Блокада GluA1-AMPA-рецепторов снижает проявление импульсивного поведения в модели игровой зависимости, влияя на внеклеточный уровень дофамина

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обоснование. Поиск новых соединений для фармакологической коррекции игровой зависимости — актуальная задача современной психонейрофармакологии. Ранее в качестве потенциальных лечебных средств против аддикции нами был предложен глутаматный GluA1-AMPA-антагонист (рецептор α-амино-3-гидрокси-5-метил-4-изоксазолпропионовой кислоты) ИЭМ-1460. Известно, что глутаматергические входы способны модулировать активность мезолимбической дофаминовой системы мозга. Можно предположить, что в основе антиаддиктивного действия ИЭМ-1460 лежит взаимодействие глутамат- и дофаминовой систем.

Цель — изучить влияние блокады GluA1-AMPA-рецепторов на проявление импульсивного поведения в модели игровой зависимости, на роль в модуляции внеклеточного уровня дофамина в прилежащем ядре, на ионные токи на изолированных нейронах.

Методы. Эксперименты проведены in vivo на крысах линии Вистар и in vitro — на изолированных нейронах Danio rerio. Исследовали действие ИЭМ-1460 (в дозах 1, 3, 10 мг/кг, внутрибрюшинно) на проявление импульсивного поведения на модели игровой зависимости в трехлучевом лабиринте и выброс дофамина в прилежащем ядре в ответ на электрическую стимуляцию вентральной области покрышки методом прижизненной циклической вольтамперометрии с быстрым сканированием. На изолированных нейронах рыб Danio rerio методом пэтч-кламп исследовали влияние ИЭМ-1460 на ионные токи, индуцированные аппликацией агониста АМРА-рецепторов — каиновой кислоты.

Результаты. ИЭМ-1460 в дозе 1 мг/кг внутрибрюшинно наиболее эффективно снижал проявление импульсивного поведения на модели игровой зависимости и увеличивал выброс дофамина в NAc в ответ на электрическую стимуляцию VTA. In vitro ИЭМ-1460 оказывал выраженное блокирующее действие на АМРА-глутаматные рецепторы.

Заключение. Селективная блокада GluA1-AMPA-рецепторов с помощью ИЭМ-1460 снижала проявление импульсивного поведения в модели игровой зависимости, увеличивала внеклеточный уровень дофамина в прилежащем ядре в методе циклической вольтамперометрии с быстрым сканированием.

Об авторах

Андрей Андреевич Лебедев

Институт экспериментальной медицины; Санкт-Петербургский государственный институт психологии и социальной работы

Email: aalebedev-iem@rambler.ru
ORCID iD: 0000-0003-0297-0425
SPIN-код: 4998-5204

д-р биол. наук, профессор

Россия, Санкт-Петербург; Санкт-Петербург

Александр Михайлович Потапкин

Институт экспериментальной медицины; Санкт-Петербургский государственный институт психологии и социальной работы

Автор, ответственный за переписку.
Email: potanin.alexander@yandex.ru
ORCID iD: 0009-0009-6034-364X

канд. мед. наук

Россия, Санкт-Петербург; Санкт-Петербург

Сарнг Саналович Пюрвеев

Институт экспериментальной медицины

Email: dr.purveev@gmail.com
ORCID iD: 0000-0002-4467-2269
SPIN-код: 5915-9767

канд. мед. наук

Россия, Санкт-Петербург

Вадим Викторович Сизов

Институт экспериментальной медицины

Email: sizoff@list.ru
ORCID iD: 0009-0001-6198-1821
SPIN-код: 1397-7380
Россия, Санкт-Петербург

Валерий Евгеньевич Гмиро

Институт экспериментальной медицины

Email: g2119@online.ru
SPIN-код: 1526-2154

канд. хим. наук

Россия, Санкт-Петербург

Евгений Рудольфович Бычков

Институт экспериментальной медицины

Email: bychkov@mail.ru
ORCID iD: 0000-0002-8911-6805
SPIN-код: 9408-0799

д-р мед. наук

Россия, Санкт-Петербург

Валерий Николаевич Мухин

Институт экспериментальной медицины

Email: Valery.Mukhin@gmail.com
ORCID iD: 0000-0003-0999-6847
SPIN-код: 3655-9126

канд. мед. наук

Россия, Санкт-Петербург

Мария Александровна Нетеса

Институт экспериментальной медицины

Email: aintula@gmail.com
ORCID iD: 0009-0002-7353-1745
SPIN-код: 8429-6486
Россия, Санкт-Петербург

