Early prediction of bronchopulmonary dysplasia in extremely premature infants: a cohort study

Cover Page

Cite item

Abstract

Objective. To develop the model for early prediction of clinically significant bronchopulmonary dysplasia in extremely premature infants.

Materials and methods. 226 premature infants with gestational age less than 31 weeks, birth weight from 490 to 999 g, age from 0 to 7 days, and respiratory failure requiring ventilatory support (ventilator support) were included into a retrospective study conducted in the Perm Regional Perinatal Center. Machine learning algorithms such as logistic regression, support vector machine, random forest method, and gradient boosting method were used for the prognostic model building. Five variables were used: birth weight, Apgar score in the 5th minute of life, Silverman score, number of days of invasive ventilatory support, median oxygen fraction in the inhaled air measured daily during the first seven days of life.

Results. In the 36th week of postconceptional age 148 out of 182 infants (81.3 %) in the study cohort developed bronchopulmonary dysplasia (BPD), among them 15.4 % had a mild form, 29.7 % a moderate one, and in 36.3 % of patient it was severe. Among the four studied prediction algorithms, logistic regression model was chosen as the final model with metrics: AUC = 0.840, accuracy 0.818, sensitivity 0.972, specificity 0.666. The practical application of the modeling results was implemented in the form of a probability calculator.

Conclusions. In the early neonatal period of extremely premature infants, a combination of clinical predictors such as birth weight, Apgar score in the 5th minute of life, Silverman score, number of days of invasive ventilatory support, median oxygen fraction in the inhaled air measured during the first seven days of life can be used to predict the development of bronchopulmonary dysplasia. The logistic regression model shows high sensitivity that minimizes the probability of an error of second kind. Thus, its application is useful in the early prediction of bronchopulmonary dysplasia in premature infants.

About the authors

A. V. Permyakova

E.A. Vagner Perm State Medical University

Author for correspondence.
Email: derucheva@mail.ru
ORCID iD: 0000-0001-5189-0347

DSc (Medicine), Head of the Department of Childhood Infectious Diseases

Russian Federation, Perm

O. B. Bakhmetyeva

Perm Regional Perinatal Center

Email: derucheva@mail.ru
ORCID iD: 0000-0003-2343-3602

Assistant of the Department of Anesthesiology, Resuscitation and Emergency Medical Aid, Resuscitation Anaesthetist

Russian Federation, Perm

M. A. Mamunts

E.A. Vagner Perm State Medical University

Email: derucheva@mail.ru
ORCID iD: 0000-0001-5326-6740

PhD (Medicine), Associate Professor of the Department of Pediatrics with Polyclinic Pediatrics Course

Russian Federation, Perm

A. G. Kuchumov

Perm National Research Polytechnic University

Email: derucheva@mail.ru
ORCID iD: 0000-0002-0466-175X

DSc (Physics and Mathematics), Associate Professor, Professor of the Department of Computational Mathematics, Mechanics and Biomechanics

Russian Federation, Perm

K. A. Koshechkin

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: derucheva@mail.ru
ORCID iD: 0000-0001-7309-2215

DSc (Pharmaceutics), Associate Professor, Professor of the Department of Information and Internet Technologies

