Quantitative Estimation of the Characteristic Grain Sizes of Laboratory Rock Samples by the Broadband Optoacoustic Spectroscopy Method
- Authors: Podymova N.B.1,2, Ponomarev A.V.2, Kaznacheev P.A.2, Baghdasaryan T.E.2, Matveev M.A.2, Indakov G.S.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Issue: No 6 (2024)
- Pages: 93-111
- Section: Articles
- URL: https://bakhtiniada.ru/0002-3337/article/view/282318
- DOI: https://doi.org/10.31857/S0002333724060063
- EDN: https://elibrary.ru/RGKEOK
- ID: 282318
Cite item
Abstract
A technique for quantitative estimation of characteristic grain sizes in laboratory rock samples using the relationship between the frequency and attenuation of longitudinal ultrasonic waves in the samples is proposed and implemented experimentally. This relationship is quantified using broadband optoacoustic spectroscopy with a laser source of ultrasound and piezoelectric registration of nanosecond ultrasonic pulses in the operating frequency range of 1–70 MHz. The application of the theoretical model of ultrasound scattering in single-phase polycrystalline materials to quantitative estimation of the maximum and average grain sizes in multiphase rocks is shown using five samples of metasandstones of zonally metamorphosed Ladoga series of the Paleoproterozoic of the Baltic Shield, which underwent different degrees of structural and textural transformations during ancient metamorphic events. The reliability of the data obtained using broadband optoacoustic spectroscopy was for the first time confirmed by independent scanning electron microscopy of the polished surfaces of all samples. The average and maximum grain sizes were estimated separately using the conventional method of line crossing from optical micrographs of thin sections performed for two selected samples, which also showed good agreement with the acoustic spectroscopy data. The proposed method of broadband optoacoustic spectroscopy for estimation of characteristic grain sizes of laboratory rock samples can be used to analyze the possible relationship between their structural features and thermobaric conditions of formation.
Full Text

About the authors
N. B. Podymova
Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Author for correspondence.
Email: npodymova@mail.ru
Russian Federation, Moscow, 119991; Moscow, 123242
A. V. Ponomarev
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: npodymova@mail.ru
Russian Federation, Moscow, 123242
P. A. Kaznacheev
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: npodymova@mail.ru
Russian Federation, Moscow, 123242
T. E. Baghdasaryan
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: npodymova@mail.ru
Russian Federation, Moscow, 123242
M. A. Matveev
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: npodymova@mail.ru
Russian Federation, Moscow, 123242
G. S. Indakov
Lomonosov Moscow State University; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: npodymova@mail.ru
Russian Federation, Moscow, 119991; Moscow, 123242
References
- Белов М.А., Черепецкая Е.Б., Шкуратник В.Л., Карабутов А.А., Макаров В.А., Подымова Н.Б. Количественная оценка размеров минеральных зерен методом лазерной ультразвуковой спектроскопии // ФТПРПИ. 2003. № 5. С. 3–8.
- Великославинский Д.С. Метаморфические зоны в Северном Приладожье и оценка температур метаморфизма кианитового и андалузитового типов регионального метаморфизма. Метаморфические пояса СССР. Л.: Наука. 1971. С. 61–70.
- Веселовский Р.В., Дубиня Н.В., Пономарёв А.В., Фокин И.В., Патонин А.В., Пасенко А.М., Фетисова А.М., Матвеев М.А., Афиногенова Н.А., Рудько Д.В., Чистякова А.В. Центр коллективного пользования Института физики Земли им. О.Ю. Шмидта РАН “Петрофизика, геомеханика и палеомагнетизм” // Геодинамика и тектонофизика. 2022. Т. 13. № 2. С. 0579.
- Воробьев Р.И., Сергеичев И.В., Карабутов А.А., Миронова Е.А., Саватеева Е.В., Ахатов И.Ш. Применение оптоакустического метода для оценки влияния пустот на трещиностойкость конструкционных углепластиков // Акуст. журн. 2020. Т. 66. № 2. С. 148–153.
- ГОСТ 21073.3-75. Цветные металлы. Определение величины дерна методом подсчета пересечений зерен. М.: Изд-во стандартов. 2002.
- ГОСТ 5639-82. Стали и сплавы. Методы выявления и определения величины зерна. М.: Изд-во стандартов. 2003.
- Гусев В.Э., Карабутов А.А. Лазерная оптоакустика. М.: Наука. 1991. 304 с.