Дмитрий Евгеньевич Анисимов

Институт экспериментальной медицины

Email: anisimov_bb@mail.ru
Россия, Санкт-Петербург

Андрей Всеволодович Дробленков

Институт экспериментальной медицины

Email: droblenkov_a@mail.ru
ORCID iD: 0000-0001-5155-1484

д-р мед. наук, профессор

Россия, Санкт-Петербург

Петр Дмитриевич Шабанов

Институт экспериментальной медицины

Email: pdshabanov@mail.ru
ORCID iD: 0000-0003-1464-1127
SPIN-код: 8974-7477

д-р мед. наук, профессор

Россия, Санкт-Петербург

Список литературы

  1. Shabanov PD, Yakushina ND, Lebedev AA. Pharmacology of peptide mechanisms of gambling behavior in rats. Journal of addiction problems. 2020;(4):24–44. doi: 10.47877/0234-0623_2020_4_24 EDN: JBUQJN
  2. Ioannidis K, Hook R, Wickham K, et al. Impulsivity in gambling disorder and problem gambling: a meta-analysis. Neuropsychopharmacology. 2019;44:1354–1361. doi: 10.1038/s41386-019-0393-9
  3. Aram S, Levy L, Pate JB, et al. The Iowa gambling task: A review of the historical evolution, scientific basis, and use in functional neuroimaging. SAGE Open. 2019;9(3):1–12. doi: 10.1177/2158244019856911
  4. Pyurveev SS, Nekrasov MS, Dedanishvili NS, et al. Chronic mental stress in early ontogenesis increased risks of development for chemical and non-chemical forms of addiction. Reviews on Clinical Pharmacology and Drug Therapy. 2023;21(1):69–78. doi: 10.17816/RCF21169-78 EDN: GJBUYN
  5. Sekste EA, Lebedev AA, Bychkov ER, et al. Increase in the level of orexin receptor 1 (OX1R) mRNA in the brain structures of rats prone to impulsivity in behavior. Biochemistry (Moscow). 2021;67(5):411–417. doi: 10.18097/PBMC20216705411 EDN: ZVENEQ
  6. Lebedev AA, Karpova IV, Bychkov ER, et al. The ghrelin antagonist [D-LYS3]-GHRP-6 decreases signs of risk behavior in a model of gambling addiction in rats by altering dopamine and serotonin metabolism. Neuroscience and Behavioral Physiology. 2022;52(3):415–421. doi: 10.1007/s11055-022-01255-x EDN: LZTUKA
  7. Gruzdeva VA, Sharkova AV, Zaichenko MI, Grigoryan GA. The influence of early pro inflammatory stress on manifestations of impulsive behavior in rats of different age and sex. I.P. Pavlov Journal of Higher Nervous Activity. 2021;71(1):114–125. doi: 10.31857/S0044467721010056 EDN: MKHQSI
  8. Pavlova IV, Zaichenko MI, Merzhanova GK, Grigoryan GA. Conditioned reflex reac-tions in high-impulsivity rats are weaker than those in low-impulsivity animals. Neuroscience and Behavioral Physiology. 2020;50(5):567–574. doi: 10.1007/s11055-020-00937-8
  9. Zaichenko MI, Merzhanova GK, Grigoryan GA. Ability to discriminate visual signals in the morris water maze in high- and low-impulsivity rats. Neuroscience and Behavioral Physiology. 2020;70(2):231–242. doi: 10.31857/S0044467720020136
  10. Weidacker K, Johnston SJ, Mullins PG, et al. Impulsive decision-making and gambling severity: The influence of γ-amino-butyric acid (GABA) and glutamate-glutamine (Glx). Eur Neuropsychopharmacol. 2020;32:36–46. doi: 10.1016/j.euroneuro.2019.12.110
  11. Fischer KD, Knackstedt LA, Rosenberg PLA. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem Int. 2021;144:104896. doi: 10.1016/j.neuint.2020.104896
  12. Bimpisidis Z, Wallén-Mackenzie Å. Neurocircuitry of reward and addiction: potential impact of dopamine–glutamate co-release as future target in substance use disorder. J Clin Med. 2019;8(11):1887. doi: 10.3390/jcm8111887
  13. Christie MJ, Summers RJ, Stephenson JA, et al. Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience. 1987;22(2):425–439. doi: 10.1016/0306-4522(87)90345-9
  14. Cai J, Tong Q. Anatomy and function of ventral tegmental area glutamate neurons. Front Neural Circuits. 2022;16:867053. doi: 10.3389/fncir.2022.867053