Russian Federation, Moscow

References

  1. Cheong J.L.Y., Doyle L.W. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. Semin Perinatol. 2018; 42 (7): 478–484. doi: 10.1053/j.semperi.2018.09.013.
  2. Lui K., Lee S.K., Kusuda S., Adams M., Vento M., Reichman B., Darlow B.A., Lehtonen L., Modi N., Norman M., Håkansson S., Bassler D., Rusconi F., Lo-dha A., Yang J., Shah P.S. International Network for Evaluation of Outcomes (iNeo) of neonates Investigators. Trends in Outcomes for Neonates Born Very Preterm and Very Low Birth Weight in 11 High-Income Countries. J Pediatr. 2019; 215: 32–40.e14. doi: 10.1016/j.jpeds.
  3. Kwok T.C., Batey N., Luu K.L., Prayle A., Sharkey D. Bronchopulmonary dysplasia prediction models: a systematic review and meta-analysis with validation. Pediatr Res. 2023; 94 (1): 43–54. doi: 10.1038/s41390-022-02451-8.
  4. Peng H.B., Zhan Y.L., Chen Y., Jin Z.C., Liu F., Wang B., Yu Z.B. Prediction Models for Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. Front Pediatr. 2022; (12): 10: 856159. doi: 10.3389/fped.2022.856159.
  5. Romijn M., Dhiman P., Martijn J.J. Fink-en, Anton H. van Kaam, Trixie A. Katz, Joost Rotteveel, Ewoud Schuit, Gary S. Collins, Wes Onland, Heloise Torchin. Prediction Models for Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review and Meta-Analysis. J Pediatr. 2023; Jul: 258 (113370). doi: 10.1016/j.jpeds.2023.01.024.
  6. Кучумов А.Г., Голуб М.В., Ракишева И.О., Дорошенко О.В. Алгоритм построения метамодели для прогнозирования гемодинамики в аортах детей с врожденными пороками сердца. Сборник научных трудов VII съезда биофизиков России. Сборник материалов съезда: в 2 т. Краснодар 2023; 228–229 / Kuchumov A.G., Golub M.V., Rakisheva I.O., Doroshenko O.V. An algorithm for creation of metamodel for predicting hemodynamics in the aortas of children with congenital heart defects. Sbornik nauchnyh trudov VII kongressa biofizikov Rossii. Sbornik materialov kongressa. Krasnodar 2023; 228–229 (in Russian).
  7. Ter-Levonian, A.S., Koshechkin K.A. Review of machine learning technologies and neural networks in drug synergy combination pharmacological research. Research Results in Pharmacology 2020; 6 (3): 27–32. DOI: 0.3897/rrpharmacology.6.49591
  8. Породиков А.А., Биянов А.Н., Пермя-кова А.В., Туктамышев В.С., Кучумов А.Г., Поспелова Н.С., Фурман Е.Г., Оноприенко М.Н. N-терминальный фрагмент мозгового натрийуретического пептида как предиктор гемодинамической значимости функционирующего артериального протока у недоношенных новорожденных. Пермский медицинский журнал 2021; 38 (1): 5–15 / Porodikov A.A., Bijanov A.N., Permjakova A.V., Tuktamyshev V.S., Kuchumov A.G., Pospelova N.S., Furman E.G., Onoprienko M.N. N-terminal probrain natriuretic peptide as a predictor of hemodynamic significance of functioning ductus arteriosus in premature newborns. Perm Medical Journal 2021; 38 (1): 5–15 (in Russian).
  9. Permyakova A.V., Porodikov A., Kuchu-mov A.G., Biyanov A., Arutunyan V., Furman E.G., Sinelnkov Y.S. Discriminant Analysis of Main Prognostic Factors Associated with Hemodynamically Significant PDA: Apgar Score, Silverman–Anderson Score, and NT-Pro-BNP Level. J. Clin. Med. 2021; 10 (3729). doi: 10.3390/jcm10163729.
  10. Verder H., Heiring C., Ramanathan R., Scoutaris N., Verder P., Jessen T.E., Höskuldsson A., Bender L., Dahl M., Eschen C., Fenger-Grøn J., Reinholdt J., Smedegaard H., Schousboe P. Bronchopulmonary dysplasia predicted at birth by artificial intelligence. Acta Pae-diatr. 2021; 110 (2): 503–509. doi: 10.1111/apa.15438.
  11. Dai D., Chen H., Dong X., Chen J., Mei M., Lu Y., Yang L., Wu B., Cao Y., Wang J., Zhou W., Qian L. Bronchopulmonary Dysplasia Predicted by Developing a Machine Learning Model of Genetic and Clinical Information. Front Genet. 2021; 2 (12): 689071. doi: 10.3389/fgene.2021.689071.
  12. Na J.Y., Kim D., Kwon A.M., Jeon J.Y., Kim H., Kim C.R., Lee H.J., Lee J., Park H.K. Artificial intelligence model comparison for risk factor analysis of patent ductus arteriosus in nationwide very low birth weight infants cohort. Sci Rep. 2021: 11 (1): 22353. doi: 10.1038/s41598-021-01640-5.
  13. Son J., Kim D., Na J.Y., Jung D., Ahn J.H., Kim T.H., Park H.K. Development of artificial neural networks for early prediction of intestinal perforation in preterm infants. Sci Rep. 2022; 12: 12112. doi: 10.1038/s41598-022-16273-5.
  14. Журавлева Л.Н., Новикова В.И., Дер-кач Ю.Н. Определение возможности развития бронхолегочной дисплазии путем определения цитокинового профиля у недоношенных детей. Иммунопатология, аллергология, инфектология 2021; 3: 21–27. doi: 10.14427/jipai.2021.3.21. / Zhuravleva L.N., Novikova V.I., Derkach Ju.N. Determin-ing the possibility of developing bronchopulmonary dysplasia by determining the cytokine profile in premature infants. International journal of Immuno-pathology, allergology, infectology 2021; 3: 21–27. doi: 10.14427/jipai.2021.3.21.
  15. Higgins R.D., Jobe A.H., Koso-Thomas M., Bancalari E., Viscardi R.M., Hartert T.V., Ryan R.M., Kallapur S.G., Steinhorn R.H., Konduri G.G., Davis S.D., Thebaud B., Clyman R.I., Collaco J.M., Martin C.R., Woods J.C., Finer N.N., Raju T.N.K. Иronchopulmonary Dysplasia: Executive Summary of a Workshop. J Pediatr. 2018; 197: 300–308. doi: 10.1016/j.jpeds.2018.01.043.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. ROC-curve graph for the logistic regression model

Download (65KB)

Copyright (c) 2024 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».