Biofilm-forming activity of Enterococcus faecalis on basic materials of removable dental prosthetic bases

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

BACKGROUND: According to a number of authors, Enterococcus faecalis is characterised by low biofilm-forming ability on polymeric plastics. Such a feature of enterococci allows them to be considered marker strains in determining the resistance of plastics used in dentistry to microbial colonisation. This determines the need to study the aspects of interaction between clinical strains of Enterococcus faecalis and the main structural polymeric materials used for the manufacture of the bases of removable dental prostheses.

AIM: To study the biofilm-forming activity of Enterococcus faecalis strains isolated from the oral cavity on the basic materials of bases of removable dental prosthetic structures.

METHODS: The study included individuals with dental defects (code K08.1 according to the International Classification of Diseases). In order to assess the oral microbiota, isolate clinical strains of Enterococcus faecalis, and cultivate the on the following materials: hot-curing acrylic material Etacryl-02, thermoinjection polymer Deflex Acrynel, and thermoplastic monomer-free material Perflex T-Crystal, biomaterial was collected from patients of the observation groups from the central apex area of dental defects using swab probes. Statistical analysis was performed using the Shapiro–Wilk test, Student’s t-test, and χ²-test.

RESULTS: Bacterial film formation was most pronounced on the acrylic material hot curing acrylic material (coefficient of biofilm-forming activity ranged from 16.7 to 30.6). The same index was in the range of 4.6–10.1 when studied on thermoplastic monomer-free material, and for thermoinjection polymer — 1.2–2.7. It was found that 12.5% of Enterococcus faecalis strains formed an intensive biofilm on thermoplastic monomer-free material and hot curing acrylic material simultaneously, 25% — on thermoinjection polymer and hot curing acrylic material. A quarter of strains practically did not form biofilm on thermoplastic monomer-free material and thermoinjection polymer simultaneously, the remaining 37.5% of strains formed moderately pronounced bacterial film on all three variants of materials.

CONCLUSION: Enterococcus faecalis can be classified as a marker microorganism for investigating the resistance of dental prosthetic base materials to microbial colonization. At the stage of prosthetic planning, enterococci should be detected in the oral cavity for rational polymer selection.

作者简介

Oksana Shuliatnikova

E.A.Vagner Perm State Medical University

Email: anasko06@mail.ru
ORCID iD: 0000-0002-2033-5903
SPIN 代码: 4670-4605

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Perm

Mikhail Yakovlev

E.A.Vagner Perm State Medical University

Email: mikhailyak@mail.ru
ORCID iD: 0000-0002-2895-387X
SPIN 代码: 4665-2340

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Perm

Anatoliy Godovalov

E.A.Vagner Perm State Medical University

编辑信件的主要联系方式.
Email: agodovalov@gmail.com
ORCID iD: 0000-0002-5112-2003
SPIN 代码: 4482-4378

MD, Cand. Sci. (Medicine)