  15. Bouchard AE, Dickler M, Renauld E, et al. Brain morphometry in adults with gambling disorder. J Psychiatr Res. 2021;141;66–73. doi: 10.1016/j.jpsychires.2021.06.032
  16. Blaha CD, Yang CR, Floresco SB, et al. Stimulation of the ventral subiculum of the hippocampus evokes glutamate receptor-mediated changes in dopamine efflux in the rat nucleus accumbens. Eur J Neurosci. 1997;9(5):902–911. doi: 10.1111/j.1460-9568.1997.tb01441.x
  17. Tzschentke TM, Schmidt WJ. Functional relationship among medial prefrontal cortex, nucleus accumbens, and ventral tegmental area in locomotion and reward. Crit Rev Neurobiol. 2000;14(2):131–142. doi: 10.1615/CritRevNeurobiol.v14.i2.20
  18. Youngren KD, Daly DA, Moghaddam B. Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J Pharmacol Exp Ther. 1993;264(1):289–293. doi: 10.1016/S0022-3565(25)10266-8
  19. Morrell CN, Sun H, Ikeda M, et al. Glutamate mediates platelet activation through the AMPA-receptor. J Exp Med. 2008; 205(3):575–584. doi: 10.1084/jem.20071474
  20. van Huijstee AN, Mansvelder HD. Glutamatergic synaptic plasticity in the mesocortico-limbic system in addiction. Front Cell Neurosci. 2015;8:466. doi: 10.3389/fncel.2014.00466
  21. Vekovischeva OY, Zamanillo D, Echenko O, et al. Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. J Neurosci. 2001;21(12):4451–4459. doi: 10.1523/JNEUROSCI.21-12-04451.2001
  22. Rasmussen K. The role of the locus coeruleus and N-methyl-D-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal. Neuropsychopharmacology. 1995;13(4):295–300. doi: 10.1016/0893-133X(95)00082-O
  23. Bespalov AYu, Zvartau EE. Neuropsychopharmacology of NMDA receptor antagonists. Saint Petersburg: Nevsky Dialect; 2000. 297 p. (In Russ.)
  24. Potapkin AM, Lebedev AA, Gmiro VE, et al. Study of reinforcing properties of new antagonists of glutamate receptors. Reviews on Clinical Pharmacology and Drug Therapy. 2017;15(1):41–47. doi: 10.17816/RCF15141-47 EDN: YJMXLP
  25. Ducrot C, Fortier E, Bouchard C, Rompre P-P. Opposite modulation of brain stimulation reward by NMDA and AMPA receptors in the ventral tegmental area. Front Syst Neurosci. 2013;7:57. doi: 10.3389/fnsys.2013.00057
  26. Potapkin AM, Gmiro VE., Shabanov PD. Selective antagonists of calcium-permeable GluA1 AMPA-receptors as potential antiaddictive agents. Psychopharmacology and biological narcology. 2022; 13(3):7–30. doi: 10.17816/phbn267069 EDN: YNKAYQ
  27. Hansen KB, Wollmuth LP, Bowie D, et al. Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev. 2021;73(4):298–487. doi: 10.1124/pharmrev.120.000131
  28. Yang W, Ma L, Hai D-M, et al. Hippocampal proteomic analysis in male mice following aggressive behavior induced by long-term administration of perampanel. ACS Omega. 2022;7(23):19388–19400. doi: 10.1021/acsomega.2c01008
  29. Dannon PN, Lowengrub K, Gonopolski Y, et al. Topiramate versus fluvoxamine in the treatment of pathological gambling: A randomized, blind-rater comparison study. Clin Neuropharmacol. 2005;28(1):6–10. doi: 10.1097/01.wnf.0000152623.46474.07
  30. Black D, McNeilly D, Burke WJ, et al. An open-label trial of acamprosate in the treatment of pathological gambling. Ann Clin Psychiatry. 2011;23(4):250–256.
  31. Magazanik LG, Buldakova SL, Samoilova MV, et al. Block of open channels of recombinant AMPA receptors and native AMPA/kainate receptors by adamantane derivatives. J Physiol. 1997; 505(3):655–663. doi: 10.1111/j.1469-7793.1997.655ba.x
  32. Gmiro VE, Zhigulin AS. Search for selective GluA1 AMPA receptor antagonists in a series of dicationic compounds. Pharmaceutical Chemistry Journal. 2022;56(3):8–14. doi: 10.30906/0023-1134-2022-56-3-8-14 EDN: ZSRCMD
