Changes in sagittal vertebral–pelvic ratios in children with a high position of the large trochanter after surgical treatment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Alteration in the anatomical shape and structure of the proximal femur is a common orthopedic problem in children. In most cases, this is accompanied by a high position of the large trochanter, which leads not only to the development of extraarticular impingement syndrome and the progression of coxarthrosis, but also to impaired vertebral–pelvic relations.

AIM: To evaluate the effect of the transposition of the large trochanter in children on changes in the radiological parameters of sagittal vertebral–pelvic ratios.

MATERIALS AND METHODS: The study included 20 patients (20 hip joints) aged 9–15 years with deformity of the proximal femur, which was accompanied by a high position of the large trochanter. The patients underwent clinical and X-ray examination before and after surgical treatment, i.e., transposition of the large trochanter according to original methods. The pelvic angle, lumbar lordosis, thoracic kyphosis, pelvic deviation angle, sacral tilt, and sagittal vertical axis (SVA) were evaluated. The obtained data were analyzed statistically.

RESULTS: Excessive pelvic anteversion and vertical posture of the hyperlordotic type are characteristics of the patients analyzed. These signs were manifested as a significant increase in global lumbar lordosis and the angle of inclination of the sacrum and a decrease in the angle of inclination of the pelvis, in combination with a negative imbalance in SVA. The surgery made it possible to normalize the articulotrochanteric distance index and increase the angle of inclination of the pelvis while reducing the sacral slope, which improved global lumbar lordosis.

CONCLUSIONS: After the surgical intervention, in addition to restoring normal ratios in the hip joint and eliminating the extraarticular femoroacetabular impingement syndrome, the hyperlordotic type of vertical posture transformed toward the normal one in accordance with the classification of R. Rousully, which resulted in the prevention of the development of degenerative and dystrophic changes in the lumbar spine.

About the authors

Ivan Yu. Pozdnikin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: pozdnikin@gmail.com
ORCID iD: 0000-0002-7026-1586
SPIN-code: 3744-8613

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Pavel I. Bortulev

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: pavel.bortulev@yandex.ru
ORCID iD: 0000-0003-4931-2817
SPIN-code: 9903-6861
Scopus Author ID: 57193258940

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Sergei V. Vissarionov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: vissarionovs@gmail.com
ORCID iD: 0000-0003-4235-5048
SPIN-code: 7125-4930
Scopus Author ID: 6504128319
ResearcherId: P-8596-2015

MD, PhD, Dr. Sci. (Med.), Professor, Corresponding Member of RAS

Russian Federation, Saint Petersburg

Dmitriy B. Barsukov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: dbbarsukov@gmail.com
ORCID iD: 0000-0002-9084-5634
SPIN-code: 2454-6548

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Tamila V. Baskaeva

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: tamila-baskaeva@mail.ru
ORCID iD: 0000-0001-9865-2434
SPIN-code: 5487-4230

