Адресная доставка отечественного противоопухолевого препарата из группы азиридинтриазинов (обзор литературы)
- Авторы: Беляева О.А.1, Качанов Д.А.2, Стуков А.Н.1, Точильников Г.В.1, Павлыш А.В.2, Змитриченко Ю.Г.1, Александров В.А.1, Семиглазова Т.Ю.1, Беляев А.М.1
-
Учреждения:
- Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
- Выпуск: Том 22, № 2 (2024)
- Страницы: 131-144
- Раздел: Научные обзоры
- URL: https://bakhtiniada.ru/RCF/article/view/263137
- DOI: https://doi.org/10.17816/RCF625968
- ID: 263137
Цитировать
Аннотация
В настоящее время адресная доставка противоопухолевых лекарственных препаратов позволяет значительно увеличить эффективность терапии, уменьшить побочные эффекты системной химиотерапии и повысить качество лечения онкологических больных. Цель исследования — обобщение информации об отечественном противоопухолевом препарате 2,4-бис(1-азиридинил)-6-(2,2-диметил-5-оксиметил-1,3-диоксан-5-ил)амино-1,3,5-триазин (диоксадэт) на сегодняшний день, его наноформах, возможностях применения в клинике и основных противоопухолевых нанопрепаратах, внедренных в клиническую практику за последние годы в мире. Исследование проводилось с использованием поисково-информационных (eLibrary, PubMed, CyberLeninka, ResearchGate, Springer, Wiley Online Library, Elsevier) и библиотечных баз данных. В обзоре литературы обобщены данные по доклиническим исследованиям диоксадэта и приведена информация о разработанных его наноформах, таких как наногели, наноалмазы, наночастицы кремнезема, сополимеры с молочной и капроновой кислотами. Новые наноформы препарата открывают возможности для уменьшения его побочных эффектов и системной токсичности, а также поддержанию оптимальной терапевтической концентрации, увеличению времени циркуляции лекарственного вещества в крови и контролю его высвобождения. Возможность применения цитотоксических доз химиопрепарата является основным неоспоримым достоинством новой лекарственной наноформы. На сегодняшний день внедрены в клиническую практику около 20 противоопухолевых нанопрепаратов, и ряд нанопрепаратов проходят доклинические исследования и различные фазы клинических испытаний. Таким образом, разработка новых эффективных лекарственных наноформ диоксадэта позволяет обеспечить таргетную доставку лекарственного вещества в более высоких цитотоксических дозах к клетке-мишени, увеличить селективность действия, уменьшить токсичность цитостатика в отношении нормальных клеток.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Олеся Александровна Беляева
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Автор, ответственный за переписку.
Email: belolesya@yandex.ru
ORCID iD: 0009-0004-2201-5796
канд. биол. наук
Россия, Санкт-ПетербургДмитрий Александрович Качанов
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Email: dmitrii.kachanovv@yandex.ru
ORCID iD: 0000-0003-1528-1899
SPIN-код: 4912-7511
д-р мед. наук
Россия, Санкт-ПетербургАлександр Николаевич Стуков
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Email: stukov2008@yandex.ru
ORCID iD: 0000-0002-1741-6630
SPIN-код: 4652-8674
д-р мед. наук
Россия, Санкт-ПетербургГригорий Викторович Точильников
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Email: gr75@mail.ru
ORCID iD: 0000-0003-4232-8170
SPIN-код: 4366-6930
канд. мед. наук
Россия, Санкт-ПетербургАндрей Владиславович Павлыш
Северо-Западный государственный медицинский университет им. И.И. Мечникова
Email: andrei.pavlysh@szgmu.ru
ORCID iD: 0000-0002-7617-5822
SPIN-код: 5785-8324
д-р мед. наук, профессор
Россия, Санкт-ПетербургЮлия Геннадьевна Змитриченко
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Email: zmitrichenko@gmail.com
ORCID iD: 0000-0002-9137-9532
SPIN-код: 6122-3450
Россия, Санкт-Петербург
Валерий Анатольевич Александров
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Email: alexandrov.valeri@yandex.ru
ORCID iD: 0000-0002-0019-2685
SPIN-код: 5124-5881
д-р мед. наук, профессор
Россия, Санкт-ПетербургТатьяна Юрьевна Семиглазова
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Email: tsemiglazova@mail.ru
ORCID iD: 0000-0002-4305-6691
SPIN-код: 9773-3759
д-р мед. наук, профессор
Россия, Санкт-ПетербургАлексей Михайлович Беляев
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
Email: belolesya@yandex.ru
ORCID iD: 0000-0001-5580-4821
SPIN-код: 9445-9473
д-р мед. наук, профессор, чл.-корр. РАН
Россия, Санкт-ПетербургСписок литературы
- Orlova OL, Nikolaeva LL, Korol LA, et al. Modern onco drug for internal use. Pharmacy and Pharmacology. 2018;6(5):440–461. EDN: YNFURN doi: 10.19163/2307-9266-2018-6-5-440-461
- Gao X, Cui Y, Levenson RM, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22(8):969–976. doi: 10.1038/nbt994
- Gaucher G, Dufresne M-H, Sant VP, et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109(1–3):169–188. doi: 10.1016/j.jconrel.2005.09.034
- Borisov AE, Gershanovich ML, Zemlyanoy VP, et al. Use of dioxadet for hepatic artery chemoembolisation in primary and metastatic liver cancer. Problems in oncology. 1998;44(6):714–717. (In Russ.)
