Influence of constant lighting on the morphofunctional state and rhythmostasis of the liver of rats
- Authors: Grabeklis S.A.1, Mikhaleva L.M.2, Kozlova M.A.2, Areshidze D.A.2, Dygai A.M.3
-
Affiliations:
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry
- A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery
- Research Institute of General Pathology and Pathophysiology
- Issue: Vol 23, No 2 (2023)
- Pages: 63-74
- Section: Original research
- URL: https://bakhtiniada.ru/MAJ/article/view/253870
- DOI: https://doi.org/10.17816/MAJ322855
- ID: 253870
Cite item
Abstract
BACKGROUND: There are evidences that light pollution, which causes melatonin deficiency and disruption of circadian rhythm, is associated with the development of malignant neoplasms of the liver, non-alcoholic fatty liver disease, biliary cirrhosis, and a number of other pathologies of this organ.
AIM: The aim of research was to study the features of chronic influence of constant lighting on lability of morphofunctional state of liver of mature Wistar rats and the structure of circadian rhythms of its parameters.
MATERIALS AND METHODS: The study was conducted on 80 rats divided into 2 groups: a control group kept under a fixed light regime (light/dark 12/12 h, lights on at 8:00 and off at 20:00), and an experimental group kept under constant lighting 24 h a day. The duration of the experiment was 3 weeks.
RESULTS: It’s established that influence of constant light led to an increase in the size of hepatocytes and a decrease in nuclear-cytoplasmic ratio, average ploidy and proportion of binuclear hepatocytes, and also to development of fatty degeneration, a decrease in the expression of Bmal1 and Clock, and an increase in the expression of per2 and p53 in hepatocytes. At the same time, there was a decrease in glycogen content in hepatocytes. Dark deprivation also caused an increase in glucose levels, AST activity, and a decrease in blood levels of total protein and albumin. Constant lighting caused a rearrangement of the circadian rhythms of the area of nuclei, the area of the hepatocyte and nuclear-cytoplasmic ratio, Bmal1, per2, Clock expression, and led to destruction of Ki67 and p53 circadian rhythms in hepatocytes. Under conditions of constant lighting, the circadian rhythms of the content of lipids and glycogen in hepatocytes, ALT activity in the blood, and the content of total and direct bilirubin were also destroyed.
CONCLUSIONS: It has been established that constant illumination causes a restructuring of the circadian rhythms of a number of studied parameters against the background of morphological and functional changes, indicating a decrease in the adaptive capacity of the liver.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Sevil A. Grabeklis
Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry
Email: ombn.ramn@mail.ru
ORCID iD: 0009-0002-3290-3768
Engineer of the Laboratory of Chemistry of Proteolytic Enzymes
Russian Federation, MoscowLiudmila M. Mikhaleva
A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery
Email: mikhalevalm@yandex.ru
ORCID iD: 0000-0003-2052-914X
Scopus Author ID: 57213652796
MD, Dr. Sci. (Med.), Corresponding Member of the Russian Academy of Sciences, Director
Russian Federation, MoscowMaria A. Kozlova
A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery
Email: ma.kozlova2021@outlook.com
ORCID iD: 0000-0001-6251-2560
Scopus Author ID: 55976515700
Dr. Sci. (Biol.), Research Associate of Laboratory of Cell Pathology
Russian Federation, MoscowDavid A. Areshidze
A.P. Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery
Author for correspondence.
Email: labcelpat@mail.ru
ORCID iD: 0000-0003-3006-6281
SPIN-code: 4348-6781
Scopus Author ID: 55929152900
ResearcherId: G-8387-2014
Dr. Sci. (Biol.), Head of Laboratory of Cell Pathology
Russian Federation, MoscowAlexander M. Dygai
Research Institute of General Pathology and Pathophysiology
Email: ombn.ramn@mail.ru
ORCID iD: 0000-0001-6286-5315
Scopus Author ID: 56248430500
ResearcherId: A-4528-2015
MD, Dr. Sci. (Med.), Academician of the Russian Academy of Sciences, Chief Research Associate
Russian Federation, MoscowReferences
- Rapoport SI, Chibisov SM, Breus TK, et al. Khronobiologiya i khronomeditsina: istoriya i perspektivy. Moscow; 2018. P. 9–38. (In Russ.)