MD, orthopedic and trauma surgeon

Russian Federation, Saint Petersburg

References

  1. Schneidmueller D, Carstens C, Thomsen M. Surgical treatment of overgrowth of the greater trochanter in children and adolescents. J Pediatr Orthop. 2006;26(4):486–490. doi: 10.1097/01.bpo.0000226281.01202.94
  2. De SA D, Alradwan H, Cargnelli S, et al. Extra-articular hip impingement: a systematic review examining operative treatment of psoas, subspine, ischiofemoral, and greater trochanteric/pelvic impingement. Arthroscopy. 2014;30(8):1026–1041. doi: 10.1016/j.arthro.2014.02.042
  3. Bardakos NV. Hip impingement: beyond femoroacetabular. J Hip Preserv Surg. 2015;2(3):206–223. doi: 10.1093/jhps/hnv049
  4. Hatem M, Canavan KE, Martin RL, et al. Usefulness of magnetic resonance imaging to diagnose greater trochanteric-ischial impingement. Proc (Bayl Univ Med Cent). 2021;34(4):460–463. doi: 10.1080/08998280.2021.1897352
  5. Kivlan BR, Martin RL, Martin HD. Defining the greater trochanter-ischial space: a potential source of extra-articular impingement in the posterior hip region. J Hip Preserv Surg. 2016;3(4):352–357. doi: 10.1093/jhps/hnw017
  6. Segal NA, Felson DT, Torner JC, et al; Multicenter Osteoarthritis Study Group. Greater trochanteric pain syndrome: epidemiology and associated factors. Arch Phys Med Rehabil. 2007;88(8):988–992. doi: 10.1016/j.apmr.2007.04.014
  7. Sokolovskii OA, Koval’chuk OV, Sokolovskii AM, et al. Formirovanie deformatsii proksimal’nogo otdela bedra posle avaskulyarnogo nekroza golovki u detei. Novosti khirurgii. 2009;17(4):78–91. (In Russ.)
  8. Krasnov AI. Mnogoploskostnye deformatsii proksimal’nogo otdela bedrennoi kosti u detei i podrostkov posle konservativnogo lecheniya vrozhdennogo vyvikha bedra (diagnostika, lechenie). Travmatologiya i ortopediya Rossii. 2002;(3):80–83. (In Russ.)
  9. Roussouly P, Pinheiro-Franco JL. Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J. 2011;20(5):609–618. doi: 10.1007/s00586-011-1928-x
  10. Bortulev PI, Vissarionov SV, Baskov VE, et al. Clinical and roent-genological criteria of spine-pelvis ratios in children with dysplas-tic femur subluxation. Traumatology and Orthopedics of Russia. 2018;24(3):74–82. (In Russ.) doi: 10.21823/2311-2905-2018-24-3-74-82
  11. Menezes CM, Lacerda GC, Lamarca S. Sagittal alignment concepts and spinopelvic parameters. Rev Bras Ortop (Sao Paulo). 2022;58(1):1–8. doi: 10.1055/s-0042-1742602
  12. Zhang G, Li M, Qian H, et al. Coronal and sagittal spinopelvic alignment in the patients with unilateral developmental dysplasia of the hip: a prospective study. Eur J Med Res. 2022;27(1):160. doi: 10.1186/s40001-022-00786-w
  13. Schenk P, Jacobi A, Graebsch C, et al. Impact of spino-pelvic parameters on the prediction of lumbar and thoraco-lumbar segment angles in the supine position. J Pers Med. 2022;12(12):2081. doi: 10.3390/jpm12122081
  14. Miura T, Miyakoshi N, Saito K, et al. Association between global sagittal malalignment and increasing hip joint contact force, analyzed by a novel musculoskeletal modeling system. PLoS One. 2021;16(10). doi: 10.1371/journal.pone.0259049
  15. McCarthy JJ, Weiner DS. Greater trochanteric epiphysiodesis. Int Orthop. 2008;32(4):531–534. doi: 10.1007/s00264-007-0346-5
  16. Patent RF na izobretenie No. 2019134765 / 12.10.2020. Pozdnikin IYu, Barsukov DB, Bortulev PI. Sposob khirurgicheskogo lecheniya detei s vysokim polozheniem bol’shogo vertela. (In Russ.)
  17. Patent RF na izobretenie No. 2021107802 / 03.08.2022. Bortulev PI, Vissarionov SV, Poznovich MS., et al. Ustroistvo dlya opredeleniya urovnya osteotomii i transpozitsii bol’shogo vertela pri ego gipertrofii. (In Russ.)
  18. Kelikian AS, Tachdjian MO, Askew MJ, et al. Greater trochanteric advancement of the proximal femur: a clinical and biomechanical study. Hip. 1983:77–105.
  19. Hesarikia H., Rahimnia A. Differences between male and female sagittal spinopelvic parameters and alignment in asymptomatic pediatric and young adults. Minerva Ortop e Traumatologica 2018;69(2):44–48. doi: 10.23736/S0394-3410.18.03867-5
  20. Bombelli R, Santore RF, Poss R. Mechanics of the normal and osteoarthritic hip. A new perspective. Clin Orthop. 1984;182:69–78.
  21. Bortulev PI, Vissarionov SV, Baskov VE, et al. Otsenka sostoyaniya pozvonochno-tazovykh sootnoshenii u detei s dvustoronnim vysokim stoyaniem bol’’shogo vertela. Sovremennye problemy nauki i obrazovaniya. 2020;(1):66. (In Russ.)
  22. Bortulev PI, Vissarionov SV, Barsukov DB, et al. Evaluation of radiological parameters of the spino-pelvic complex in children with hip subluxation in Legg-Calve-Perthes disease. Traumatology and Orthopedics of Russia. 2021;27(3):19–28. (In Russ.) doi: 10.21823/2311-2905-2021-27-3-19-28
  23. Barsukov DB, Bortulev PI, Vissarionov SV, et al. Evaluation of radiological indices of the spine and pelvis ratios in children with a severe form of slipped capital femoral epiphysis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2022;10(4):365–374. (In Russ.) doi: 10.17816/PTORS111772
  24. Bortulev PI, Vissarionov SV, Baskov VE, et al. The influence of triple pelvic osteotomy on the spine-pelvis ratios in children with dysplastic subluxation of the hip. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019;7(2):5–16. (In Russ.) doi: 10.17816/PTORS725-16
  25. Alvandi BA, Dayton SR, Hartwell MJ, et al. Outcomes in pediatric hip FAI surgery: a scoping review. Curr Rev Musculoskelet Med. 2022;15(5):362–368. doi: 10.1007/s12178-022-09771-6
  26. StatPearls [Internet]. O’Rourke RJ, El Bitar Y. Femoroacetabular Impingement. 2022 [cited 2023 Jun 23]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547699/
  27. Savage TN, Saxby DJ, Lloyd DG, et al. Hip contact force magnitude and regional loading patterns are altered in those with femoroacetabular impingement syndrome. Med Sci Sports Exerc. 2022;54(11):1831–1841. doi: 10.1249/MSS.0000000000002971
  28. Pascual-Garrido C, Li DJ, Grammatopoulos G, et al; ANCHOR Group. The pattern of acetabular cartilage wear is hip morphology-dependent and patient demographic-dependen. Clin Orthop Relat Res. 2019;477(5):1021–1033. doi: 10.1097/CORR.0000000000000649
  29. Samaan MA, Schwaiger BJ, Gallo MC, et al. Joint loading in the sagittal plane during gait is associated with hip joint abnormalities in patients with femoroacetabular impingement. Am J Sports Med. 2017;45(4):810–818. doi: 10.1177/0363546516677727
  30. Ryan MK, Youm T, Vigdorchik JM. Beyond the scope open treatment of femoroacetabular impingement. Bull Hosp Jt Dis. 2018;76(1):47–54.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme for calculating the relationship between the femoral head and the greater trochanter in the frontal plane (ATD indicator) (according to McCarthy J.J., Weiner D.S., 2008, as amended). In this case, the indicator takes negative values since the apex of the greater trochanter is located above the upper pole of the head [15]