- Granov AM, Gorelov AI, Gershanovich ML, et al. Results of endovascular interventions (embolisation and chemoembolisation) in the treatment of operable and advanced renal cancer. Problems in oncology. 1998;44(6):711–714. (In Russ.)
- Sherer C, Snape TJ. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur J Med Chem. 2015;97:552–560. doi: 10.1016/j.ejmech.2014.11.007
- Kharb R. Updates on receptors targeted by heterocyclic scaffolds: New horizon in anticancer drug development. Anticancer Agents Med Chem. 2021;21(11):1338–1349. doi: 10.2174/1871520620666200619181102
- Martins P, Jesus J, Santos S, et al. Heterocyclic anticancer compounds: recent advances and the paradigm shift towards the use of nanomedicine’s toolbox. Molecules. 2015;20(9):16852–16891. doi: 10.3390/molecules200916852
- Singla P, Luxami V, Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem. 2015;102:39–57. doi: 10.1016/j.ejmech.2015.07.037
- Cascioferro S, Parrino B, Spanò V, et al. 1,3,5-Triazines: A promising scaffold for anticancer drugs development. Eur J Med Chem. 2017;142:523–549. doi: 10.1016/j.ejmech.2017.09.035
- Ivin BA, Kreis BO, Korsakov MV, et al. Results of the study of ethyleniminotriazines. Problems in oncology. 1990;36(1):6–11. EDN: XBDBJH (In Russ.)
- Gershanovich ML, Filov VA, Kotova DG, et al. Results of a co-operative clinical study of the phase II antitumour drug dioxadat. Problems in oncology. 1998;44(2):216–220. (In Russ.)
- Bespalov VG, Stukov AN, Konkov SA, et al. Antitumour activity of ethyleniminotriazine in preclinical studies. Medline Express. 2011;2(3):53–57. (In Russ.)
- Bespalov VG, Belyaeva OA, Panchenko AV, et al. Comparative study of antitumour effects of cytostatics on the model of ascites ovarian tumour. Medline Express. 2011;2(3):48–52. (In Russ.)
- Voeikov R, Abakumova T, Grinenko N, et al. Dioxadet-loaded nanogels as a potential formulation for glioblastoma treatment. J Pharm Investig. 2017;47(1):75–83. doi: 10.1007/s40005-016-0294-4
- Korsakov MV, Filov VA, Kreis BO, et al. Model selection and estimation of parameters of pharmacokinetics of dioscadetine. Pharmaceutical Chemistry Journal. 1985;19(10):1175–1179. (In Russ.)
- Stukov AN, Korsakov MV, Khrapova TN, et al. Effect of dioxadet on tumours transplanted into the brain. Problems in oncology. 1986;32(10):64–67. (In Russ.)
- Ivin BA, Kreis BO, Malyugina LL, et al. Synthesis, structure, antitumour activity and toxicity of ethyleniminotriazines in experiment and clinic. In: Drug therapy of tumours in experiment and clinic. Leningrad: Prof. N.N. Petrov Research Institute of Oncology, 1983. P. 6–59.