- Жуков В.С., Кузьмин Ю.О. Экспериментальные исследования влияния трещиноватости горных пород и модельных материалов на скорость распространения продольной волны // Физика Земли. 2020. № 4. С. 39–50.
- Жуков В.С., Кузьмин Ю.О. Сопоставление подходов к оценке сжимаемости порового пространства // Записки Горн. ин-та. 2022. Т. 258. № 6. С. 1008–1017.
- Иньков В.Н., Черепецкая Е.Б., Шкуратник В.Л., Карабутов А.А., Макаров В.А. Ультразвуковая эхоскопия геоматериалов с использованием термооптических источников продольных волн // ФТПРПИ. 2004. № 3. С. 14–19.
- Никитин А.Н., Иванкина Т.И., Игнатович В.К. Особенности распространения продольных и поперечных упругих волн в текстурированных горных породах // Физика Земли. 2009. № 5. С. 57–69.
- Подымова Н.Б., Пономарев А.В., Морозов Ю.А., Матвеев М.А., Смирнов В.Б., Шарычев И.В. Исследование структуры метапесчаников методом широкополосной акустической спектроскопии с лазерным источником ультразвука // Геофизические процессы и биосфера. 2023. Т. 22. № 4. С. 13–24.
- Салтыков С.А. Стереометрическая металлография. М.: Металлургия. 1976. 271 с.
- Турунтаев С.Б., Зенченко Е.В., Зенченко П.Е., Тримонова М.А., Барышников Н.А., Новикова Е.В. Динамика роста трещины гидроразрыва по данным ультразвукового просвечивания в лабораторных экспериментах // Физика Земли. 2021. № 5. С. 104–119.
- Шихова Н.М., Патонин А.В., Пономарёв А.В., Смирнов В.Б. Вариации спектров сигналов ультразвукового зондирования при лабораторных испытаниях образцов горных пород // Физика Земли. 2022. № 4. С. 167–180.
- Шкуратник В.Л., Ноздрина Н.Д. Теоретические предпосылки количественной оценки размеров минерального зерна ультразвуковым методом // ФТПРПИ. 1998. № 6. С. 104–111.
- ASTM E112-13. Standard test methods for determining average grain size. ASTM. 2021.
- Atapour H., Mortazavi A. The influence of mean grain size on unconfined compressive strength of weakly consolidated reservoir sandstones // J. Petrol. Sci. Eng. 2018. V. 171. P. 63–70.
- Austin N.J. An experimental investigation of textural controls on the brittle deformation of dolomite. MSc. Thesis. Vancouver: The University of British Columbia. 2003. 106 p.
- Baud P., Teng-fong Wong, Wei Zhu. Effects of porosity and crack density on the compressive strength of rocks // Int. J. Rock Mech. Min. Sci. 2014. V. 67. P. 202–11.
- Chen B., Xiang J., Latham J.-P., Bakker R.R. Grain-scale failure mechanism of porous sandstone: An experimental and numerical FDEM study of the Brazilian tensile strength test using CT-Scan microstructure // Int. J. Rock Mech. Min. Sci. 2020. V. 132 Art. № 104348.
- El Azhari H., El Hassani I. Effect of the number and orientation of fractures on the P-wave velocity diminution: application on the building stones of the Rabat area (Morocco) // Geomaterials. 2013. № 3. P. 71–81.
- Fitting D.W., Adler L. Ultrasonic spectral analysis for nondestructive evaluation. New York: Plenum Press. 1981. 354 p.
- Haderer W., Scherleitner E., Gseller J., Heise B., Mitter T., Ryzy M., Reitinger B., Hettich M. Spatial imaging of stratified heterogeneous microstructures: determination of the hardness penetration depth in thermally treated steel parts by laser ultrasound // NDT&E Int. 2023. V. 138. Art. № 102868.
- Han Q., Gao Y., Zhang Y. Experimental study of size effects on the deformation strength and failure characteristics of hard rocks under true triaxial compression // Adv. Civil Eng. 2021. V. 2021. Art. № 6832775.
- He W., Hayatdavoudi A. A comprehensive analysis of fracture initiation and propagation in sandstones based on micro-level observation and digital imaging correlation // J. Petrol. Sci. Eng. 2018. V. 164. P. 75–86.
- He W., Hayatdavoudi A., Shi H., Sawant K., Huang P. A preliminary fractal interpretation of effects of grain size and grain shape on rock strength // Rock. Mech. Rock. Eng. 2019. V. 52. P. 1745–1765.
