Influence of increased amounts of the CHD1 protein on salivary gland secretion genes expression in drosophila salivary glands

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The genetic material of eukaryotes exists in the nucleus in the form of a nucleoprotein complex named chromatin. Realization genetic information requires chromatin remodeling mediated by ATP-dependent chromatin remodeling proteins of the SNF2 family. Evolutionarily conserved chromatin assembly and remodeling factor CHD1 is associated with the development of prostate cancer. Development of prostate cancer is promoted both by deletions and by increase in the amount of CHD1 protein in the cell.

AIM: To analyze the effect of increased expression of the CHD1 protein in a model organism — Drosophila — on the transcription of hormone – dependent tissue-specific genes in the salivary glands.

METHODS: We used a genetic model based on the overexpression of either wild-type Drosophila CHD1 protein or its catalytically inactive form in the salivary glands under the control of the GAL4-driver P{GawB}AB1. The level of gene transcription in the salivary glands was investigated by reverse transcription followed by real-time PCR.

RESULTS: We have shown that increased production of the CHD1 protein in the salivary glands leads to a disruption in the attachment of pupae to the surface. It is shown that this phenotype is caused by specific suppression of transcription of Salivary gland secretion (Sgs) genes.

CONCLUSION: A model system has been created for studying genetic effects caused by an increase in the amount of CHD1 protein in Drosophila cells. This model can be used to investigate the mechanisms of transcriptional regulation by CHD1 and its disturbance as a result of increased production of CHD1 protein.

About the authors

Anastasia V. Toroshchina

Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”

Author for correspondence.
Email: toroshchina_av@pnpi.nrcki.ru
ORCID iD: 0009-0002-5574-1108
Russian Federation, Gatchina

Aleksandr Yu. Konev

Konstantinov Petersburg Nuclear Physics Institute of National Research Centre “Kurchatov Institute”

Email: konev_ay@pnpi.nrcki.ru
ORCID iD: 0000-0003-0195-4044
SPIN-code: 8880-7387

Cand. Sci. (Biology)

