Остеоиндуктивный потенциал частично деминерализованного костного матрикса и возможности его использования в клинической практике
- Авторы: Панкратов А.С.1,2, Фадеева И.С.3, Юрасова Ю.Б.4, Гринин В.М.1, Черкесов И.В.1, Коршунов В.В.1
-
Учреждения:
- Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
- Российская медицинская академия непрерывного профессионального образования
- Институт теоретической и экспериментальной биофизики РАН
- Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова
- Выпуск: Том 77, № 2 (2022)
- Страницы: 143-151
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ КЛЕТОЧНОЙ ТРАНСПЛАНТОЛОГИИ И ТКАНЕВОЙ ИНЖЕНЕРИИ
- URL: https://bakhtiniada.ru/vramn/article/view/125636
- DOI: https://doi.org/10.15690/vramn1722
- ID: 125636
Цитировать
Полный текст
Аннотация
На сегодняшний день аутотрансплантаты считаются оптимальным материалом для костной пластики. Однако их забор и клиническое использование связаны с целым рядом серьезных недостатков, в связи с чем в реконструктивной хирургии ведется поиск альтернативных подходов к получению материалов. Пересадка кости от другого человека (аллоостеопластика) представляется самым естественным и логичным вариантом замены аутокости. С 1965 г. в клинической практике используются аллогенные имплантаты частично деминерализованного костного матрикса, сочетающие остеоиндуктивное и остеокондуктивное действие. Однако клинические результаты применения данного материала оказались неоднозначными, что связано прежде всего со значительной вариабельностью остеопластического потенциала различных его образцов. По этой причине в клинической практике предпочтение отдается порой образцам недеминерализованной аллокости, дольше сохраняющим свою структуру. В настоящей работе рассмотрены факторы, влияющие на остеоиндуктивную активность частично деминерализованного костного матрикса, связанные как с технологическими вопросами его получения, так и с клиническими условиями применения. Обсуждены проблемы возможного совершенствования данного материала в целях его дальнейшего использования в медицинской практике.
Полный текст
Открыть статью на сайте журналаОб авторах
Александр Сергеевич Панкратов
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет); Российская медицинская академия непрерывного профессионального образования
Email: stomat-2008@mail.ru
ORCID iD: 0000-0001-9620-3547
SPIN-код: 9785-2632
д.м.н. доцент
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2; МоскваИрина Сергеевна Фадеева
Институт теоретической и экспериментальной биофизики РАН
Email: fadeeva.iteb@gmail.com
ORCID iD: 0000-0002-1709-9970
SPIN-код: 6475-1023
к.б.н.
Россия, Пущино-на-Оке, Московская областьЮлия Борисовна Юрасова
Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова
Email: yyrasova@gmail.com
ORCID iD: 0000-0001-8398-6829
д.м.н., доцент
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Василий Михайлович Гринин
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: grynin@mail.ru
ORCID iD: 0000-0002-2280-8559
SPIN-код: 9663-2378
Scopus Author ID: 7005966400
ResearcherId: U-7910-2019
д.м.н., профессор
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Игорь Владимирович Черкесов
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Email: cherkesovi@gmail.com
ORCID iD: 0000-0002-4336-4459
к.м.н.
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Василий Вадимович Коршунов
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Автор, ответственный за переписку.
