Ring-Shaped Seismicity Structures in the Region of South Kamchatka: Possible Preparation for Great Earthquake

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We have been studying some seismicity characteristics in the region of South Kamchatka. Aftershock characteristics for large earthquake of August 17, 2024 (Mw = 7.0) were investigated. It was shown that ring-shaped seismicity structures were formed in the South Kamchatka within three depth intervals: 0-33, 34-70 and 71-110 km. Similarly to the other subduction zones, the structures are characterized by threshold magnitude values (Mt1, Mt2 and Mt3 correspondingly) and also by big axes lengths (L1, L2 and L3). Epicenters of the large earthquake of August 17, 2024 and its strongest aftershocks lie on the shallow ring-shaped seismicity structure (Mt1 = 5.3). This effect confirms an assumption on a preparation of great earthquake in the region of the South Kamchatka. Earlier correlation dependences of Mt1 and Mt2 parameters on Mw values of major earthquakes for the west of Pacific Ocean were created (within an interval of Mw = 7.0-9.0). Using these dependences we estimated magnitude of possible great earthquake in this area: Mw = 8.6 ± 0.2. The reasons for ring-shaped structures formation in different depth ranges of the subduction zones are discussed.

About the authors

Yu. F. Kopnichev

Institute of the Earth Physics, Russian Аcademy of Sciences

Email: yufk777@mail.ru
Moscow, Russia

I. N. Sokolova

Geophysical Survey of the Russian Аcademy of Sciences

Email: sokolovain@gsras.ru
Obninsk, Russia

References

  1. Каракин А.В., Лобковский Л.И. Гидродинамика и структура двухфазной астеносферы // Докл. АН СССР. 1982. Т. 268. № 2. С. 324-329.
  2. Копничев Ю.Ф., Гордиенко Д.Д., Соколова И.Н. Пространственно-временные вариации поля поглощения поперечных волн в сейсмически активных и слабосейсмичных районах // Вулканология и сейсмология. 2009. № 1. С. 49-64.
  3. Копничев Ю.Ф., Соколова И.Н. О корреляции характеристик сейсмичности и поля поглощения S-волн в районах кольцевых структур, формирующихся перед сильными землетрясениями // Вулканология и сейсмология. 2010. № 6. С. 34-51.
  4. Копничев Ю.Ф., Соколова И.Н. Кольцевые структуры сейсмичности и землетрясение 11.03.2011 г. (Mw = 9.0) в районе северо-восточной Японии // Докл. РАН. 2011а. Т. 440. № 2. С. 246-249.
  5. Копничев Ю.Ф., Соколова И.Н. Неоднородности поля поглощения короткопериодных S-волн в районе очага землетрясения Мауле (Чили, 27.02.2010, Mw = 8.8) и их связь с сейсмичностью и вулканизмом // Геофизические исследования. 2011б. Т. 12. № 3. С. 22-33.
  6. Копничев Ю.Ф., Соколова И.Н. Кольцевые структуры сейсмичности в районе северного Чили и успешный прогноз места и магнитуды землетрясения Икике 01.04.2014 г. (Mw = 8.2) // Вестник НЯЦ РК. 2015. Вып. 4. С. 153-159.
  7. Копничев Ю.Ф., Соколова И.Н. Кольцевые структуры сейсмичности, формирующиеся перед сильными и сильнейшими землетрясениями на западе и востоке Тихого океана // Геофизические процессы и биосфера. 2018. T. 17. № 1. С. 109-124.
  8. Копничев Ю.Ф., Соколова И.Н. Кольцевые структуры сейсмичности, сформировавшиеся в районе Аляски: оправдавшийся прогноз места и магнитуды Симеоновского землетрясения 22 июля 2020 г. (Mw = 7.8) // Российский сейсмологический журнал. 2021. Т. 3. № 3. C. 50-60. https://doi.org/10.35540/2686-7907.2021.3.03
  9. Копничев Ю.Ф., Соколова И.Н. Кольцевые структуры сейсмичности в районе Юго-Западной Аляски: оправдавшийся прогноз места и магнитуды Чигникского землетрясения 29.07.2021 г. (Mw = 8.2) // Геофизические процессы и биосфера. 2022. Т. 21. № 1.
  10. Копничев Ю.Ф., Соколова И.Н. Характеристики кольцевой сейсмичности на глубинах до 110 км перед сильными и сильнейшими землетрясениями в тихоокеанских зонах субдукции // Российский сейсмологический журнал. 2023. Т. 5. № 4. С. 41-51.
  11. Копничев Ю.Ф., Соколова И.Н. Кольцевые структуры сейсмичности в районе Камчатки: возможная подготовка сильного землетрясения // Российский сейсмологический журнал. 2024а. Т. 6. № 2. C. 42-51. https://doi.org/10.35540/2686-7907.2024.2.03. EDN: NVOLSJ
  12. Копничев Ю.Ф., Соколова И.Н. Неоднородности поля поглощения короткопериодных S-волн в районах Курил и Камчатки и их связь с сильными и сильнейшими землетрясениями //Вулканология и сейсмология. 2024б. № 1. C. 22-35. https://doi.org/10.31857/S0203030624010034
  13. Летников Ф.А. Синергетика геологических систем. Новосибирск : Наука. 1992. 229 с.
  14. Соболев Г.А. Основы прогноза землетрясений. М.: Наука. 1993. 313 с.
  15. Федотов С.А., Соломатин А.В., Чернышев С.Д. Долгосрочный сейсмический прогноз для Курило-Камчатской дуги на 2006-2011 гг. и успешный прогноз Средне-Курильского землетрясения // Вулканология и сейсмология. 2007. № 3. С. 3-25.
  16. Bürgmann R., Kogan M., Steblov M., Hilley G., Levin V., Apel E.Interseismic coupling and asperity distribution along the Kamchatka subduction zone // J. Geophys. Res. 2005. V. 110. B07405.
  17. Engdahl E., Villasenor A. Global seismicity: 1990-1999. In: Earthquake & engineering seismology. Part A. Academic Press. An imprint of Elsevier Science. 2002. P. 665-690.
  18. Gold T., Soter S. Fluid ascent through the solid lithosphere and its relation to earthquakes // Pure Appl. Geophys. 1984/1985. V. 122. P. 492-530.
  19. Husen S., Kissling E.Postseismic fluid flow after the large subduction earthquake of Antofagasta, Chile // Geology. 2001.V. 29. № 9. P. 847-850.
  20. Ogawa R., Heki K.Slow postseismic recovery of geoid depression formed by the 2004 Sumatra-Andaman earthquake by mantle water diffusion // Geophys. Res. Lett. 2007. V. 34. L06313. https://doi.org/10.1029/2007GL029340
  21. Yamazaki T., Seno T. Double seismic zone and dehydration embrittlement of the subducting slab // J. Geophys. Res. 2003. V. 108. № B4. https://doi.org/10/1029/2002JB001918
  22. USGS. Search Earthquake Catalog. Earthquakes. [Site]. - URL: https://earthquake.usgs.gov/earthquakes/search/. (Дата обращения 01.10.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».