  33. Karasawa J-i, Kotani M, Kambe D, Chaki S. AMPA receptor mediates mGlu 2/3 receptor antagonist-induced dopamine release in the rat nucleus accumbens shell. Neurochem Int. 2010;57(5):615–619. doi: 10.1016/j.neuint.2010.07.011
  34. Hultman C, Tjernstr N, Vadlin S, et al. Exploring decision-making strategies in the Iowa gambling task and rat gambling task. Front Behav Neurosci. 2022;16:964348. doi: 10.3389/fnbeh.2022.964348
  35. Lebedev AA, Purveev SS, Sexte EA, et al. Studying the involvement of ghrelin in the mechanism of gambling addiction in rats after exposure to psychogenic stressors in early ontogenesis. Russian Journal of Physiology. 2023;109(8):1080–1093. doi: 10.31857/s086981392308006x EDN: FCMBCJ
  36. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 6th ed. San Diego: Elsevier Academic Press; 2005. 207 p.
  37. Pyurveev SS, Sizov VV, Lebedev AA, et al. Registration of changes in the level of extracellular dopamine in the nucleus accumbens by fast-scan cyclic voltammetry during stimulation of the zone of the ventral tegmentаl area, which also caused a self-stimulation. Russian journal of physiology. 2022;108(10):1316–1328. doi: 10.31857/S0869813922100107 EDN: HVMITZ
  38. Sizov VV, Lebedev AA, Pyurveev SS, et al. Method for training electrical self-stimulation in response to head elevation in rats by a telemetry system that registers extracellular dopamine levels. Neuroscience and Behavioral Physiology. 2023;73(4):563–576. doi: 10.31857/s0044467723040093 EDN: WHOHOT
  39. Castagnola E, Robbins EM, Woeppel K, et al. Real-time fast scan cyclic voltammetry detection and quantification of exogenously administered melatonin in mice. Front Bioeng Biotechnol. 2020;8:602216. doi: 10.3389/fbioe.2020.602216
  40. Mena S, Visentin M, Witt CE, et al. User-friendly experimental and analysis strategies for fast voltammetry: Next generation FSCAV with Artificial Neural Networks. ACS Meas Sci Au. 2022;2(3):241–250. doi: 10.1021/acsmeasuresciau.1c00060
  41. Zoodsma JD, Chan K, Bhandiwad AA, et al. A model to study NMDA receptors in early nervous system development. J Neurosci. 2020;40(18):3631–3645. doi: 10.1523/JNEUROSCI.3025-19.2020
  42. Kim KH, Gmiro VE, Tikhonov DB, Magazanik LG. Mechanisms of blockade of ion channels of glutamate receptors: the paradox of 9-aminoacridine. Biological membranes. 2007;24(1):97–104. (In Russ.) EDN: HYSSTX
  43. Vorobjev VS, Sharonova IN, Haas HL. A simple perfusion system for patch-clamp studies. J Neurosci Methods. 1996;68(2):303–307. doi: 10.1016/0165-0270(96)00097-0
  44. Serdyuk SE, Gmiro VE. IEM-1460 and spermine potentiate analgesic effect of fentanyl and dipyrone in rats. Russian journal of physiology. 2013;99(12):1361–1365. EDN: RPVKZL
  45. Kopach O, Krotov V, Goncharenko J, Voitenko N. Inhibition of spinal Ca(2+)-permeable AMPA receptors with dicationic compounds alleviates persistent inflammatory pain without adverse effects. Front Cell Neurosci. 2016;10:50. doi: 10.3389/fncel.2016.00050
  46. Adotevi N, Lewczuk E, Sun H, et al. AMPA receptor plasticity sustains severe, fatal status epilepticus. Ann Neurol. 2020;87(1):84–96. doi: 10.1002/ana.25635
  47. Glick SD, Maisonneuve IM, Kitchen BA, Fleck MW. Antagonism of a3b4 nicotinic receptors as a strategy to reduce opioid and stimulant self-administration. Eur J Pharmacol. 2002;438(1–2):99–105. doi: 10.1016/s0014-2999(02)01284-0
  48. Nelson ME, Wang F, Kuryatov A, et al. Functional properties of human nicotinic AChRs expressed by IMR-32 neuroblastoma cells resemble those of alpha3beta4 AChRs expressed in permanently transfected HEK cells. J Gen Physiol. 2001;118(5):563–582. doi: 10.1085/jgp.118.5.563