Email: korshunov140395@mail.ru
ORCID iD: 0000-0001-6497-0637
врач
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Список литературы
- Dreyer CH, Rasmussen M, Pedersen RH, et al. Comparisons of Efficacy between Autograft and Allograft on Defect Repair In Vivo in Normal and Osteoporotic Rats. Biomed Res Int. 2020;2020:9358989. doi: https://doi.org/10.1155/2020/9358989
- Arrington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329: 300–309. doi: https://doi.org/10.1097/00003086-199608000-00037
- Brink O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury. 2021;52(Suppl2):S2–S28. doi: https://doi.org/10.1016/j.injury.2020.11.013
- Urist MR. Bone: Formation by Autoinduction // Science. 1965; 150(3698):893–899. doi: https://doi.org/10.1126/science.150.3698.893
- Majzoub J, Ravida A, Starch-Jensen T, et al. Del Amo F. The Influence of Different Grafting Materials on Alveolar Ridge Preservation: a Systematic Review. J Oral Maxillofac Res. 2019;10(3):e6. doi: https://doi.org/10.5037/jomr.2019.10306
- Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971; 50(6):1392–1406. doi: https://doi.org/10.1177/00220345710500060601
- Ramly EP, Alfonso AR, Kantar RS, et al. Safety and Efficacy of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Craniofacial Surgery. Plast Reconstr Surg Glob Open. 2019;7(8):e2347. doi: https://doi.org/10.1097/GOX.0000000000002347
- Кириллова И.А. Деминерализованный костный трансплантат как стимулятор остеогенеза: Современные концепции // Хирургия позвоночника. — 2004. — № 3. — С. 105–110. [Kirillova IA. Demineralizovannyj kostnyj transplantat kak stimuljator osteogeneza: Sovremennye koncepcii. Hirurgija pozvonochnika. 2004;3:105–110. (In Russ.)]
- Zu Z, He L, Shang H, et al. Overexpression of Bone Morphogenetic Protein-1 Promotes Osteogenesis of Bone Marrow Mesenchimal Stem Cells In Vitro. Med Sci Monit. 2020;26:e920122-8 doi: https://doi.org/10.12659/MSM.920122
- Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochim Biophys Acta. 2012;1824(12):1374–1381. doi: https://doi.org/10.1016/j.bbapap.2012.07.002
- Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone. 2020;141:115602. doi: https://doi.org/10.1016/j.bone.2020.115602
- Nampo T, Watahiki J, Enomoto A, et al. A new method for alveolar bone repair using extracted teeth for the graft material. J Periodontol. 2010 ;81(9):1264–1272. doi: https://doi.org/10.1902/jop.2010.100016
- Кириллова И.А., Николаев С.В., Подорожная В.Т., и др. Матрикс из кости человека как основа тканеинженерной конструкции // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 47–50. [Kirillova IA, Nikolaev SV, Podorozhnaja VT, i dr. Matriks iz kosti cheloveka kak osnova tkaneinzhenernoj konstrukcii. Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’; 2017. S. 47–45. (In Russ.)]
- Masters LB, Melloning JT, Brunsvold MA, et al. A clinical evaluation of demineralized freeze-dried bone allograft in combination with tetracycline in the treatment of periodontal osseous defects. J Periodontol. 1996;67(8):770–781. doi: https://doi.org/10.1902/jop.1996.67.8.770
- Панкратов А.С., Древаль А.А., Пылаев А.С., и др. Использование остеопластических материалов при лечении нагноившейся костной раны нижней челюсти в эксперименте // Российский стоматологический журнал. — 2000. — № 5. — С. 4–6. [Pankratov AS, Dreval’ AA, Pylaev AS, i dr. Ispol’zovanie osteoplasticheskih materialov pri lechenii nagnoivshejsja kostnoj rany nizhnej cheljusti v jeksperimente. Rossijskij stomatologicheskij zhurnal. 2000;5:4–6. (In Russ.)]
- Francis CS, Mobin SS, Lypka MA, et al. rhBMP-2 with a demineralized bone matrix scaffold versus autologous iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg. 2013;131(5):1107–1115. doi: https://doi.org/10.1097/PRS.0b013e3182865dfb
- Han B., Tang B., Nimni M.E. Quntative and sensitive in vitro assay for osteinductive activity of demineralized bone matrix. J Orthop Res. 2003;21(4):648–654. doi: https://doi.org/10.1016/S0736-0266(03)00005-6
- Pieske O, Wittmann A, Zaspel J, et al. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J Trauma Manag Outcomes. 2009;3:11. doi: https://doi.org/10.1186/1752-2897-3-11
- Committee on Research, Science and Therapy of the American Academy of Periodontology. Tissue banking of bone allografts used in periodontal regeneration. J Periodontol. 2001;72(6):834–838. doi: https://doi.org/10.1902/jop.2001.72.6.834
- Veronesi F, Maglio M, Brogini S, et al. In vivo studies on osteoinduction: A systematic review on animal models, implant site, and type and postimplantation investigation. J Biomed Mater Res A. 2020;108(9):1834–1866. doi: https://doi.org/10.1002/jbm.a.36949
- Савельев В.И., Хлебович Н.В. Первый опыт оценки индуктивных свойств костных трансплантатов, деминерализованных ортофосфорной кислотой // Деминерализованный костный трансплантат и его применение: сб. научн. трудов НИИТО им. Вредена. — СПб., 1993. — С. 125–129. [Savel’ev VI, Hlebovich NV. Pervyj opyt ocenki induktivnyh svojstv kostnyh transplantatov, demineralizovannyh ortofosfornoj kislotoj. Demineralizovannyj kostnyj transplantat i ego primenenie. Sb. nauchn. trudov NIITO im. Vredena. Saint Petesburg; 1993. S.125–129. (In Russ.)]
