Characterization of Ground Conditions at Seismic Stations in the North Caucasus Using Machine Learning Methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To extend the capabilities of using records of local earthquakes (for constructing regional ground motion prediction equations, assessing seismic hazard, etc.), the classification of seismic stations in the North Caucasus by the ground conditions was performed. A technique has been developed that allows assessment of ground conditions by comparing spectra of weak earthquakes selected in narrow ranges of magnitudes and hypocentral distances, at different stations. The use of machine-learning methods showed the complexity of the problem, but at the same time, the application of logical operations and techniques allowed us to find the most effective approaches to solve it. As a result, 70 seismic stations of the North Caucasus were classified according to the ground conditions; the conditions were characterized by one dimensionless parameter based on the calculation of spectral characteristics. We are planning to refine the estimates in the future.

About the authors

T. S. Savadyan

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: olga@ifz.ru
Russian Federation, Moscow

O. V. Pavlenko

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: olga@ifz.ru
Russian Federation, Moscow

References

  1. Акимов В. А. и др. Карты сейсмической опасности Северо-Западного и Центрального Кавказа в детальном масштабе // Вопросы инженерной сейсмологии. 2019. Т. 46. №. 4. С. 57–74.
  2. Векслер В. А. Машинное обучение на основе алгоритма “k-ближайших соседей”. Вызовы цифровой экономики: итоги и новые тренды. 2019. С. 110–115.
  3. Виноградова Е. П., Головин Е. Н. Метрики качества алгоритмов машинного обучения в задачах классификации. Научная сессия ГУАП. 2017. С. 202–206.
  4. Габсатарова И. П. и др. Северный Кавказ // Землетрясения Северной Евразии. 2018. №. 21 (2012). С. 79–94.
  5. Габсатарова И. П. и др. Северный Кавказ. Землетрясения России в 2020 году. Обнинск: ФИЦ ЕГС РАН. 2022. 204 с.
  6. Генрихов И. Е., Дюкова Е. В. Классификация на основе полных решающих деревьев //Журнал вычислительной математики и математической физики. 2012. Т. 52. №. 4. С. 750–761.
  7. Гусев А.А., Мельникова В.Н. Связи между магнитудами — среднемировые и для Камчатки // Вулканология и сейсмология. 1990. № 6. С. 55–63.
  8. Дьяконов И. Д., Новикова С. В. Решение задачи прогнозирования при помощи градиентного бустинга над решающими деревьями. Научный форум: технические и физико-математические науки. 2018. С. 9–12.
  9. Кузьмина С. В., Ефимов А. И. Актуальные методы машинного обучения в области классификации. Актуальные проблемы современной науки и производства. 2018. С. 34–38.
  10. Наумов В. Н., Жиряева Е. В., Падерно П. И. Анализ данных и машинное обучение. Методы и инструментальные средства. 2020.
  11. Павленко О. В. Сейсмические волны в грунтовых слоях: нелинейное поведение грунта при сильных землетрясениях последних лет. Науч. мир. 2009.
  12. Пруцкий Н. И. и др. Геология и минерагения Северного Кавказа-современное состояние (Геологический атлас Северного Кавказа м-ба 1: 1 000 000) // Региональная геология и металлогения. 2005. №. 25. С. 27–38.
  13. Рогожин Е.А. Сейсмическая опасность на Северном Кавказе // Экологический Вестник научных центров ЧЭС. 2012. № 1. С. 124–128.
  14. Boore D.M. Simulation of Ground Motion Using the Stochastic Method // Pure Appl. Geophys. 2003. V. 160. P. 635–676.
  15. Brink H., Richards J., Fetherolf M. Real-world machine learning. Simon and Schuster. 2016.
  16. Oppenheim A. V. Discrete-time signal processing. Pearson Education India. 1999.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».