Comparative Analysis and Unified Derivation of Reissner’s Equations For 2D Bending of Thick Plates and Timoshenko’s Equations for Bending of Beams
- Authors: Trubitsyn V.P.1, Trubitsyn A.P.1
-
Affiliations:
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Issue: No 2 (2024)
- Pages: 98-111
- Section: Articles
- URL: https://bakhtiniada.ru/0002-3337/article/view/255612
- DOI: https://doi.org/10.31857/S0002333724020089
- EDN: https://elibrary.ru/BKISPJ
- ID: 255612
Cite item
Abstract
Currently, calculations of flexural deformations of lithospheric plates are carried out on the basis of Kirchhoff’s theory of bending of thin plates formulated about 170 years ago. The paper examines the possibility of refining these calculations based on the theory of bending of thick plates by Timoshenko and Reissner. A new unified derivation is presented of the Timoshenko equations for 2D bending of beams and the Reissner equations for bending of slabs by direct transformation of the general elasticity equations with a simple approximate replacement of power cubic functions with effective linear ones. This derivation offers a simpler and more detailed understanding of the difference between the equations and the meaning of the simplifications made in these theories. By comparing the analytical solutions of the Timoshenko and Reissner equations with the existing test analytical solutions of the exact elasticity equations, quantitative estimates of the accuracy of these theories are presented.
Keywords
Full Text

About the authors
V. P. Trubitsyn
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Author for correspondence.
Email: vtrubi@yandex.ru
Russian Federation, Moscow
A. P. Trubitsyn
Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: vtrubi@yandex.ru
Russian Federation, Moscow
References
- Васильев В.В. Классическая теория пластин история и современный анализ // Механика твердого тела. 1988. № 3. C. 46–58.
- Доннелл Л.Г. Балки, пластины, оболочки. М.: Наука. 1982. 567 с.
- Корчинский И.Л., Бородин Л.А., Гроссман А.Б., Преображенский В.С., Ржевский В.А., Ципенюк И.Ф., Шепелев В.Ф. Сейсмостойкое строительство зданий. М.: Высшая школа. 1971. 320 с.
- Сухотерин М.В., Барышников С.О., Кныш Т.П. Напряженно-деформированное состояние защемленной прямоугольной пластины Рейсснера // Инженерно-строительный журнал. 2017. № 8(76). С. 225–240.
- Теркот Д., Шуберт Дж. Геодинамика. М.: Мир. 1985. 360 с.
- Тимошенко С.П., Гудьер Дж. Теория упругости, М.: Наука. 1975. 550 с.
- Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука, Физматгиз. 1966. 636 с.
- Трубицын В.П., Трубицын А.П. Деформации упругого изгиба в океанических литосферных плитах // Докл. РАН. 2022. Т. 504. № 1. С. 60–64.
- Трубицын А.П, Трубицын В.П. Поправки к теории упругого изгиба тонких плит для 2D-моделей в приближении Рейсснера // Физика Земли. 2023. № 4. С. 3–15.
- Challamel N., Elishakoff Is. A brief history of first-order shear-deformable beam and plate models // Mechanics Research Communications. Elsevier. 2019. V. 102. P. 103389.
- Elishakoff I. Who developed the so-called Timoshenko beam theory? // Mathematics and Mechanics of Solids. 2020. V. 25. 97–116. doi: 10.1177/1081286519856931
- Kaneko T. On Timoshenko’s correction for shear in vibrating beams // J. of Physics D: Appl. Phys. 1975. V. 8. P. 1927–1936.
- Reissner E. The effect of transverse shear deformation on the bending of elastic plates // J. of Applied Mechanics. 1945. № 1(12). P. 69–77.
- Szilard R. Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods. John Wiley & Sons, Inc. 2004. 1024 p.
- Timoshenko S.P. About transverse vibrations of rods of uniform cross-section // Phil. Mag. 1922. V. 43. P. 125–131.
- Timoshenko S.P. On the correction factor for shear of the differential equation for transverse vibrations of bars of uniform cross-section // Philosophical Magazine. 1921. V. 44. P. 744–752.
Supplementary files