Download (91KB)
3. Fig. 2. An example of calculating pelvivertebral relationships on a lateral panoramic radiograph of the spine, including the hip joints, in a patient after surgical treatment. The explanations are presented in the text

Download (143KB)
4. Fig. 3. Scheme of the reconstructed hip joint and transposition of the greater trochanter according to RF patent No. 2734054: (a) hip joint (front view); (b) proximal femur (posterior view); (c) proximal femur (top view); (d) proximal femur after surgery (front view). (1) femoral head; (2) greater trochanter; (3) lesser trochanter; (4) osteotomy line of the greater trochanter; (5) line of modeling resection of the neck, base of the greater and resection of the lesser trochanter, posterior view; (6) line of modeling resection of the neck and base of the greater trochanter, front view; (7) cortical screws fixing the greater trochanter

Download (103KB)
5. Fig. 4. Correlations based on the main indicators of sagittal pelvivertebral relationships and X-ray anatomical position of the greater trochanter in patients after surgical treatment. Explanations are presented in the text

Download (92KB)
6. Fig. 5. Results of regression analysis between indicators of sagittal balance and X-ray anatomical position of the greater trochanter: (a) between PI and SS; (b) between GLL and SS; (c) between PI and ATD; (d) between SS and ATD. PI, pelvic incidence; SS, sacral slope; GLL, global lumbar lordosis; ATD, articulo-trochanteric distance

Download (313KB)

Copyright (c) 2023 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».