Ultrafine and Ionic Forms of Silver: Assessment of the Effect on the Growth of Wheat Seedlings of Triticum Aestivum and Prospects for Use as New Plant Protections
- Autores: Peshkov S.A.1, Galaktionova L.V.1, Khovrina T.D.1, Peshkova T.V.1, Mukovoz P.P.2, Glinushkin A.P.3,4, Stepanova E.V.3, Yudin A.A.1, Sizentsov A.N.1
-
Afiliações:
- Orenburg State University
- Chuvash State University named after I.N. Ulyanov
- Zelinsky Institute of Organic Chemistry of the RAS
- P. Lumumba Peoples’ Friendship University
- Edição: Nº 9 (2025)
- Páginas: 49-59
- Seção: Пестициды
- URL: https://bakhtiniada.ru/0002-1881/article/view/318998
- DOI: https://doi.org/10.7868/S3034496425090067
- ID: 318998
Citar
Resumo
The possibility of using ultrafine silver forms as biocidal components of new generation pesticides has been studied. The effect of ultrafine silver particles and its ionic forms on the growth of Triticum aestivum L. has been studied. The effects of ionic forms were evaluated using the example of chelate – glycinate and silver nitrate. Ultrafine silver particles were obtained by the “green synthesis” method by reacting silver nitrate with quercetin and adding a 5% ammonia solution. The sizes of Ag nanoforms have been confirmed by the dynamic light scattering method. It was shown that small amounts of ultrafine silver particles did not have a depressing effect on germination and biochemical parameters of plants. Silver nitrate at a concentration of 8.493 × 10–4 g/l slowed down the growth and development of Triticum aestivum, and the effect of silver glycinate on vital, morphometric, and biochemical parameters of the culture correlated with its content in solution. The concentration of 8.427 × 10–3 g Ag+/l almost completely suppressed the germination of wheat, and when it decreased to 1.053 × 10–3 g Ag+/l, the negative effect of glycinate weakened. Nitrates, chelates and ultrafine Ag particles showed pronounced fungicidal and bactericidal effects, which, against the background of the absence of phytotoxicity of the metal nanoform, indicated the prospects of its use for pre-sowing seed treatment. From the economic side, the low concentration of ultrafine particles in the solution will help reduce the cost of the final product.
Palavras-chave
Sobre autores
S. Peshkov
Orenburg State University
Email: mpp27@mail.ru
prosp. Pobedy 13, Orenburg 460018, Russia
L. Galaktionova
Orenburg State University
Email: mpp27@mail.ru
prosp. Pobedy 13, Orenburg 460018, Russia
T. Khovrina
Orenburg State University
Email: mpp27@mail.ru
prosp. Pobedy 13, Orenburg 460018, Russia
T. Peshkova
Orenburg State University
Email: mpp27@mail.ru
prosp. Pobedy 13, Orenburg 460018, Russia
P. Mukovoz
Chuvash State University named after I.N. Ulyanov
Email: mpp27@mail.ru
Moskovsky prosp. 15, Cheboksary 428015, Russia
A. Glinushkin
Zelinsky Institute of Organic Chemistry of the RAS; P. Lumumba Peoples’ Friendship University
Email: mpp27@mail.ru
Leninsky prosp. 47, Moscow 119991, Russia; ul. Ordzhonikidze 3, Moscow 115419, Russia
E. Stepanova
Zelinsky Institute of Organic Chemistry of the RAS
Email: mpp27@mail.ru
Leninsky prosp. 47, Moscow 119991, Russia
A. Yudin
Orenburg State University
Email: mpp27@mail.ru
prosp. Pobedy 13, Orenburg 460018, Russia
A. Sizentsov
Orenburg State University
Autor responsável pela correspondência
Email: mpp27@mail.ru
prosp. Pobedy 13, Orenburg 460018, Russia
Bibliografia
- Han Y., Sun T., Tang Y., Yang M., Gao W., Wang L., Sui C. Root rot in medicinal plants: a review of extensive research progress // Front. Plant Sci. 2024. V. 15. P. 1504370.
- Abbas A., Mubeen M., Sohail M.A., Solanki M.K., Hussain B., Nosheen S., Kashyap B.K., Zhou L., Fang X. Root rot a silent alfalfa killer in China: Distribution, fungal, and oomycete pathogens, impact of climatic factors and its management // Front. Microbiol. 2022. V. 13. P. 961794.
- Yu F., Chen Y., Huang X., Shi J., Xu J., He Y. Does straw returning affect the root rot disease of crops in soil? A systematic review and meta-analysis // J. Environ. Manag. 2023. V. 336. P. 117673.