  49. Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Progr Brain Res. 2004;145:109–120. doi: 10.1016/S0079-6123(03)45007-3
  50. Gmiro VE, Groysman SD, Lukomskaya NYa, et al. Selective blockers of parasympathetic ganglia. Reports of the USSR Academy of Sciences. 1987;292(2):497–501. (In Russ.)
  51. Koval OM, Voitenko LP, Skok MV, et al. The beta-subunit composition of nicotinic acetylcholine receptors in the neurons of the guinea pig inferior mesenteric ganglion. Neurosci Lett. 2004;365(2):143–146. doi: 10.1016/j.neulet.2004.04.071
  52. Serdyuk SE, Gmiro VE. Blockade of the α3β4 N-cholinoreceptors and GLuR1 AMPA receptors eliminates clonic-tonic nicotinic and kainate seizures. Experimental and clinical pharmacology. 2008;71(4):14–17. doi: 10.30906/0869-2092-2008-71-4-14-17 EDN: TNKEAD
  53. Skatchkov SN, Buldakova SL, Veh RW, et al. AMPAR channel block and potentiation by spermine and IEM 1460. Abstracts of Society for Neuroscience. 2002.
  54. Lingford-Hughes A, Watson B, Kalk N, Reid A. Neuropharmacology of addiction and how it informs treatment. Br Med Bull. 2010;96(1):93–110. doi: 10.1093/bmb/ldq032
  55. Scofield MD, Heinsbroek JA, Gipson CD, et al. The nucleus accumbens: mechanisms of addiction across drug classes reflect the importance of glutamate homeostasis. Pharmacol Rev. 2016;68(3):816–871. doi: 10.1124/pr.116.012484
  56. Luo JY, Ren YH, Zhu R, et al. The effect of l-tetrahydropalmatine on cocaine induced conditioned place preference. Chinese J Drug Depend. 2003;12:177–179.
  57. Xi Z-X, Yang Z, Li S-J, et al. Levo-tetrahydropalmatine inhibits cocaine’s rewarding effects: Experiments with self-administration and brain-stimulation reward in rats. Neuropharmacology. 2007;53(6):771–782. doi: 10.1016/j.neuropharm.2007.08.004
  58. Koob GF, Volkow ND. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry. 2016;3(8):760–773. doi: 10.1016/S2215-0366(16)00104-8
  59. Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev. 2010;35(2):185–211. doi: 10.1016/j.neubiorev.2010.01.013
  60. Volkow ND, Michaelides M, Baler R. The neuroscience of drug reward and addiction. Physiol Rev. 2019;99(4):2115–2140. doi: 10.1152/physrev.00014.2018
  61. Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;6493):327–337. doi: 10.1001/archpsyc.64.3.327
  62. Grunze H, Csehi R, Born C, Barabássy Á. Reducing addiction in bipolar disorder via hacking the dopaminergic system. Front Psychiatry Psychopharmacol. 2021;12:803208. doi: 10.3389/fpsyt.2021.803208
  63. Wall ME, Durand CR, Machover H, et al. Perceptions of problem gambling among methadone maintenance treatment clients and counselors. J Gambl Iss. 2018;40:45–68. doi: 10.4309/jgi.2018.40.3
  64. Panagis G, Vlachou S, Higuera-Matas A, Simon M. Editorial: neurobehavioral mechanisms of reward: theoretical and technical perspectives and their implications for psychopathology. Front Behav Neurosci. 2022;16:967922. doi: 10.3389/fnbeh.2022.967922
  65. Brusina MA, Potapkin AM, Kubarskaya LG, et al. Anticonvulsant activity of 6,7-dihydro-5H-pyrrolo[1,2-a]imidazole-2,3-dicarboxylic acid and its bis-methylamide. Pharmaceutical Chemistry Journal. 2024;58(10):25–30. doi: 10.30906/0023-1134-2024-58-10-25-31 EDN: KDUQSL
  66. Robinson DL, Venton BJ, Heien MLAV, Wightman RM. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem. 2003;49(10):1763–1773. doi: 10.1373/49.10.1763
  67. Park C, Oh Y, Shin H, et al. Fast cyclic square-wave voltammetry to enhance neurotransmitter selectivity and sensitivity. Anal Chem. 2018;90(22):13348–13355. doi: 10.1021/acs.analchem.8b02920

© Эко-Вектор, 2025

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».