Russian Federation, Gatchina

References

  1. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.doi: 10.1146/annurev.biochem.77.062706.153223
  2. Delmas V, Stokes DG, Perry RP. A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain. PNAS USA. 1993;90(6):2414–2418. doi: 10.1073/pnas.90.6.2414
  3. Kelley DE, Stokes DG, Perry RP. Original articles CHD1 interacts with SSRP1 and depends on both its chromodomain and its ATPase/helicase-like domain for proper association with chromatin. Chromosoma. 1999;108:10–25. doi: 10.1007/s004120050347
  4. Trujillo JT, Long J, Aboelnour E, et al. CHD chromatin remodeling protein diversification yields novel clades and domains absent in classic model organisms. Genome Biol Evol. 2022;14(5):evac066.doi: 10.1093/gbe/evac066
  5. Lusser A, Urwin DL, Kadonaga JT. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol. 2005;12(2):160–166. doi: 10.1038/nsmb884
  6. Konev AY, Tribus M, Sung YP, et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science. 2007;317(5841):1087–1090. doi: 10.1126/science.1145339
  7. Il’ina IuA, Konev AY. The role of aTp-dependent chromatin remodeling factors in chromatin assembly in vivo. Vavilov Journal of Genetics and Breeding. 2019;23(2):160–167. doi: 10.18699/VJ19.476 EDN: ODEJLD
  8. Schoberleitner I, Bauer I, Huang A, et al. CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Rep. 2021;37(1):109769. doi: 10.1016/j.celrep.2021.109769
  9. Fyodorov DV, Blower MD, Karpen GH, et al. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 2004;18:170–183. doi: 10.1101/gad.1139604
  10. Flury V, Reverón-Gómez N, Alcaraz N, et al. Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell. 2023 Mar;186(5):1050–1065. doi: 10.1016/j.cell.2023.01.007
  11. Stokes DG, Tartof KD, Perry RP. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. PNAS USA. 1996;93(14):7137–7142. doi: 10.1073/pnas.93.14.7137
  12. Krogan NJ, Kim M, Ahn SH, et al. RNA polymerase II elongation factors of saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol. 2002;22(20):6979–6992. doi: 10.1128/MCB.22.20.6979-6992.2002
  13. Simic R, Lindstrom DL, Tran HG. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 2003;22(8):1846–1856. doi: 10.1093/emboj/cdg179
  14. Tai HH, Geisterfer M, Bell JC,, et al. CHD1 associates with NCoR and histone deacetylase as well as with RNA splicing proteins. Biochem Biophys Res Commun. 2003;308(1):170–176. doi: 10.1016/S0006-291X(03)01354-8
  15. Sims RJ III, Millhouse S, Chen C-F, et al. Recognition of Trimethylated Histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and Pre-mRNA splicing. Mol Cell. 2007;28(4):665–676.doi: 10.1016/j.molcel.2007.11.010
  16. Lin JJ, Lehmann LW, Bonora G, et al. Mediator coordinates PIC assembly with recruitment of CHD1. Genes Dev. 2011;25(20):2198–2209. doi: 10.1101/gad.17554711
  17. Khorosjutina O, Wanrooij PH, Walfridsson J, et al. A chromatin-remodeling protein is a component of fission yeast mediator. J Biol Chem. 2010;285(39):29729–29737. doi: 10.1074/jbc.M110.153858
  18. Pointner J, Persson J, Prasad P, et al. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J. 2012;31(23):4388–4403.doi: 10.1038/emboj.2012.289
  19. Petesch SJ, Lis JT. Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell. 2008;134(1):74–84. doi: 10.1016/j.cell.2008.05.029
  20. Ehrensberger AH, Kornberg RD. Isolation of an activator-dependent, promoter-specific chromatin remodeling factor. PNAS USA. 2011;108(25):10115–10120. doi: 10.1073/pnas.1101449108
  21. Radman-Livaja M, Quan TK, Valenzuela L, et al. A key role for Chd1 in histone H3 dynamics at the 3’ ends of long genes in yeast. PLoS Genet. 2012;8(7):e1002811. doi: 10.1371/journal.pgen.1002811
  22. Skene PJ, Hernandez AE, Groudine M, Henikoff S. The nucleosomal barrier to promoter escape by RNA polymerase II is overcome by the chromatin remodeler Chd1. Elife. 2014;3(3):2042. doi: 10.7554/eLife.02042
  23. Sebald J, Morettini S, Podhraski V, et al. CHD1 Contributes to Intestinal Resistance against Infection by P. aeruginosa in Drosophila melanogaster. PLoS One. 2012;7(8):e43144. doi: 10.1371/journal.pone.0043144
  24. Mazina MYu, Kovalenko EV, Derevyanko PK, et al. One signal stimulates different transcriptional activation mechanisms. Biochim Biophys Acta — Gene Regul Mech. 2018;1861(2):178–189. doi: 10.1016/j.bbagrm.2018.01.016
  25. Grasso CS, Wu Y-M, Robinson DR, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487(7406):239–243. doi: 10.1038/nature11125
  26. Huang S, Gulzar ZG, Salari K, et al. Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness. Oncogene. 2012;31(37):4164–4170. doi: 10.1038/onc.2011.590
  27. Liu W, Lindberg J, Sui G, et al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer. Oncogene. 2012;31(35):3939–3948.doi: 10.1038/onc.2011.554
  28. Burkhardt L, Fuchs S, Krohn A, et al. CHD1 Is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer. Cancer Res. 2013;73(9):2795–2805. doi: 10.1158/0008-5472.CAN-12-1342
  29. Zhao D, Lu X, Wang G, et al. Synthetic essentiality of chromatin remodeling factor CHD1 in PTEN deficient cancer. Nature. 2017;542(7642):484–488. doi: 10.1038/nature21357
  30. Zaks L. Statistical evaluation. Moscow: Statistics; 1976. 598 p.(In Russ.)
  31. Maroni C, Stamey SC. Use of blue food to select synchoronous, late third instar larvae. Dros Inf Serv. 1983;59:142–143.
  32. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30(9):e36. doi: 10.1093/nar/30.9.e36
  33. Graveley BR, Brooks AN, Carlson JW, et al. The developmental transcriptome of Drosophila melanogaster. Nature. 2011;471(7339):473–479. doi: 10.1038/nature09715
  34. Neuman SD, Ihry RJ, Gruetzmacher KM, Bashirullah A. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila. Dev Biol. 2014;387(2):229–239.doi: 10.1016/j.ydbio.2014.01.006
  35. Zhao JC, Fong K-W, Jin H-J, et al. FOXA1 acts upstream of GATA2 and AR in hormonal regulation of gene expression. Oncogene. 2016;35(33):4335–4344. doi: 10.1038/onc.2015.496
  36. Lehmann M, Wattler F, Korge G. Two new regulatory elements controlling the Drosophila Sgs-3 gene are potential ecdysone receptor and fork head binding sites. Mech Dev. 1997;62(1):15–27.doi: 10.1016/S0925-4773(96)00644-2
  37. Mach V, Ohno K, Kokubo H, Suzuki Y. The Drosophila fork head factor directly controls larval salivary gland-specific expression of the glue protein gene Sgs3. Nucleic Acids Res. 1996;24(12):2387–2394.doi: 10.1093/nar/24.12.2387

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of increased production of constructs encoding normal (P{UAST-Сhd1(wt)) and catalytically inactive (P{UAST-Сhd1(KR)559}) forms of the CHD1 protein on the expression of tissue-specific genes of salivary glands in Drosophila. Relative expression and a 95% confidence interval are shown.

Download (112KB)
3. Fig. 2. Age-related changes in the expression of the salivary gland secretion genes Sgs4 and Sgs5 in Drosophila. Relative expression and a 95% confidence interval are shown.

Download (138KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».