- Sawosz F., Pineda L., Hotowy A., Jaworski S., Prasek M., Sawosz E., Chwalibog A. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis // Arch. Animal Nutr. 2013. V. 67. № 5. P. 347–355.
- Pineda L., Sawosz E., Lauridsen C., Engberg R.M., Elnif J., Hotowy A., Sawosz F., Chwalibog A. Influence of in ovo injection and subsequent provision of silver nanoparticles on growth performance, microbial profile, and immune status of broiler chickens // Animal Physiol. 2012. V. 4. P. 1–8.
- Wang C., Wang M.Q., Ye S.S., Tao W.J., Du Y.J. Effects of copper-loaded chitosan nanoparticles on growth and immunity in broilers // Poult. Sci. 2011. V. 90. № 10. P. 2223–2228.
- Shirsat S., Kadam A., Mane R.S., Jadhav V.V., Zate M.K., Naushad M., Kim K.H. Protective role of biogenic selenium nanoparticles in immunological and oxidative stress generated by enrofloxacin in broiler chicken // Dalton Transit. 2016. V. 45. № 21. P. 8845–8853.
- Miroshnikov S., Yausheva E., Sizova E., Miroshnikova E. Comparative assessment of effect of copper nano- and microparticles in chicken // Orient. J. Chem. 2015. V. 31. № 4. P. 2327–2336.
- Safa S., Moghaddam G., Jozani R.J., Daghigh Kia H., Janmohammadi H. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen // Animal Reproduct. Sci. 2016. V. 174. P. 100–106.
- Kim H.J., Kim S.H., Lee J.K., Choi C.U., Lee H.S., Kang H.G., Cha S.H. A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed // J. Vet. Sci. 2012. V. 13. № 4. P. 363–369.
- Sawosz F., Pineda L.M., Hotowy A.M., Hyttel P., Sawosz E., Szmidt M., Niemiec T., Chwalibog A. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and glutamine on molecular responses, and the morphology of pectoral muscle // Balt. J. Comparat. Clinic. Syst. Biol. 2012. V. 2. P. 29–45.
- Liu X., Theil E.C. Ferritin as an iron concentrator and chelator target // Ann. N.Y. Acad. Sci. 2005. V. 1054. № 1. P. 136–140.
- Parkinson S.J., Tungsirisurp S., Joshi C., Richmond B.L., Gifford M.L., Sikder A., Lynch I., O’Reilly R.K., Napier R.M. Polymer nanoparticles pass the plant interface // Nat. Сommun. 2022. V. 13. № 1. P. 7385.
- Husted S., Minutello F., Pinna A., Tougaard S.L., Mos P., Kopittke P.M. What is missing to advance foliar fertilization using nanotechnology? // Trend. Plant Sci. 2023. V. 28. № 1. P. 90–105.
- Siddiqui M.H., Al-Whaibi M.H., Firoz M., Al-Khaishany M.Y. Role of nanoparticles in plants // Nanotechnol. Plant Sci. Cham: Springer Inter. Publ., 2015. P. 19–35.
- Brusko V., Garifullin B., Geniyatullina G., Kuryntseva P., Galieva G., Galitskaya P., Selivanovskaya S., Dimiev A.M. Novel biodegradable chelating agents for micronutrient fertilization // J. Agricult. Food Chem. 2023. V. 71. № 41. P. 14979–14988.
- Hyder S., Ul-Nisa M., Shahzadi, Shahid H., Gohar F., Gondal A.S., Riaz N., Younas A., Santos-Villalobos S.L., Montoya-Martinez A.C., Sehar A., Latif F., Rizvi Z.F., Iqbal R. Recent trends and perspectives in the application of metal and metal oxide nanomaterials for sustainable agriculture // Plant Physiol. Biochem. 2023. V. 202. P. 107960.
- Laoue J., Fernandez C., Ormeno E. Plant flavonoids in mediterranean species: A Focus on flavonols as protective metabolites under climate stress // Plants. 2022. V. 11. № 2. P. 172.
- Vargova Z., Olejnikova P., Kuzderova G., Rendosova M., Havlickova J., Gyepes R., Vilkova M. Silver(I) complexes with amino acid and dipeptide ligands – Chemical and antimicrobial relevant comparison (mini review) // Bioorg. Chem. 2023. V. 141. P. 106907.
- Makarov V.V., Love A.J., Sinitsyna O.V., Makarova S.S., Yaminsky I.V., Taliansky M.E., Kalinina N.O. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants // Acta Natur. 2014. V. 6. № 1. P. 35–44.
