0
- Каминский А.А. Лазерные кристаллы. М.: Наука, 1975.250 с.
- Соболев Б.П. Нестехиометрия в неорганических фторидах:IV: Начальная стадия анионной нестехиометрии в RF3(R =Y,La,Ln) // Кристаллография.2021.Т. 66. № 3.С.369–380. https://doi.org/10.31857/S0023476121030243
- Sobolev B.P.High-temperature chemistry of Y, La and lanthanide trifluorides in RF3–RʹF3systems. Part 1. Chemical classification of systems // J. Solid State Chem. 2021. V. 298. P. 122079. https://doi.org/10.1016/j.jssc.2021.122079
- Sobolev B.P.High-temperature chemistry of Y, La and lanthanide trifluorides in RF3–RʹF3systems. Part 3. Phase composition of studied systems // J. Solid State Chem. 2021. V. 298.P. 122080. https://doi.org/10.1016/j.jssc.2021.122080
- Соболев Б.П., Сидоров В.С., Федоров П.П. и др.Стабилизация структуры типа ромбическогоb-YF3в системах GdF3–LnF3 // Кристаллография.1977.Т. 22. № 5.С. 1009–1014.
- Templeton D.H.,Dauben C.H.Latticeparametersof somerareearthcompoundsand a set of crystal radii //J. Am.Chem. Soc. 1954. V. 76. № 20. P. 5237–5239. https://doi.org/10.1021/ja01649a087
- Greis O., Petzel T.Ein Beitrag zur Strukturchemie der Seltenerd-Trifluoride // Z. Anorg.Allg.Chem. 1974.V. 403. № 1.P.1–22. https://doi.org/10.1002/zaac.19744030102
- Каминский А.А. Лазерные кристаллы. М.: Наука, 1975. 250 с.
- Каминский A.A., Осико В.В.Неорганические лазерные материалы с ионной структурой // Изв. АН СССР. Неорган. материалы. 1967. Т. 3. № 3.C. 441–443.
- Воронько Ю.К.,Oсико В.В., Щербаков И.А.Исследование взаимодействия ионовNd3+в кристаллахCaF2,SrF2и BaF2(тип I) // ЖЭТФ. 1969. Т. 55. № 5.С. 1598–1604.
- Kaminskii A.A., Li L. Spectroscopic investigations of stimulated emission from a laser based on SrF2-Nd3+crystals (type I) // J. Appl. Spectrosc. 1970. V. 12. P.29–34. https://doi.org/10.1007/BF00605752
- KaminskiiA.A. Achievementsin the fieldof physicsand spectroscopyof activatedlasercrystals //Phys. Status Solidi A. 1985. V. 87.№ 1. P.11–57. https://doi.org/10.1002/pssa.2210870102
- Kaminskii A.A., Agamaljan N.R., Denisenko G.A. et al. Spectroscopy and laser emission of disordered GdF3-CaF2:Nd3+trigonal crystals //Phys. Status Solidi A. 1982. V. 70.№ 2.P.397–406. https://doi.org/10.1002/pssa.2210700206
- Kaminskii A.A., Kurbanov K., Sarkisov S.E. et al.Stimulated emission of Nd3+ions in nonstoichiometric Cd1−xCexF2+xand Cd1−xNdxF2+xfluorides with fluorite structure //Phys. Status Solidi A. 1985. V. 90.№ 1.P.K55–K60. https://doi.org/10.1002/pssa.2210900156
- Bagdasarov Kh. S., Voronko Yu.K., Kaminskii A.A. et al.Modification of the optical properties of CaF2-TR3+crystals by yttrium impurities //Phys. Status Solidi. 1965. V. 12.№ 2. P.905–912. https://doi.org/10.1002/pssb.19650120233
- ZachariasenW.H. Crystalchemicalstudiesof the 5f-seriesof elements.XII. New compounds representing known structure types //Acta Crystallogr. 1949. V. 2.№ 6.P.388–390. https://doi.org/10.1107/S0365110X49001016
- Соболев Б.П. Трифториды иттрия, лантана и лантаноидов: внутренняя периодичность фазовых переходов // Кристаллография. 2019. Т. 64. № 5. С.701–711. https://doi.org/10.1134/S0023476119050199
- Соболев Б.П. Трифториды иттрия, лантана и лантаноидов: Лантаноидное сжатие и объем аниона фтора // Кристаллография. 2020. Т. 65. № 2. С. 173–179. https://doi.org/10.31857/S0023476120020228
- Гарашина Л.С., Соболев Б.П., Александров В.Б. и др.О кристаллохимии фторидов редкоземельных элементов // Кристаллография.1980.Т. 25. № 2.С.294–300.