- Forger DB. Biological clocks, rhythms, and oscillations: The theory of biological timekeeping. Cambridge (MA): MIT Press; 2017.
- Chibisov SM, Dement’ev MV, Blagonravov ML, et al. Korrelyatsionno-regressionnyy analiz desinkhronoza. Proceedings of the conference “Novyye tekhnolo-gii v rekreatsii zdorov’ya naseleniya”. 2018. P. 5–10. (In Russ.)
- McKenna H, van der Horst GTJ, Reiss I, Martin D. Clinical chronobiology: a timely consideration in critical care medicine. Crit Care. 2018;22(1):124. doi: 10.1186/s13054-018-2041-x
- Walker WH II, Bumgarner JR, Walton JC, et al. Light pollution and cancer. Int J Mol Sci. 2020;21(24):9360. doi: 10.3390/ijms21249360
- Panda S. Circadian physiology of metabolism. Science. 2016;354(6315):1008–1015. doi: 10.1126/science.aah4967
- Zimmet P, Alberti KGMM, Stern N, et al. The circadian syndrome: is the metabolic syndrome and much more! J Intern Med. 2019;286(2):181–191. doi: 10.1111/joim.12924
- Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018;359(6381):eaao0318. doi: 10.1126/science.aao0318
- Foster RG, Roenneberg T. Human responses to the geophysical daily, annual and lunar cycles. Curr Biol. 2008;18(17):R784–R794. doi: 10.1016/j.cub.2008.07.003
- Michel S, Meijer JH. From clock to functional pacemaker. Eur J Neurosci. 2020;51(1):482–493. doi: 10.1111/ejn.14388
- Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418(6901):935–941. doi: 10.1038/nature00965
- Verlande A, Masri S. Circadian clocks and cancer: Timekeeping governs cellular metabolism. Trends Endocrinol Metab. 2019;30(7):445–458. doi: 10.1016/j.tem.2019.05.001
- Anisimov VN. Light desynchronosis and health. Light and Engineering. 2019;27(3):14–25. doi: 10.33383/2018-120
- Leng Y, Musiek ES, Hu K, et al. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019;18(3):307–318. doi: 10.1016/S1474-4422(18)30461-7
- Rumanova VS, Okuliarova M, Zeman M. Differential effects of constant light and dim light at night on the circadian control of metabolism and behavior. Int J Mol Sci. 2020;21(15):5478. doi: 10.3390/ijms21155478
- Bumgarner JR, Nelson RJ. Light at night and disrupted circadian rhythms alter physiology and behavior. Integr Comp Biol. 2021;61(3):1160–1169. doi: 10.1093/icb/icab017
- Fárková E, Schneider J, Šmotek M, et al. Weight loss in conservative treatment of obesity in women is associated with physical activity and circadian phenotype: a longitudinal observational study. Biopsychosoc Med. 2019;13:24. doi: 10.1186/s13030-019-0163-2
- Stevens RG, Davis S, Mirick DK, et al. Alcohol consumption and urinary concentration of 6-sulfatoxymelatonin in healthy women. Epidemiology. 2000;11(6):660–665. doi: 10.1097/00001648-200011000-00008
- Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs against cardiotoxicity induced by anticancer treatments. Front Cardiovasc Med. 2020;6:194. doi: 10.3389/fcvm.2019.00194
- Han Y, Chen L, Baiocchi L, et al. Circadian rhythm and melatonin in liver carcinogenesis: updates on current findings. Crit Rev Oncog. 2021;26(3):69–85. doi: 10.1615/CritRevOncog.2021039881