- Mustapha T., Misni N., Ithnin N.R., Daskum A.M., Unyah N.Z. A Review on plants and microorganisms mediated synthesis of silver nanoparticles, role of plants metabolites and applications // Inter. J. Environ. Res. Public Health. 2022. V. 19. № 2. P. 674.
- Wang X., Xin C., Cai J., Zhou Q., Dai T., Cao W., Jiang D. Heat priming induces trans-generational tolerance to high temperature stress in wheat // Front. Plant Sci. 2016. V. 7. P. 501.
- Gupta N., Upadhyaya C.P., Singh A., Abd-Elsalam K.A., Prasad R. Applications of silver nanoparticles in plant protection // Nanobiotechnology Applications in Plant Protection / Ed. Abd-Elsalam K.A., Prasad R. Cham: Springer International Publishing, 2018. P. 247–265.
- Dykman L.A., Shchyogolev S.Y. Interactions of plants with noble metal nanoparticles // Agricult. Biol. 2017. V. 52. № 1. P. 13–24.
- An J., Zhang M., Wang S., Tang J. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP // LWT – Food Sci. Technol. 2008. V. 41. № 6. P. 1100–1107.
- Savithramma N., Ankanna S., Bhumi G. Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon // Nano Vision. 2012. V. 2. № 1. P. 61–68.
- Омельченко А.В., Юркова И.Н., Жижина М.Н. Стимулирующее действие наночастиц серебра на рост и развитие растений пшеницы // Уч. зап. Крым. фед. ун-та им. В.И. Вернадского. Биология. Химия. 2014. Т. 27. № 1 (66). C. 127–135.
- Assessment of silver nanoparticles contamination on faba bean – Rhizobium leguminosarum bv. Viciae–Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule // Agricult. Ecosyst. Environ. 2016. V. 218. P. 163–177.
- Song U., Jun H., Waldman B., Roh J., Kim Y., Yi J., Lee E.J. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum) // Ecotoxicol. Environ. Saf. 2013. V. 93. P. 60–67.
- Zuverza-Mena N., Armendariz R., Peralta-Videa J.R., Gardea-Torresdey J.L. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value // Front. Plant Sci. 2016. V. 7. P. 90.
- Doolette C.L., McLaughlin M.J., Kirby J.K., Navarro D.A. Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): Effect of agricultural amendments on plant uptake // J. Hazard. Mater. 2015. V. 300. P. 788–795.
- Barrena R., Casals E., Colon J., Font X., Sanchez A., Puntes V. Evaluation of the ecotoxicity of model nanoparticles // Chemosphere. 2009. V. 75. № 7. P. 850–857.
- Galazzi R.M., Santos Ede B., Caurin T., Pessoa Gde S., Mazali I.O., Arruda M.A. The importance of evaluating the real metal concentration in nanoparticles post-synthesis for their applications: A case-study using silver nanoparticles // Talanta. 2016. V. 146. P. 795–800.
- Mirzajani F., Askari H., Hamzelou S., Farzaneh M., Ghassempour A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria // Ecotoxicol. Environ. Saf. 2013. V. 88. P. 48–54.
- Gubbins E.J., Batty L.C., Lead J.R. Phytotoxicity of silver nanoparticles to Lemna minor L. // Environ. Pollut. 2011. V. 159. № 6. P. 1551–1559.
- Lee W.M., Kwak J.I., An Y.J. Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity // Chemosphere. 2012. V. 86. № 5. P. 491–499.
- Jiang H.S., Qiu X.N., Li G.B., Li W., Yin L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza // Environ. Toxicol. Chem. 2014. V. 33. № 6. P. 1398–1405.
- Musante C., White J.C. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles // Environ. Toxicol. 2012. V. 27. № 9. P. 510–517.
- Shabatina T.I., Vernaya O.I., Melnikov M.Y. Hybrid nanosystems of antibiotics with metal nanoparticles-novel antibacterial agents // Molecules. 2023. V. 28. № 4. P. 1603.
- Reda A.T., Park J.Y., Park Y.T. Zinc oxide-based nanomaterials for microbiostatic activities: A Review // J. Funct. Biomater. 2024. V. 15. № 4. P. 103.
- ПешковС.А., Галактионова Л.В., Ховрина Т.Д., Юдин А.А., Муковоз П.П., Пешкова Т.В., Глинушкин А.П. Влияние глицината железа и его ультрадисперсных частиц на ростовые и биохимические параметры проростков Triticum aestivum L. // Агрохимия. 2025. № 4. С. 40–48.
Arquivos suplementares