- Higgins M.D. Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press. 2006. 265 p.
- Iravani A., Ouchterlony F., Kukolj I., Åström J.A. Generation of fine fragments during dynamic propagation of pressurized cracks // Phys. Rev. E. 2020. V. 101. Art. № 023002.
- Ishida T., Sasaki, S., Matsunaga I., Chen Q., Mizuta Y. Effect of grain size in granitic rocks on hydraulic fracturing mechanism.Proceedings of Sessions of Geo-Denver 2000 – Trends in Rock Mechanics. GSP 102. 2000. V. 290. P. 128–139.
- Jeong H., Hsu D.K. Experimental analysis of porosity-induced ultrasonic attenuation and velocity change in carbon composites // Ultrasonics. 1995. V. 33. № 3. P. 195–203.
- Kube C.M. Attenuation of laser generated ultrasound in steel at high temperatures; comparison of theory and experimental measurements // Ultrasonics. 2016. V. 70. P. 238–240.
- Liu S., Zhang Y., Zhang H., Zhang J., Qiu M., Li G., Ma F., Guo J. Numerical study of the fluid fracturing mechanism of granite at the mineral grain scale // Frontiers in Earth Science. 2023. V. 11. Art. № 1289662.
- Mylavarapu P., Woldesenbet E. A predictive model for ultrasonic attenuation coefficient in particulate composites // Compos. Part B Eng. 2010. V. 41 № 1. P. 42–47.
- Pan C., Zhao G., Meng X., Dong C., Gao P. Numerical investigation of the influence of mineral mesostructure on quasi-static compressive behaviors of granite using a breakable grain-based model // Frontiers in Ecology and Evolution. 2023. V. 11. Art. № 1288870.
- Papadakis E.P. From micrograph to grain size distribution with ultrasonic applications // J. Appl. Phys. 1964. V. 35. № 5. P. 1586–1594.
- Peng J., Wong L.N., Teh C.I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks // J. Geophys. Res.: Solid Earth. 2017. V. 122. P. 1054–1073.
- Philpotts A.R., Ague J.J. Principles of igneous and metamorphic petrology. Cambridge University Press. 2022. 667 p.
- Platt J. A process-based theory for subgrain-size and grain-size piezometry // J. Struct. Geol. 2023. V. 177. Art. no. 104987.
- Podymova N.B., Karabutov A.A. Nondestructive assessment of local microcracking degree in orthoclase and plagioclase feldspars using spectral analysis of backscattered laser-induced ultrasonic pulses // Ultrasonics. 2022. V. 125. Art no. 106796.
- Reynolds W.N., Smith R.L. Ultrasonic wave attenuation spectra in steels // J. Phys. D: Appl. Phys. 1984. V. 17. P. 109–116.
- Sarpun I.H, Kilickaya M.S. Mean grain size determination in marbles by ultrasonic first backwall echo height measurements // NDT&E Int. 2006. V. 39. P. 82–86.
- Schön J.H. Physical properties of rocks. A workbook. Elsevier. 2011. 481 p.
- Stanke F.E., Kino G.S. A unified theory for elastic wave propagation in polycrystalline materials // J. Acoust. Soc. Am. 1984. V. 75. № 3. P. 665–681.
- Stipp M., Tullis J., Scherwath M., Behrmann J.H. A new perspective on paleopiezometry: Dynamically recrystallized grain size distributions indicate mechanism changes // Geology. 2010. V. 38. P. 759–762.
- Vary A. Material property characterization. Nondestructive testing handbook. Ultrasonic testing / Moore P.O. (ed.). Columbus: ASTM. 2007. P. 365–431.
- Vavilov V.P., Karabutov A.A., Chulkov A.O., Derusova D.A., Moskovchenko A.I., Cherepetskaya E.B., Mironova E.A. Comparative study of active infrared thermography, ultrasonic laser vibrometry and laser ultrasonics in application to the inspection of graphite/epoxy composite parts // Quantitative InfraRed Thermogr. J. 2019. V. 17. № 4. P. 235–248.
- Weaver R.L. Diffusivity of ultrasound in polycrystals // J. Mech. Phys. Solids 1990. V. 38. № 1. P. 55–86.
- Zhang Sh., Wu Sh., Zhang G. Strength and deformability of a low-porosity sandstone under true triaxial compression conditions // Int. J. Rock Mech. Min. Sci. 2020. V. 127. Art. № 104204.
Supplementary files