- Лекишвили М.В. Современная российская технология изготовления деминерализованных костных аллоимплантатов, ее комплексная оценка // Технологии живых систем. — 2005. — Т. 121. — № 2. — С. 41–42. [Lekishvili MV. Sovremennaja rossijskaja tehnologija izgotovlenija demineralizovannyh kostnyh alloimplantatov, ee kompleksnaja ocenka. Tehnologii zhivyh sistem. 2005;121(2):41–42. (In Russ.)]
- Tang G., Liu Zh., Liu Yi, et al. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol. 2021;9:665813. doi: https://doi.org/10.3389/fcell.2021.665813
- Воробьев К.А., Божкова С.А., Тихилов Р.М., и др. Современные способы обработки и стерилизации костных тканей // Травматология и ортопедия России. — 2017. — Т. 23. — № 3. — С. 134–147. [Vorob’ev KA, Bozhkova SA, Tihilov RM, et al. Sovremennye sposoby obrabotki i sterilizacii kostnyh tkanej. Travmatologija i Ortopedija Rossii. 2017;23(3):134–147. (In Russ.)] doi: https://doi.org/10.21823/2311-2905-2017-23-3-134-147
- Burton B, Gaspar A, Josey D, et al. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014;61:71–78. doi: https://doi.org/10.1016/j.bone.2014.01.006
- Akkus O, Belaney R.Y., Das P. Free radical scavening alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. J Orthop Res. 2005;23(4):838–845. doi: https://doi.org/10.1016/j.orthres.2005.01.007
- Сенотов А.С., Кирсанова П.О., Просвирин А.А., и др. Разработка методов повышения биосовместимости остеопластических биоматериалов для реконструктивной хирургии // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 24–26. [Senotov AS, Kirsanova PO, Prosvirin AA, et al. Razrabotka metodov povyshenija biosovmestimosti osteoplasticheskih biomaterialov dlja rekonstruktivnoj hirurgii. Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’; 2017. S. 24–26. (In Russ.)]
- Rasch A, Naujokat H, Wang F, et al. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS One. 2019;14(6):e0218404. doi: https://doi.org/10.1371/journal.pone.0218404
- Денисов-Никольский Ю.И., Матвейчук И.В., Розанов В.В. Инновационные подходы к структурно-функциональному анализу костной ткани для решения фундаментальных и прикладных задач в биоимплантологии и биоматериаловедении // Вопросы биологической, медицинской и фармацевтической химии. — 2012. — № 1. — С. 223–228. [Denisov-Nikol’skij JuI, Matvejchuk IV, Rozanov VV. Innovacionnye podhody k strukturno-funkcional’nomu analizu kostnoj tkani dlja reshenija fundamental’nyh i prikladnyh zadach v bioimplantologii i biomaterialovedenii. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2012;1:223–228. (In Russ.)]
- Лекишвили М.В., Матвейчук И.В., Розанов В.В., и др. Научно-методические основы оптимизации технологии изготовления костных имплантатов // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 5–7. [Lekishvili MV, Matvejchuk IV, Rozanov VV, i dr. Nauchno-metodicheskie osnovy optimizacii tehnologii izgotovlenija kostnyh implantatov Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’; 2017. S. 5–7. (In Russ.)]
