Molecular diagnostics of familial hypercholesterolemia in Russia: yesterday, today and tomorrow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Familial hypercholesterolemia is a severe hereditary disease leading to the development of atherosclerosis and its complications in the form of angina pectoris, myocardial infarction, cerebral stroke, or even leading to sudden death. Since the description of the disease, the concept of it has undergone significant evolution. First, it became clear that the prevalence of this disease was significantly higher than originally thought (1:300 for heterozygous familial hypercholesterolemia and not as 1:500 as estimated earlier). Secondly, it has been established that it is not based on the pathology of the low-density lipoprotein receptor gene alone, but includes at least four monogenic forms (defects of the APOB, PCSK9, ARH genes) and may also have a multigenic nature. Thirdly, with the development of DNA analysis methods from the initially available Southern hybridization to next generation DNA sequencing, the exceptional molecular heterogeneity of familial hypercholesterolemia became obvious and, accordingly, the need to establish national spectra of mutations leading to the development of familial hypercholesterolemia was established. Researchers have moved from characterizing individual mutations to creating national registries and databases. Finally, research into the genetics of familial hypercholesterolemia has led to the emergence of new classes of cholesterol-lowering drugs. In Russia, molecular diagnostics of familial hypercholesterolemia has also undergone significant changes since the beginning of the study of familial hypercholesterolemia in 1987 and to the present, consideration of these changes formed the basis of this review.

About the authors

Faina M. Zakharova

Institute of Experimental Medicine

Author for correspondence.
Email: fzakharova@mail.ru
ORCID iD: 0000-0002-9558-3979
SPIN-code: 9699-5744

Cand. Sci. (Biology), Senior Research Associate of Department of Molecular Genetics

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Mikhail Yu. Mandelstam

Institute of Experimental Medicine

Email: amitinus@mail.ru
ORCID iD: 0000-0002-7135-3239
SPIN-code: 1893-9417

Dr. Sci. (Biology), Leading Research Associate of Department of Molecular Genetics