俄罗斯联邦, 26 Petropavlovskaya St., Perm, 614990

参考

  1. Makhmudov MM. Clinical assessment of the orthopaedic status of persons using non-removable dental prosthesis. Avicenna Bulletin. 2011;(2):62–65. EDN: PBOCRZ
  2. Klemin VA, Vorozhko AA. Choice of materials for orthopedic treatment of patients requiering removable prosthesis. Far Eastern Medical Journal. 2015;(1):41–46. EDN: TNFZIJ
  3. Shtana VS, Ryzhova IP. The review of modern basic polymers in orthopedic stomatology. Actual problems of medicine. 2019;(2):224–234. EDN: AUHNTM doi: 10.18413/2075-4728-2019-42-2-224-234
  4. Gridina VO. Increasing the effectiveness of prevention, diagnosis and treatment of increased erasability of hard tissues of teeth in patients with hypertonus of masticatory muscles (experimental-clinical study) [dissertation]. Perm; 2021.182 p. (In Russ.) EDN: SPTSJN
  5. Shulyatnikova OA. Development, optimisation of materials and constructions for orthopaedic stage of treatment of patients with fractures and acquired defects of jaw bones. Experimental and clinical study [dissertation]. Perm; 2018. 286 p. (In Russ.) EDN: VBZRLP
  6. Rubtsova EA, Chirkova NV, Polushkina NA, et al. Evaluation of the microbiological examination of removable dentures of thermoplastic material. Bulletin of New Medical Technologies. 2017;(2):267–270. EDN: ZBADWD
  7. Arutyunov AS, Tsarev VN, Sedrakyan AN, et al. Analysis of biofilm microflora species on jaw and tooth prothesis base in cancer patients with postoperative jaw defects. Journal of N.N. Blokhin Russian cancer research center RAMS. 2009;(2):11–19. EDN: KVYJRD
  8. Didenko LV, Avtandilov GA, Smirnova TA, et al. Study of colonization processes and persistence of microorganisms in artificial materials for medical use. Journal of Microbiology, Epidemiology and Immunobiology. 2015;(5):64–69. EDN: ZQJYFF
  9. Zudin PS, Tsalikova NA, Mitronin VA, et al. Analysis of the adhesion of microorganisms to modern basic materials in prosthetic dentistry. Kuban Scientific Medical Bulletin. 2018;(6):96–99. EDN: YMCISI doi: 10.25207/1608-6228-2018-25-6-96-99
  10. Li G. Study of adherence of normal oral bacteria on polymethyl methyacrylate containing silver – supported silicate inorganic antibacterial. Hua Xi Kou Qiang Yi Xue Za Zhi. 2007;25(3):280–284. (In Chinese)
  11. Arutyunov SD, Ibragimov TI, Tsarev VN, et al. Microbiological validation of the choice of basic plastic for removable dentures. Stomatology. 2002;81(3):4–8. EDN: PDNEEU
  12. Musawi MH, Abdullaziz AA. Isolation and characterization of antibiotics resistance enterococcus faecium from mastitic cow’s milk. Iraqi J Vet Sci. 2023;37:21–27. doi: 10.33899/ijvs.2023.1391120.2884
  13. Kaittan ZQ, Zghair ZR. Enterococcus spp from the oral cavity and wounds of slaughterhouse workers in Baghdad city. Journal of Medicinal and Pharmaceutical Chemistry Research. 2025;7(6):1174–1186. doi: 10.48309/jmpcr.2025.469943.1350 Available from: https://jmpcr.samipubco.com/article_207539.html
  14. Mustafa EA, Hamdoon SM, Shehab EY. Molecular detection and identification of enterococcus faecium isolated from dental root canals. Iraqi J Sci. 2021;62(5):1447–1451. doi: 10.24996/ijs.2021.62.5.7
  15. Hameed TA, Humud HR, Ali LF. Effect of plasma-activated water and direct plasma on enterococcus faecalis bacteria for disinfection of tooth root canal. Iraqi J Sci. 2023;6:2889–2898. doi: 10.24996/ijs.2023.64.6.19
  16. Kouidhi B, Zmantar T, Mahdouani K, et al. Antibiotic resistance and adhesion properties of oral Enterococci associated to dental caries. BMC Microbiol. 2011;11:155. doi: 10.1186/1471-2180-11-155
  17. Medina A, Martin C, Villalobos M, et al. Enterococcus faecalis en dientes con periodontitis apical asintomática. Archiv Médic de Camag. 2014;18(4):415–423.
  18. Bhardwaj SB, Mehta M, Sood S. Enterococci in the oral cavity of periodontitis patients from different urban socioeconomic groups. Dent Res J (Isfahan). 2020;17(2):147–151.
  19. Afanasyeva AS. Colonisation of prosthetic and filling materials by oral cavity microflora. Siberian Medical Review. 2007;(4):50–54. EDN: NDPAWV
  20. Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol. 2017;(44):12–22. doi: 10.1111/jcpe.12679
  21. Tsarev VN, Abakarov SI, Umarova SE. Dynamics of colonisation by microbial flora of the oral cavity of various materials used for dental prosthetics. Stomatology. 2000;(1):55–57. EDN: LVWHWI
  22. Tsarev VN, Stepanov AG, Ippolitov EV, et al. Control of primary adhesion of microorganisms and formation of biofilms on stomatological materials used for transdental implantation in dental stabilizing operations. Russian Clinical Laboratory Diagnostics. 2018;63(9):568–573. EDN: YPEGEX doi: 10.1882im69-2084-2018-63-9-568-573
  23. Bedier MM, Hashem AY, Hassan YM. Improved dentin disinfection by combining different geometry rotary nickel-titanium files in preparing root canals. Restor Dent Endod. 2018;43(4):e46. doi: 10.5395/rde.2018.43.e46
  24. O’Toole GA. Microtiter dish biofilm formation assay. J Vis. Exp. 2011;(47):2437. doi: 10.3791/2437
  25. Godovalov AP, Karpunina TI, Gushchin MO. Peculiarities of antimicrobial relationships in the vaginal microbiota of infertile women. Medical Academic Journal. 2017;17(4):53–54. EDN: YWNTVQ

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Numbers of Enterococcus faecalis isolated from the maxillary alveolar apex (×104 CFU/swab): a, main group; b, comparison group.

下载 (89KB)
3. Fig. 2. Mass of Enterococcus faecalis biofilm on polymeric dental construction materials for removable denture bases.

下载 (95KB)

版权所有 © Eco-Vector, 2025



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».