THE HEART PRELOAD AND AFTERLOAD INTERACTION AND RR INTERVALS UNDER HARD NORMOBARICHYPOXIA EXPOSURE IN HEALTHY YOUNG PERSONS


Cite item

Full Text

Abstract

The study wThe left ventricular end diastolic pressure (EDP) fluctuations, specific peripheral vascular resistance (SPR) and cardiointervals (RR) on the respiration frequency under hard normobaric hypoxia (FIO2 = 0.1) were studied. 7 young men (volunteers) were subject to series of hard hypoxic exposures (6 weeks, every other day, intermittently by 6 × 5 min – FIO2 = 0.1). The hypoxic tests (HT1 and HT2) – FIO2 = 0.1, 15 min continuously) were performed before and after each series. SаO2 at the last 3 m of the tests on average was 82.5 % and 92.0 % respectively (Р < 0.05). During HT1 and HT2 (in comparison with inactivity) were increased: angle of max QRS vector (VQRS) in the frontal plain (68.5° ± 16.68 and 72.94° ± 15.32; 69.62° ± 22.4 and 74.45° ± 17.98 respectively), minutes blood flow (MBF) (6.41 ± 1.98 l/min and 6.87 ± 1.27 l/min; 5,27 ± 1,02 l/min and 5.67 ± 1.19 l/min respectively) (Р < 0.05). SPR was decreased too (27.39 ± 5.45 s.u. and 25.62 ± 4.96 s.u.; 30.59 ± 6.34 s.u. and 27.93 ± 5.77 s.u. respectively) (Р < 0.05). By means of transfer function analysis was shown that EDP fluctuations at HT2 significantly outpace by time (phase) the SPR and RR fluctuations on the respiration frequency (1.19 s ± 0.64 and 1.99 s ± 0.63 or 94.39° ± 43.3 and 125.4° ± 7.54; 1.65 s ± 1.28 and 2.22 s ± 0.87 or 101.4° ± 59.6 and 152.7° ± 21.26 respectively) (Р < 0.05). The increased oxyhemoglobin saturation is a trigger of artery wall smooth muscle relaxation mechanisms and this one is changes the background for beat to beat baroreflex realization on the respiration frequency.

About the authors

Aleksandr Sergeyevich Radchenko

St. Petersburg Research Institute of Physical Culture

Dr. Biol. Sci.

N. S. Borisenko

SRC “Arktika”, Kirov Military Medical Academy, Ministry of Defense of the Russian Federation