- Recker K., Wallrafen F., Dupre K.Directional solidification of the LiF-LiBaF3eutectic // Naturwissenschaften. 1988. V. 75. P.156–157. https://doi.org/10.1007/BF00405314
- Deshpande V.P. Thermal expansion of sodium fluoride and sodium bromide // Acta Crystallogr.1961. V. 14. P. 794. https://doi.org/10.1107/S0365110X61002357
- Broch E., Oftedal I., Pabst A. Neubestimmung der Gitterkonstanten von KF, CsCl und BaF2 // Z. Phys.Chem., Abt. B. 1929. V. 3. P.209–214. https://doi.org/10.1515/zpch-1929-0314
- Allen R.D. Variations in chemical and physical properties of fluorite // Am. Mineral. 1952. V. 37. P. 910–930. http://www.minsocam.org/ammin/AM37/AM37_ 910.pdf
- Loesch R., Hebecker C., Ranft Z. Roentgenographische Untersuchungen an neuen ternaeren Fluoriden vom Typ Tl(III)MF6(M = Ga In Sc) sowie an Einkristallen von ScF3 // Z. Anorg.Allg. Chem. 1982. V. 491. P.199–202. https://doi.org/10.1002/zaac.19824910125
- Forsyth J.B., Wilson C.C., Sabine T.M. A Time-of-flight neutron diffraction study of anharmonic thermal vibrations in SrF2, at the spallation neutron source ISIS // Acta Crystallogr., Sect. A. 1989.V. 45. P. 244–247. https://doi.org/10.1107/S0108767388011353
- Hund F., Lieck K. Das Quinaere Fluorid NaCaCdYF8 // Z. Anorg.Allg. Chem. 1952. V. 271. P.17–28. https://doi.org/10.1002/zaac.19522710105
- Swanson A.H., Tatge E. Standard X-ray diffraction powder patterns. National bureau of standards, 1953. Circular 539. P.1–95. https://nvlpubs.nist.gov/nistpubs/Legacy/
- circnbscircular539v1.pdf
- Степанов А.В., Северов Е.А.Гагаринит — новый редкоземельный минерал // Докл. АНСССР. 1961.Т. 141. № 4.С.954–957.
- Martin N., Boutinaud P., Mahiou R. et al.Preparation of fluorides at 80°C in the NaF-(Y, Yb, Pr)F3system // J. Mater.Chem. 1999. V. 9. P. 125–128. https://doi.org/10.1039/A804472D
- Heer S., Kompe K., Gudel H.U. et al.Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4nanocrystals // Adv. Mater. 2004. V. 16. P. 2102–2105. https://doi.org/10.1002/adma.200400772
- Zeng J. H., Su J., Li Z.H. et al.Synthesis and upconversion luminescence of hexagonal-phase NaYF4:Yb, Er3+phosphors of controlled size and morphology // Adv. Mater. 2005. V. 17. P. 2119–2123. https://doi.org/10.1002/adma.200402046
- Oleksa V., Macková H., Engstová H. et al.Poly(N,N-dimethylacrylamide)-coated upconverting NaYF4:Yb,Er and NaYF4:Nd core–shell nanoparticles for fluorescent labeling of carcinoma cells // Sci. Rep. 2021. V. 11. P. 21373. https://doi.org/10.1038/s41598-021-00845-y
- Zhu X., Zhang J., Liu J. et al.Recent progress of rare-earth doped upconversion nanoparticles: synthesis, optimization, and applications // Adv. Sci. 2019.V. 6. P. 1901358. https://doi.org/10.1002/advs.201901358
- Li H., Bai G., Lian Y. et al.Advances in near-infrared-activated lanthanide-doped optical nanomaterials: imaging, sensing, and therapy // Mater. Des. 2023. V. 231. P. 112036. https://doi.org/10.1016/j.matdes.2023.112036
- Chen F., Wang Z-Y., Zhang Y-Y. et al.Synthesis of poly(acrylic acid)-functionalized La1–xEuxF3nanocrystals with high photoluminescence for cellular imaging // Acta Phys.-Chim. Sin. 2017. V. 33. P. 1446–1452. http://dx.doi.org/10.3866/PKU.WHXB201704102
- Shen J., Sun L-D., Yan C-H.Luminescent rare earth nanomaterials for bioprobe applications // Dalton Trans.2008. V. 42. P. 5687–5697. https://doi.org/10.1039/B805306E
- Li F., Li C., Liu X. et al.Microwave-assisted synthesis and up-down conversion luminescent properties of multicolor hydrophilic LaF3:Ln3+nanocrystals // Dalton Trans.2013. V. 42. P. 2015–2022. https://doi.org/10.1039/C2DT32295A
- Wang F., Zhang Y., Fan X. et al.One-pot synthesis of chitosan/LaF3:Eu3+nanocrystals for bio-applications // Nanotechnology. 2006. V. 17. № 6. P. 1527–1532. https://doi.org/10.1088/0957-4484/17/5/060
- Dmitruk M.V., Kaminskii A.A., Osiko V.V. et al.Stimulatedemissionof hexagonalLaF3–SrF2–Nd3+crystalsat roomtemperature // Phys.Status Solidi B. 1968. V. 25. № 2. P. K75–K78. https://doi.org/10.1002/pssb.19680250236
- Glynn T.J., Laulicht I., Lou L. et al.Trapping of optical excitation by two types of acceptors in La0.72Pr0.25Nd0.03F3 // Phys. Rev. B. 1974. V. 29. P. 4852–4858. https://doi.org/10.1103/PhysRevB.29.4852
- Collings B.C., Silversmith A.J.Avalanche up-conversion in LaF3:Tm3+ // J. Lumin.1994. V. 62. P. 271–279. https://doi.org/10.1016/0022-2313(94)90047-7
- Pokhrel M., Gupta S.K., Perez A. et al.Up- and down-convertible LaF3:Yb,Er nanocrystals with a broad emission window from 350 nm to 2.8 μm: implications for lighting applications // ACS Appl.Nano Mater. 2021. V. 4. № 12. P. 13562–13572. https://doi.org/10.1021/acsanm.1c03023
- Gmelin Handbuch der Anorganischen Chemie. System Nummer 39: Seltenerdelemente. Teil C 3: Sc, Y, La und Lanthanide.Fluoride, Oxidfluoride und zugehörige Alkalidoppelverbindungen. N.-Y.: Springer, 1976.
- Greis O., Haschke J.M.Chapter 45 Rare earth fluorides // Handbook on the physics and chemistry of rare earths / Eds.Gscheidner K.A., Eyring L.R. Amsterdam: Elsevier, 1982. V. 5. P.387–460. https://doi.org/10.1016/S0168-1273(82)05008-9
Supplementary files