- Muthukumaran N, Ma S, Reddi AH. Dose-dependence of and threshold for optimal bone induction by collagenous bone matrix and osteogenin-enriched fraction. Coll Relat Res. 1988;8(5):433–441. doi: https://doi.org/10.1016/S0174-173X(88)80016-5
- Piattelli A, Scarano A, Corigliano M, et al. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. Biomaterials. 1996;17(11):1127–1231. doi: https://doi.org/10.1016/0142-9612(96)85915-1
- Lee DW, Koo KT, Seol YJ, et al. Bone regeneration effects of human allogenous bone substitutes: a preliminary study. J Periodontal Implant Sci. 2010;40(3):132–138. doi: https://doi.org/10.5051/jpis.2010.40.3.132
- Yang S, Lan L, Miron RJ, et al. Variability in Particle Degradation of Four Commonly Employed Dental Bone Grafts. Clin Implant Dent Relat Res. 2015;17(5):996–1003. doi: https://doi.org/10.1111/cid.12196
- Landesman R, Reddi AH. In vivo analysis of the half-life of the osteoinductive potential of demineralized bone matrix using diffusion chambers. Calcif Tissue Int. 1989;45(6):348–353. doi: https://doi.org/10.1007/BF02556005
- Thrailkill K, Cockrell G, Simpson P, et al. Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and plasma specimens. Clin Chem Lab Med. 2006;44(4):503–504. doi: https://doi.org/10.1515/CCLM.2006.090
- Wood RA, Mealey BL. Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. J Periodontol. 2012;83(3):329–336. doi: https://doi.org/10.1902/jop.2011.110270
- Stumbras A, Kuliesius P, Januzis G, et al. Alveolar Ridge Preservation after Tooth Extraction Using Different Bone Graft Materials and Autologous Platelet Concentrates: a Systematic Review. J Oral Maxillofac Res. 2019;10(1):e2. doi: https://doi.org/10.5037/jomr.2019.10102
- Patel A, Greenwell H, Hill M, et al. Ridge Augmentation Comparing an Allograft Plus Autogenous Bone Chips to an Osteoinductive Demineralized Bone Matrix: A Clinical and Histologic Study in Humans. Implant Dent. 2019;28(6):613–620. doi: https://doi.org/10.1097/ID.0000000000000925
- Anavi Lev K, Chaushu L, Schwarz F, et al. Bone-implant-contact and new formation around implants placed in FDB blocks compared to placement at the adjunction of particulate FDB. Clin Implant Dent Relat Res. 202;22(1):21–28. doi: https://doi.org/10.1111/cid.12856
- Mattioli-Belmonte M, Montemurro F, Licini C, et al. Cell-Free Demineralized Bone Matrix for Mesenchymal Stem Cells Survival and Colonization. Materials (Basel). 2019;12(9):1360. doi: https://doi.org/10.3390/ma12091360
- Reynolds MA, Bowers GM. Fate of demineralized freeze-dried bone allografts in human intrabony defects. J Periodontol. 1996;67(2):150–157. doi: https://doi.org/10.1902/jop.1996.67.2.150
- Zhang H, Yang L, Yang XG, et al. Demineralized Bone Matrix Carriers and their Clinical Applications: An Overview. Orthop Surg. 2019;11(5):725–737. doi: https://doi.org/10.1111/os.12509
- Cheng TL, Leblanc E, Kalinina A, et al. A Bioactive Coating Enhances Bone Allografts in Rat Models of Formation and Critical Defect Repair. J Orthop Res. 2019;37(11):2278–2286. doi: https://doi.org/10.1002/jor.24409
- Obregon-Miano F, Fathi A, Rathsam C, et al. Injectable porcine bone demineralized and digested extracellular matrix-PEGDA hydrogel blend for regeneration. J Mater Sci Mater Med. 2020;31(2):21. doi: https://doi.org/10.1007/s10856-019-6354-3
- Kim S, Fan J, Lee CS, et al. Heparinized chitosan stabilizes the bioactivity of BMP-2 and potentiates the osteogenic efficacy of demineralized bone matrix. J Biol Eng. 2020;14:6. doi: https://doi.org/10.1186/s13036-020-0231-y