Junior Researcher, Dept. of Normal Physiology

A. I. Kalinichenko

St. Petersburg State Electrotechnical University

Dr. Techn. Sci., Professor, Dept. of Biotechnical Systems

Yu Yu Rodionova

St. Petersburg State Electrotechnical University

Ingeneer, Dept. of Biotechnical Systems

Yuriy Nikolayevich Korolev

Kirov Military Medical Academy, Ministry of Defense of the Russian Federation

PhD, Doсent, Dept. of Normal Physiology

Viktor Nikolayevich Golubev

Kirov Military Medical Academy, Ministry of Defense of the Russian Federation

Dr. Med. Sci., Professor, Dept. of Normal Physiology

O A Churganov

St. Petersburg Research Institute of Physical Culture

Dr. Ped, Sci., Professor, Deputy Director

References

  1. Елизарова Н. А., Рубанова М. П., Атьков О. Ю. и др. Клиническая значимость диастолического коэффициента тетраполярной грудной реограммы у больных ишемической болезнью сердца // Бюллетень ВКНЦ АМН СССР. — 1987. — Т. 10, № 2. — С. 41–47.
  2. Пушкарь Ю. Т., Большов В. М., Елизарова Н. А. и др. Определение сердечного выброса методом тетраполярной грудной реографии и его метрологические возможности // Кардиология. — 1977. — № 7. — С. 85–89.
  3. Радченко А. С., Королев Ю. Н., Антоненкова Е. В., Голубев В. Н. К вопросу о воздействии прерывистой нормобарической гипоксии на центральную гемодинамику // Механизмы функционирования висцеральных систем. VII Всерос. конф. — СПб.: ИФ им. И. П. Павлова РАН, 2012. — С. 364.
  4. Радченко А. С., Королев Ю. Н., Голубев В. Н. Воздействие нормобарической гипоксической тренировки на системное кровообращение // ХХI съезд Физиол. Общ-ва им. И. П. Павлова. Тез. докл. — М. — Калуга: БЭСТ-принт, 2010. — С. 511.
  5. Bernheim A. M., Attenhofer Jost C. H., Zuber M. et al. The right ventricle best predicts the race performance in amateur ironman athletes // Med. Sci. Sports Exer. — 2013 (в печати).
  6. Brody D. A. A theoretical analysis of intracavitary blood mass influence on the heart-lead relationship // Circ. Res. — 1956. — Vol. 4. — P. 731–738.
  7. Deussen A., Brand M., Pexa A., Weichsel J. Metabolic coronary flow regulation — Current concepts // Basic Res. Cardiol. — 2006. — Vol. 101. — P. 453–464.
  8. Duncker D. J., Bache R. J. Regulation of coronary blood flow during exercise // Physiol. Rev. — 2008. — Vol. 88. — P. 1009–1086.
  9. Eckberg D. L., Orshan C. R. Respiratory and baroreceptor reflex interactions in man // J. Clin. Invest. — 1977. — Vol. 59. — P. 780–785.
  10. Eckberg D. L., Kifle Y. T., Roberts V. L. Phase relationship between normal human respiration and baroreflex responsiveness // J. Physiol. — 1980. — Vol. 304. — P. 489–502.
  11. Eckberg D. L. The human respiratory gate // J. Physiol. — 2003. — Vol. 548. — P. 339–352.
  12. Eckberg D. E. Point: Counterpoint: Respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism // Journal Appl. Physiol. — 2009. — Vol. 106 (5). — P. 1740–1742.
  13. Ellsworth M. L., Ellis C. G., Goldman D., Stephenson A. H., Dietrich H. H., Sprague R. S. Erythrocytes: oxygen sensors and modulators of vascular tone // Physiology. — 2009. — Vol. 24. — P. 107–116.
  14. Gauthier K. M. Hypoxia-induced vascular smooth muscle relaxation: increased ATP-sensitive K+ efflux or decreased voltage-sensitive Ca2+ influx // Amer. Journal Physiol. Heart Circ. Physiol. — 2006. — V. 291. — P. H24–H25.
  15. Gilbey M. P., Jordan D., Richter D. W., Spyer K. M. Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat // J. Physiol. — 1984. — Vol. 356. — P. 65–78.
  16. Gladwin M. T., Raat N. J. H., Shiva S. et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation // Amer. J. Physiol. — 2006. — Vol. 291. — P. H2026–H2035.
  17. González-Alonso, J., Olsen D.B, Saltin B. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP // Circ. Res. — 2002. — Vol. 91. — P. 1046–1055.
  18. Gonzalez-Alonso J., Mortensen S. P., Dawson E. A. et al. Erythrocytes and the regulation of human skeletal muscle blood flow and oxygen delivery: role of erythrocyte count and oxygenation state of haemoglobin // J. Physiol. — 2006. — Vol. 572. — P. 295–305.
  19. Gonzalez-Alonso J. ATP: a double-edged signalling molecule regulating the flow of oxygen // J. Physiol. — 2008. — Vol. 586 (17). — P. 4033–4034.
  20. Herrera G. M., Walker B. R. Involvement of L-type calcium channels in hypoxic relaxation of vascular smooth muscle // J. Vasc. Res. — 1998. — Vol. 35. — P. 265–273.