- Filov VA, Stukov AN, Malyugina LL, Ivin BA. Study of antitumor activity and toxicity of dioxadet. Experimental oncology. 1996;18(1):84–86. EDN: MOTFCR
- Bespalov VG, Kireeva GS, Belyaeva OA, et al. Experimental study of antitumour activity and effects on leukocyte count of intraperitoneal administration and Hyperthermic Intraperitoneal Chemoperfusion (HIPEC) with dioxadet in a rat model of ovarian cancer. J Chemother. 2016;28(3):203–209. doi: 10.1179/1973947815y.0000000040
- Borisov AE, Gershanovich ML, Zemlyanoy VP, et al. Use of dioxadet in chemoembolisation of hepatic artery in primary and metastatic liver cancer. Problems in oncology. 1998;44(6):714–717. (In Russ.)
- Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–167. doi: 10.1016/j.cell.2020.02.001
- Sanna V, Sechi M. Therapeutic potential of targeted nanoparticles and perspective on nanotherapies. ACS Med Chem Lett. 2020;11(6):1069–1073. doi: 10.1021/acsmedchemlett.0c00075.
- Raj S, Kumar D. Biochemical toxicology: Heavy metals and nanomaterials. In: Ince M, Ince OK, Ondrasek G, editors. Biochemical toxicology — heavy metals and nanomaterials. London: IntechOpen; 2020. 230 p. doi: 10.5772/intechopen.90928
- Nirmala MJ, Kizhuveetil U, Johnson A, et al. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. R Soc Chem. 2023;13(13):8606–8629. doi: 10.1039/d2ra07863e
- Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(7):1038. doi: 10.1038/s41392-017-0004-3
- Singh AK. Engineered nanoparticles: structure, properties and mechanisms of toxicity. Boston: Academic Press; 2016. 544 p. doi: 10.1016/C2013-0-18974-X
- Al-Zoubi MS, Al-Zoubi RM. Nanomedicine tactics in cancer treatment: Challenge and hope. Crit Rev Oncol Hematol. 2022;174:103677. doi: 10.1016/j.critrevonc.2022.103677
- Beltran-Gracia E, Lopez-Camacho A, Higuera-Ciapara I, et al. Nanomedicine review: clinical developments in liposomal applications. Cancer Nanotechnol. 2019;10(1):11. doi: 10.1186/s12645-019-0055-y
- Rommasi F, Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res Lett. 2021;16(1):95. doi: 10.1186/s11671-021-03553-8
- Karabasz A, Bzowska M, Szczepanowicz K. Biomedical applications of multifunctional polymeric nanocarriers: A review of current literature. Int J Neurol. 2020;15:8673–8696. doi: 10.2147/IJN.S231477
- Kedrova AG, Krasilnikov SE, Astakhov DA, Kosyy VV. Micellar paclitaxel in the treatment of patients with tumors of the female reproductive system. Tumors of female reproductive system. 2019;15(3): 37–43. EDN: QHILRK doi: 10.17650/1994-4098-2019-15-3-37-43
- Kim T-Y, Kim D-W, Chung J-Y, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–3716. doi: 10.1158/1078-0432.ccr-03-0655
- Kim SC, Kim DW, Shim YH, et al. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72(1–3):191–202. doi: 10.1016/s0168-3659(01)00275-9
- Quoc TH, Jin M. P1.01–31 Weekly regimen of PAXUS-PM, a novel cremophorfree, with carboplatin in patients with advanced non-small-cell lung cancer in Vietnam. J Thor Oncol. 2018;13(10S): 471–472. doi: 10.1016/j.jtho.2018.08.587
- aprin AD, Starinsky BB, Shakhzadova AO. Malignant neoplasms in Russia in 2021 (morbidity and mortality). Moscow: P.A. Herzen MNIOI — branch of NMC Radiology of the Ministry of Health of Russia; 2022. 252 p. (In Russ.)
- PDQ Adult Treatment Editorial Board. Ovarian, fallopian tube, and peritoneal cancer: Statistics. Available from: https://www.ncbi.nlm.nih.gov/books/NBK66007/
- Lu J, Liong M, Li Z, et al. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6(16):1794–1805. doi: 10.1002/smll.201000538.