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Tatiana Yu. Bogoslovskaya

Institute of Experimental Medicine

Email: ktu17@yandex.ru
ORCID iD: 0000-0002-9480-1073
SPIN-code: 8406-6162

Cand. Sci. (Biology), Research Associate of Department of Molecular Genetics

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

Vadim B. Vasiliev

Institute of Experimental Medicine

Email: vadim@biokemis.ru
ORCID iD: 0000-0002-9707-262X
SPIN-code: 8298-1469

MD, Dr. Sci. (Medicine), Professor, Head of the Department of Molecular Genetics

Russian Federation, 12 Academician Pavlov St., Saint Petersburg, 197022

References

  1. Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. The Metabolic and Molecular Bases of Inherited Disease. Scriver C, Beaudet A, Sly W, Valle D, editors. New York: McGraw-Hill; 2001. P. 2863–2913.
  2. Sjouke B, Kusters DM, Kindt I, et al. Homozygous autosomal dominant hypercholesterolaemia in the Netherlands: prevalence, genotype-phenotype relationship, and clinical outcome. Eur Heart J. 2015;36(9):560–565. doi: 10.1016/S0735-1097(14)62053-2
  3. Defesche JC, Gidding SS, Harada-Shiba M, et al. Familial hypercholesterolaemia. Nat Rev Dis Primers. 2017;3:17093. doi: 10.1038/nrdp.2017.93
  4. Sarraju A, Knowles JW. Genetic testing and risk scores: impact on familial hypercholesterolemia. Front Cardiovasc Med. 2019;6:5. doi: 10.3389/fcvm.2019.00005
  5. Seftel HC, Baker SG, Jenkins T, Mendelsohn D. Prevalence of familial hypercholesterolemia in Johannesburg Jews. Am J Med Genet. 1989;34(4):545–547. doi: 10.1002/ajmg.1320340418
  6. Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis. 2003;168(1):1–14. doi: 10.1016/s0021-9150(02)00330-1
  7. Steyn K, Goldberg YP, Kotze MJ, et al. Estimation of the prevalence of familial hypercholesterolaemia in a rural Afrikaner community by direct screening for three Afrikaner founder low density lipoprotein receptor gene mutations. Hum Genet. 1996;98(4):479–484. doi: 10.1007/s004390050243
  8. Marais AD, Firth JC, Blom DJ. Familial hypercholesterolemia in South Africa. Semin Vasc Med. 2004;4(1):93–95. doi: 10.1055/s-2004-822991
  9. Moorjani S, Roy M, Gagné C, et al. Homozygous familial hypercholesterolemia among French Canadians in Québec Province. Arteriosclerosis. 1989;9(2):211–216. doi: 10.1161/01.atv.9.2.211
  10. Der Kaloustian VM, Naffah J, Loiselet J. Genetic diseases in Lebanon. Am J Med Genet. 1980;7(2):187–203. doi: 10.1002/ajmg.1320070212
  11. Karpov YuA, Kukharchuk VV, Boytsov SA, et al. Consensus statement of the Russian National Atherosclerosis Society (RNAS). Familial hypercholesterolemia in Russia: outstanding issues in diagnosis and management. Journal of atherosclerosis and dyslipidemias. 2015;(2(19)):5–16. EDN: UAPQET
  12. Ershova AI, Meshkov AN, Bazhan SS, et al. The prevalence of familial hypercholesterolemia in the West Siberian region of the Russian Federation: a substudy of the ESSE-RF. PLoS One. 2017;12(7):e0181148. doi: 10.1016/j.atherosclerosis.2017.06.592
  13. Umans-Eckenhausen MA, Defesche JC, Sijbrands EJ, et al. Review of first 5 years of screening for familial hypercholesterolaemia in the Netherlands. Lancet. 2001;357(9251):165–168. doi: 10.1016/s0140-6736(00)03587-x
  14. Muller C. Angina pectoris in hereditary xanthomatosis. Nutr Rev. 1987;45(4):113–115. doi: 10.1111/j.1753-4887.1987.tb02723.x
  15. Khachadurian AK. The inheritance of essential familial hypercholesterolemia. Am J Med. 1964;37:402–407. doi: 10.1016/0002-9343(64)90196-2
  16. Brown MS, Goldstein JL. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc Natl Acad Sci USA. 1974;71(3):788–792. doi: 10.1073/pnas.71.3.788
  17. Südhof TC, Goldstein JL, Brown MS, Russell DW. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985;228(4701):815–822. doi: 10.1126/science.2988123
  18. Law SW, Lackner KJ, Hospattankar AV, et al. Human apolipoprotein B-100: cloning, analysis of liver mRNA, and assignment of the gene to chromosome 2. Proc Natl Acad Sci USA. 1985;82(24):8340–8344. doi: 10.1073/pnas.82.24.8340
  19. Vega GL, Grundy SM. In vivo evidence for reduced binding of low density lipoproteins to receptors as a cause of primary moderate hypercholesterolemia. J Clin Invest. 1986;78(5):1410–1414. doi: 10.1172/jci112729