  21. Ichinose M., Koga S., Fujii N. et al. Modulation of the spontaneous beat-to-beat fluctuations in peripheral vascular resistance during activation of muscle metaboreflex // Amer. J. Physiol. Heart Circ. Physiol. — 2007. — Vol. 293. — P. H416–H424.
  22. Jagger J. E., Bateman R. M., Ellsworth M. L., Ellis C. G. Role of erythrocyte in regulating local O2 delivery mediated by haemoglobin oxygenation // Amer. J. Physiol. — 2001. — Vol. 280. — P. H2833–H2839.
  23. Jensen F. B. The dual roles of red blood cells in tissue oxygen delivery: oxygen carriers and regulators of local blood flow // Journal Exp. Biol. — 2009. — Vol. 212. — P. 3387–3393.
  24. Katona P. G., Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control // J. Appl. Physiol. — 1975. — Vol. 39. — P. 801–805.
  25. Kubicek W. G., Patterson R. P., Wetsoe D. A. Impedance cardiography as a noninvasive method of monitoring cardiac function and other parameters of the cardiovascular system // Ann. N. Y. Acad. Sci. — 1970. — V.170 (2). — P. 724–732.
  26. Macfarlane P. W., Lawrie T. D. V. Comprehensive Electrocardiology: Theory and Practice in Health and Disease. 1st ed. Chapter 18. Distortion factors in the ECG. New York: Pergamon Press, 1989. — P. 314–316.
  27. Mancia G., Mark A. L. Arterial baroreflexes in humans. In: Shepherd J. T., Abboud F. M., eds. Handbook of Physiology, Section 2. The Cardiovascular System IV, Volume 3, Part 2. Bethesda, MD: American Physiologic Society. — 1983. — P. 755–793.
  28. Nelson C. V., Rand P. W., Angelakos T. E., Hugenholtz P. G. Effect of intracardiac blood on the spatial vectorcardiogram // Circ. Res. — 1972. — Vol. 31 (7). — P. 95–104.
  29. Ogoh S., Fisher J. P., Young C. N. et al. Transfer function characteristics of the neural and peripheral arterial baroreflex arcs at rest and during postexercise muscle ischemia in humans // Amer. J. Physiol. Heart Circ. Physiol. — 2009. — Vol. 296. — P. H1416–H1424.
  30. Parati G., Bilo G. Arterial Baroreflex Modulation of Sympathetic Activity and Arterial Wall Properties New Evidence // Hypertension. — 2012. — Vol. 59. — P. 5–7.
  31. Saul J. P., Berger R. D., Chen M. H., Cohen R. J. Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia // Am. J. Physiol. — 1989. — Vol. 256 (Heart Circ. Physiol. 25). — P. H153–H161.
  32. Saul J. P., Berger R. D., Albrecht P. et al. Transfer function analysis of the circulation: unique insights into cardiovascular regulation // American Journal Physiology — 1991. — Vol. 261 (Heart Circ. Physiol. 30). — P. H1231–H1245.
  33. Shibata S., Zhang R., Hastings J. L. et al. Cascade model of ventricular-arterial coupling and arterial-cardiac baroreflex function for cardiovascular variability in humans // Amer. J. Physiol. Heart Circ. Physiol. — 2006. — Vol. 291. — P. H2142–H2151.
  34. Shibata S., Hastings J. L., Prasad A. et al. “Dynamic” Starling mechanism: effects of ageing and physical fitness on ventricular-arterial coupling // J. Physiol. — 2008. — Vol. 586. — P. 1951–1962.
  35. Shimoda L. A., Polak J. Hypoxia. 4. Hypoxia and ion channel function // Amer. J. Physiol. Cell Physiol. — 2011. — Vol. 300 (5). — P. C951–C967.
  36. Taylor J. A., Studinger P. Counterpoint: cardiovascular variability is not an index of autonomic control of the circulation // J. Appl. Physiol. — 2006. — Vol. 101. — P. 676–682.
  37. Van de Vooren H., Gademan M. G. J., Swenne C. A. et al. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients // J. Appl. Physiol. — 2007. — Vol. 102 (4). — P. 1348–1356.
  38. Van Oosterom A., Plonsey R. The Brody effect revisited // Journal Electrocardiology — 1991. — Vol. 24 (4). — P. 339–348.
  39. Zhang R., Iwasaki K., Zuckerman J. H. et al. Mechanism of blood pressure and R-R variability: insights from ganglion blockade in humans // J. Physiol. 2002. Vol. 543. — P. 337–348.
  40. Zhang R., Claassen J. A. H.R., Shibata S. et al. Arterial-cardiac baroreflex function: insights from repeated squat-stand maneuvers // American Journal Physiol. Regul. Integr. Comp. Physiol. — 2009. — Vol. 297. — P. R116–R123.

Copyright (c) 2013 Radchenko A.S., Borisenko N.S., Kalinichenko A.I., Rodionova Y.Y., Korolev Y.N., Golubev V.N., Churganov O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».