- Bagwe RP, Hilliard LR, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir. 2006;22(9):4357–4362. doi: 10.1021/la052797j
- Lin W, Huang Y-w, Zhou X-D, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217(3):252–259. doi: 10.1016/j.taap.2006.10.004
- Berdichevsky GM, Lopatina AS. Effect of conjugates of nanodiamonds with cytostatics doxorubicin and dioxadet on the functional activity of platelets. Actual problems of biomedicine. In: Vlasov TD, editor. Proceedings of the XXVII All-Russian conferences conferences of young scientists with international participation. Saint Petersburg; 2021 March 25–26. Saint Petersburg: Pavlov University; 2021. P. 209. (In Russ.)
- Berdichevskiy GM, Vasina LV, Ageev SV, et al. A comprehensive study of biocompatibility of detonation nanodiamonds. J Mol Liq. 2021;323:115763–115777. doi: 10.1016/j.molliq.2021.115763
- Berdichevskiy GM, Vasina LV, Galkin MA, et al. Investigation of the effect of detonation nanodiamonds and their conjugates with doxorubicin and dioxadet on the mitochondrial membrane. The Bulletin of Irkutsk State University. Series Biology. Ecology. 2022;41:3–18. EDN: JYURTG doi: 10.26516/2073-3372.2022.41.3
- Berdichevsky GM. Investigation of cytotoxic properties of conjugates of nanodiamonds with antitumour drugs (doxorubicin and dioxadet). In: Matveeva IV, Abalenikhina YV, Marsyanova SA, editors. Proceedings of the All-Russian conferences with international participations: “Biochemical scientific readings in memory of academician of the Russian Academy of Sciences E.A. Stroev”. Ryazan; 2022 Jan 26–27. Ryazan; 2022. P. 102. (In Russ.)
- Fan D, Cao Y, Cao M, et al. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023;8:293. doi: 10.1038/s41392-023-01536-y
- Bronich TK. Polymeric nanogels: new biomaterials for cancer drug delivery. Bulletin of Kazan Technological University. 2014;17(3):175–178. EDN: RXMGBP (In Russ.)
- Voeikov RV, Nukolova NV, Aleksashkin AD, et al. Loading of nanogels with antitumour drugs and study of their physicochemical properties. In: Andreyev AI, Andriyanov AV, Antipova EA, editors. International youth scientific forum “Lomonosov-2014”. Moscow: MAKS Press; 2014. (In Russ.)
- Yokoyama M, Miyauchi M, Yamada N, Okano T. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adryamicin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 1990;50:1700–1703.
- Yokoyama M, Okano T, Sakurai Y, et al. Introduction of cisplatin into polymeric micelle. J Control Release. 1996;39(2–3): 351–356. doi: 10.1016/0168-3659(95)00165-4
- Bennis S, Chapey C, Couvreur P, Robert J. Enhanced cytotoxicity of doxorubicin encapsulated in polyisohexylcyanoacrylate nanospheres against multidrug-resistant tumour cells in culture. Eur J Cancer. 1994;30(1):89–93. doi: 10.1016/S0959-8049(05)80025-5
- Tokunaga Y, Nakashima M, Shibata S, et al Antitumor effects of 4-pyridoxate diamine hydroxy platinum, a novel cisplatin derivative, against malignant gliomas in vitro and in vivo: a comparison with cisplatin. Pharm Sci. 1997;3:353–356.
- Lu Y-J, Wei K-C, Ma C-CM, et al. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf Biointerfaces. 2012;89:1–9. doi: 10.1016/j.colsurfb.2011.08.001
- Khiati S, Luvino D, Oumzil K, et al. Nucleoside lipid-based nanoparticles for cisplatin delivery. ACS Nano. 2011;5(11):8649–8655. doi: 10.1021/nn202291k
- Sinitsyna E, Bagaeva I, Gandalipov E, et al. Nanomedicines bearing an alkylating cytostatic drug from the group of 1,3,5-Triazine derivatives: Development and characterization. Pharmaceutics. 2022;14(11):2506. doi: 10.3390/pharmaceutics14112506
- Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–1141. doi: 10.1016/j.jconrel.2013.08.006
- Shenoy DB, Amiji MM. Poly(ethylene oxide)-modified poly(ε-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm. 2005;293(1–2):261–270. doi: 10.1016/j.ijpharm.2004.12.010