  20. Innerarity TL, Weisgraber KH, Arnold KS, et al. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding. Proc Natl Acad Sci USA. 1987;84(19):6919–6923. doi: 10.1073/pnas.84.19.6919
  21. Soria LF, Ludwig EH, Clarke HR, et al. Association between a specific apolipoprotein B mutation and familial defective apolipoprotein B-100. Proc Natl Acad Sci USA. 1989;86(2):587–591. doi: 10.1073/pnas.86.2.587
  22. Alves AC, Etxebarria A, Soutar AK, et al. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum Mol Genet. 2014;23(7):1817–1828. doi: 10.1093/hmg/ddt573
  23. Garcia CK, Wilund K, Arca M, et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science. 2001;292(5520):1394–1398. doi: 10.1126/science.1060458
  24. Seidah NG, Benjannet S, Wickham L, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci USA. 2003;100(3):928–933. doi: 10.1073/pnas.0335507100
  25. Abifadel M, Varret M, Rabès JP, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–156. doi: 10.1038/ng1161
  26. Mandelshtam MYu, Vasilyev VB. Monogenic hypercholesterolemias: new genes, new drug targets. Russian Journal of Genetics. 2008;44(10):1134–1140. EDN: LLCFZZ doi: 10.1134/s1022795408100025
  27. Marduel M, Ouguerram K, Serre V, et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation. Hum Mutat. 2013;34(1):83–87. doi: 10.1002/humu.22215
  28. Awan Z, Choi HY, Stitziel N, et al. APOE p.Leu167del mutation in familial hypercholesterolemia. Atherosclerosis. 2013;231(2):218–222. doi: 10.1016/j.atherosclerosis.2013.09.007
  29. Wintjens R, Bozon D, Belabbas K, et al. Global molecular analysis and APOE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France. J Lipid Res. 2016;57(3):482–491. doi: 10.1194/jlr.p055699
  30. Abifadel M, Boileau C. Genetic and molecular architecture of familial hypercholesterolemia. J Intern Med. 2023;293:144–165. doi: 10.1111/joim.13577
  31. Talmud PJ, Shah S, Whittall R, et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study. Lancet. 2013;381(9874):1293–1301. doi: 10.1016/s0140-6736(12)62127-8
  32. Shakhtshneider E, Ivanoshchuk D, Orlov P, et al. Analysis of the Ldlr, Apob, Pcsk9 and Ldlrap1 genes variability in patients with familial hypercholesterolemia in West Siberia using targeted high throughput resequencing. Atherosclerosis. 2019;287:e285. doi: 10.1016/j.atherosclerosis.2019.06.883
  33. Miroshnikova VV, Romanova OV, Ivanova ON, et al. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed Rep. 2021;14(1):15. doi: 10.3892/br.2020.1391
  34. Meshkov A, Ershova A, Kiseleva A, et al. The LDLR, APOB, and PCSK9 variants of index patients with familial hypercholesterolemia in Russia. Genes (Basel). 2021;12(1):66. doi: 10.3390/genes12010066
  35. Shakhtshneider E, Ivanoshchuk D, Timoshchenko O, et al. Analysis of rare variants in genes related to lipid metabolism in patients with familial hypercholesterolemia in Western Siberia (Russia). J Pers Med. 2021;11(11):1232. doi: 10.3390/jpm11111232
  36. Andersen LH, Miserez AR, Ahmad Z, Andersen RL. Familial defective apolipoprotein B-100: a review. J Clin Lipidol. 2016;10(6):1297–1302. doi: 10.1016/j.jacl.2016.09.009
  37. Ezhov MV, Barbarash OL, Voevoda MI, et al. Organization of lipid centers operation in the Russian Federation — new opportunities. Russian Journal of Cardiology. 2021;26(6):16–23. EDN: UGKJTQ doi: 10.15829/1560-4071-2021-4489
  38. Hamasaki M, Sakane N, Hara K, Kotani K. LDL-cholesterol and PCSK9 in patients with familial hypercholesterolemia: influence of PCSK9 variants under lipid-lowering therapy. J Clin Lab Anal. 2021;35(11):e24056. doi: 10.1002/jcla.24056
  39. Mandelshtam MYu, Lipovetskii BM, Schvartsman AL, Gaitskhoki VS. Molecular heterogeneity of familial hypercholesterolemia in the St. Petersburg population. Russian Journal of Genetics. 1995;31(4):447–452. (In Russ.)
  40. Mandelshtam MJ, Lipovetskyi BM, Schwartzman AL, Gaitskhoki VS. A novel deletion in the low-density lipoprotein receptor gene in a patient with familial hypercholesterolemia from Petersburg. Hum Mutat. 1993;2(4):256–260. doi: 10.1002/humu.1380020404