- Литвинов Ю.Ю. Получение костных имплантатов и имплантационных препаратов с антимикробными свойствами на основе стерильного деминерализованного костного матрикса // Вопросы биологической, медицинской и фармацевтической химии. — 2019. — Т. 22. — № 3. — С. 21–30. [Litvinov YuYu. Poluchenie kostnyh implantatov i implantacionnyh preparatov s antimikrobnymi svojstvami na osnove steril’nogo demineralizovannogo kostnogo matriksa. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2019;22(3):21–30. (In Russ.)] doi: https://doi.org/10.29296/25877313-2019-03-04
- Simonffy L, Minya F, Trimmel B, et al. Albumin-Impregnated Allograft Filling of Surgical Extraction Sockets Achieves Better BoneRemodeling Than Filling with Either Blood Clot or Bovine Xenograft. Int J Oral Maxillofac Implants. 2020;35(2):297–304. doi: https://doi.org/10.11607/jomi.7554
- Sethi AK, Kar IB, Mohanty T, et al. Use of plasma-enriched demineralized freeze-dried bone matrix in postsurgical jaw defects. Natl J Maxillofac Surg. 2018;9(2):174–183. doi: https://doi.org/10.4103/njms.NJMS_33_18
- Gurinsky BS, Mills MP, Mellonig JT Clinical evaluation of demineralized freeze-dried bone allograft and enamel matrix derivative versus enamel derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol. 2004;75(10):1309–1318. doi: https://doi.org/10.1902/jop.2004.75.10.1309
- Рагинов И.С., Егоров В.И., Валиуллин Л.Р., и др. Влияние производных пиримидина на регенерацию костной ткани // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 161–162. [Raginov IS, Egorov VI, Valiullin LR, i dr. Vlijanie proizvodnyh pirimidina na regeneraciju kostnoj tkani. Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’, 2017. S. 161–162. (In Russ.)]
- Bae EB, Park KH, Shim JH, et al. Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Regeneration. Biomed Res Int. 2018;2018:2876135. doi: https://doi.org/10.1155/2018/2876135
- Liang F, Yen SL, Imahiyerobo T, et al. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/ Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction. Plast Reconstr Surg. 2017;140(4):767–774. doi: https://doi.org/10.1097/PRS.0000000000003686
- Ryabov A, Likishvili M, Yurasova J, et al. Local Application of Bisphosphonates: A Literature Review. Tissue Science & Engineering. 2016;7:2. doi: https://doi.org/10.4172/2157-7552.1000172
- Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454–464. doi: https://doi.org/10.2106/00004623-200203000-00020
- Лекишвили М.В., Рябов А.Ю., Панкратов А.С., и др. Использование частично деминерализованного аллогенного имплантата свода черепа для возмещения дефектов костей средней и верхней зон лица // Голова и шея (Head & Neck). — 2018. — № 1. — С. 29–34. [Lekishvili MV, Rjabov AJu, Pankratov AS, i dr. Ispol’zovanie chastichno demineralizovannogo allogennogo implantata svoda cherepa dlja vozmeshhenija defektov kostej srednej i verhnej zon lica. Golova i sheja (Head & Neck). 2018;1:29–34. (In Russ.)]
- Cavallo M, Maglio M, Parrilli A, et al. Vascular Supply and BMC for the Improvement of Allograft in Bone Defects: A Comparative In Vivo Study. J Surg Res. 2020;252:1–8. doi: https://doi.org/10.1016/j.jss.2020.02.015
- Li Q, Zhang W, Zhou G, et al. Demineralized bone matrix-based microcarrier scaffold favors vascularized large boneregeneration in vivo in a rat model. J Biomater Appl. 2018;33(2):182–195. doi: https://doi.org/10.1177/088532821878437
- Xie H, Wang Zh, Zhang L, et al. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities. Sci Rep. 2017;7:45622 doi: https://doi.org/10.1038/srep45622
- Al-Moraissi EA, Alkhutari AS, Abotaleb B, et al. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int J Oral Maxillofac Surg. 2020;49(1):107–120. doi: https://doi.org/10.1016/j.ijom.2019.05.004