  41. Zakharova FM, Damgaard D, Mandelshtam MY, et al. Familial hypercholesterolemia in St-Petersburg: the known and novel mutations found in the low density lipoprotein receptor gene in Russia. BMC Med Genet. 2005;6:6. doi: 10.1186/1471-2350-6-6
  42. Komarova TYu, Korneva VA, Kuznetsova TYu, et al. Familial hypercholesterolemia mutations in Petrozavodsk: no similarity to St. Petersburg mutation spectrum. BMC Med Genet. 2013;14:128. doi: 10.1186/1471-2350-14-128
  43. Korneva VA, Kuznetsova TYu, Bogoslovskaya TYu, et al. Cholesterol levels in genetically determined familial hypercholesterolaemia in Russian Karelia. Cholesterol. 2017;2017:9375818. doi: 10.1155/2017/9375818
  44. Vasilyev VB, Zakharova FM, Bogoslovskaya TYu, Mandelshtam MYu. Analysis of the low density lipoprotein receptor gene (LDLR) mutation spectrum in Russian familial hypercholesterolemia. Vavilov Journal of Genetics and Breeding. 2022;26(3):319–326. EDN: HPHVJV doi: 10.18699/vjgb-22-38
  45. Meshkov AN, Malyshev PP, Kukharchuk VV. Familial hypercholesterolemia in Russia: genetic and phenotypic characteristics. Terapevticheskiy Arkhiv. 2009;81(9):23–28. EDN: KZRAHZ
  46. Malyshev PP, Meshkov AN, Kotova LA, Kukharchuk VV. Familial defect of apolipoprotein В-100: molecular disease basis and clinico-biochemical characteristics of the patients. Cardiovascular Therapy and Prevention. 2007;6(6):40–45. EDN: IJWXGL
  47. Voevoda MI, Kulikov IV, Shakhtshneider EV, et al. The spectrum of mutations in the low-density lipoprotein receptor gene in the Russian population. Russian Journal of Genetics. 2008;44(10):1191–1194. EDN: LLCFYB doi: 10.1134/s1022795408100074
  48. Semenova AE, Sergienko IV, García-Giustiniani D, et al. Verification of underlying genetic cause in a cohort of Russian patients with familial hypercholesterolemia using targeted next generation sequencing. J Cardiovasc Dev Dis. 2020;7(2):16. doi: 10.3390/jcdd7020016
  49. Vasilyev V, Zakharova F, Bogoslovskaya T, Mandelshtam M. Familial hypercholesterolemia in Russia: Three decades of genetic studies. Front Genet. 2020;11:550591. doi: 10.3389/fgene.2020.550591
  50. Meshkov AN, Ershova AI, Kiseleva AV, et al. The prevalence of heterozygous familial hypercholesterolemia in selected regions of the Russian Federation: The FH-ESSE-RF study. J Pers Med. 2021;11(6):464. doi: 10.3390/jpm11060464
  51. Chakir Kh, Skobeleva NA, Shevtsov SP, et al. Two novel slavic point mutations in the low-density lipoprotein receptor gene in patients with familial hypercholesterolemia from St. Petersburg, Russia. Mol Genet Metab. 1998;63(1):31–34. doi: 10.1006/mgme.1997.2614
  52. Mandelshtam M, Chakir K, Shevtsov S, et al. Prevalence of Lithuanian mutation among St. Petersburg Jews with familial hypercholesterolemia. Hum Mutat. 1998;12(4):255–258. doi: 10.1002/(sici)1098-1004(1998)12:4<255::aid-humu6>3.0.co;2-e
  53. Patent RU 2022621118/18.05.2022. Bull. No. 5. Mandelstam MYu, Zakharova FM, Bogoslovskaya TYu, Vasiliev VB. List of mutations in the low-density lipoprotein receptor gene found in patients with familial hypercholesterolemia in Russia. (In Russ.) EDN: FFCVVP
  54. Patent RU 2022620667/29.03.2022. Bull. No. 4. Mandelshtam MYu, Zakharova FM, Bogoslovskaya TYu, Vasilyev VB. List of polymorphisms in the low-density lipoprotein receptor gene found in patients with familial hypercholesterolemia in Russia. (In Russ.) EDN: FULUHN
  55. El Khoury P, Elbitar S, Ghaleb Y, et al. PCSK9 Mutations in familial hypercholesterolemia: from a groundbreaking discovery to anti-PCSK9 therapies. Curr Atheroscler Rep. 2017;19(12):49. doi: 10.1007/s11883-017-0684-8
  56. Raal FJ, Honarpour N, Blom DJ, et al. Inhibition of PCSK9 with evolocumab in homozygous familial hypercholesterolaemia (TESLA Part B): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;385(9965):341–350. doi: 10.1016/s0140-6736(14)61374-x
  57. Blom DJ, Harada-Shiba M, Rubba P, et al. Efficacy and safety of Alirocumab in adults with homozygous familial hypercholesterolemia: The ODYSSEY HoFH Trial. J Am Coll Cardiol. 2020;76(2):131–142. doi: 10.1016/j.jacc.2020.05.027
  58. Hovingh GK, Lepor NE, Kallend D, et al. Inclisiran durably lowers low-density lipoprotein cholesterol and proprotein convertase subtilisin/kexin type 9 expression in homozygous familial hypercholesterolemia: The ORION-2 pilot study. Circulation. 2020;141(22):1829–1831. doi: 10.1161/circulationaha.119.044431
  59. Ray KK, Bays HE, Catapano AL, et al. Safety and efficacy of Bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380(11):1022–1032. doi: 10.1056/nejmoa1803917
  60. Tibuakuu M, Blumenthal RS, Martin SS. Bempedoic Acid for LDL-C lowering: what do we know? [Internet]. American College of Cardiology; Aug 10, 2020. Available from: https://www.acc.org/latest-in-cardiology/articles/2020/08/10/08/21/bempedoic-acid-for-ldl-c-lowering. Accessed: 29 Feb 2024.
  61. Arca M, Minicocci I, Maranghi M. The angiopoietin-like protein 3: a hepatokine with expanding role in metabolism. Curr Opin Lipidol. 2013;24(4):313–320. doi: 10.1097/mol.0b013e3283630cf0
  62. Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363(23):2220–2227. doi: 10.1056/nejmoa1002926
  63. Dewey FE, Gusarova V, Dunbar RL, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377(3):211–221. doi: 10.1056/nejmoa1612790
  64. Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 Deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69(16):2054–2063. doi: 10.1016/j.jacc.2017.02.030
  65. Chilazi M, Sharma G, Blumenthal RS, Martin SS. Angiopoietin-like 3 (ANGPTL3) — a novel therapeutic target for treatment of hyperlipidemia [Internet]. American College of Cardiology; Jan 06, 2021. Available from: https://www.acc.org/latest-in-cardiology/articles/2021/01/06/13/01/angiopoietin-like-3-angptl3. Accessed: 29 Feb 2024.
  66. Raal FJ, Hovingh GK, Catapano AL. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis. 2018;277:483–492. doi: 10.1016/j.atherosclerosis.2018.06.859
  67. Konstantinov VO. Familial hypercholesterolemia: Three “under” (understood, underdiagnosed, and undertreated) disease. In: Cardiovascular Risk Factors in Pathology. IntechOpen. doi: 10.5772/intechopen.93042
  68. Sadykova DI, Galimova LF. Familial hypercholesterolemia in children: clinic, diagnostics, treatment. Russian bulletin of perinatology and pediatrics. 2017;62:(5):119–123. EDN: XCWDXR doi: 10.21508/1027-4065-2017-62-5-119-123
  69. Galimova LF, Sadykova DI, Slastnikova E., Usova NE. Diagnosis of familial hypercholesterolemia in children: cascade screening from theory to practice. Cardiovascular Therapy and Prevention. 2020;19(3):191–196. EDN: VYMTKN doi: 10.15829/1728-8800-2020-2348
  70. Zakharova IN, Osmanov IM, Pshenichnikova II, et al. Hypercholesterolemia in children and adolescents: focus on the familial variant. Medical council. 2021;(17):294–299. EDN: AGKVPC doi: 10.21518/2079-701X-2021-17-294-299
  71. Yezhov MV, Bliznyuk SA, Tmoyan NA, et al. Register of patients with familial hypercholesterolemia and patients of very high cardiovascular risk with lipid-lowering therapy underperformance (RENESSANS). Russian Journal of Cardiology. 2019;24(5):7–13. EDN: ZGREKR doi: 10.15829/1560-4071-2019-5-7-13
  72. Ezhov MV, Sergienko IV, Rozhkova TА, et al. Diagnosis and treatment of family hypercholesterinemia (russian guidelines). The Bulletin of Contemporary Clinical Medicine. 2017;10(2):72–79. EDN: YKOSDZ doi: 10.20969/VSKM.2017.10(2).72-79
  73. Pogoda T, Metelskaya V, Perova N, Limborska S. Detection of the apoB-3500 mutation in a Russian family with coronary heart disease. Hum Hered. 1998;48(5):291–292. doi: 10.1159/000022819
  74. Krapivner SR, Malyshev PP, Poltaraus AB, et al. A case of familial hypercholesterolemia caused by a novel mutation D461Y in the low density lipoprotein receptor gene. Kardiologiia. 2001;41(1):92–94. EDN: MOTAFT
  75. Shakhtshneider EV, Makarenkova KV, Astrakova KS, et al. Targeted next-generation sequencing of PCSK9 gene in patients with familial hypercholesterolemia in Russia. Kardiologiia. 2017;57(6):46–51. EDN: YUEIUX doi: 10.18565/cardio.2017.6.46-51

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Interactions of proteins involved in LDL uptake from bloodstream. LDL — low-density lipoprotein; LDLR — low-density lipoprotein receptor

Download (256KB)
3. Fig.2. Comparison of the distribution of mutations in the LDLR gene in patients with familial hypercholesterolemia in Russia and worldwide by type

Download (133KB)

Copyright (c) 2024 Eco-Vector



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».