- Poggiogalle E, Jamshed H, Peterson CM. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism. 2018;84:11–27. doi: 10.1016/j.metabol.2017.11.017
- Mota MC, Silva CM, Balieiro LCT, et al. Social jetlag and metabolic control in non-communicable chronic diseases: a study addressing different obesity statuses. Sci Rep. 2017;7(1):6358. doi: 10.1038/s41598-017-06723-w
- Yalçin M, El-Athman R, Ouk K, et al. Analysis of the circadian regulation of cancer hallmarks by a cross-platform study of colorectal cancer time-series data reveals an association with genes involved in Huntington’s disease. Cancers (Basel). 2020;12(4):963. doi: 10.3390/cancers12040963
- Shurkevich NP, Vetoshkin AS, Gapon LI, et al. Prognostic value of blood pressure circadian rhythm disturbances in normotensive shift workers of the arctic polar region. Arterial Hypertension. 2017;23(1):36–46. (In Russ.) doi: 10.18705/1607-419X-2017-23-1-36-46
- Ul’yanovskaya SA. Vliyaniye fotoperiodiki Severa na organizm cheloveka (obzor literatury). Proceedings of the International Scientific and Practical Conference “Borodinskiye chteniya”, dedicated to the 90th anniversary of Academician of the Russian Academy of Sciences Yuri I. Borodin. Novosibirsk; 2019. P. 346–352. (In Russ.)
- Wei Y, Neuveut C, Tiollais P, Buendia MA. Molecular biology of the hepatitis B virus and role of the X gene. Pathol Biol (Paris). 2010;58(4):267–272. doi: 10.1016/j.patbio.2010.03.005
- Masri S, Sassone-Corsi P. The emerging link between cancer, metabolism, and circadian rhythms. Nat Med. 2018;24(12):1795–1803. doi: 10.1038/s41591-018-0271-8
- Avtandilov GG. Diagnosticheskaya meditsinskaya ploidometriya. Moscow: Meditsina; 2009. 192 p. (In Russ.)
- Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. doi: 10.1038/nmeth.2089
- Ir’yanov YuM, Silant’yeva TA, Gorbach YeN, Ir’yanova TYu. A portable device-and-program complex and the possibilities of itsuse for histological studies. Geniy ortopedii. 2004;(3):96–98. (In Russ.)
- Rubin Grandis J, Melhem MF, Barnes EL, Tweardy DJ. Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer. 1996;78(6):1284–1292. doi: 10.1002/(SICI)1097-0142(19960915)78:6<1284::AID-CNCR17>3.0.CO;2-X
- Lazzeri E, Angelotti ML, Conte C, et al. Surviving acute organ failure: cell polyploidization and progenitor proliferation. Trends Mol Med. 2019;25(5):366–381. doi: 10.1016/j.molmed.2019.02.006
- Nagy P, Teramoto T, Factor VM, et al. Reconstitution of liver mass via cellular hypertrophy in the rat. Hepatology. 2001;33(2):339–345. doi: 10.1053/jhep.2001.21326
- Zhou D, Wang Y, Chen L, et al. Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget. 2016;7(8):8625–8639. doi: 10.18632/oncotarget.7065
- Miyaoka Y, Ebato K, Kato H, et al. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012;22(13):1166–1175. doi: 10.1016/j.cub.2012.05.016
- Yel’chaninov AV, Fatkhudinov TKh. Regeneratsiya pecheni mlekopitayushchikh: Mezhkletochnyye vzaimodeystviya. Moscow: Nauka; 2020. 126 p. (In Russ.)
- Chojnacki C, Walecka-Kapica E, Romanowski M, et al. Protective role of melatonin in liver damage. Curr Pharm Des. 2014;20(30):4828–4833. doi: 10.2174/1381612819666131119102155
- Esteban-Zubero E, Alatorre-Jiménez MA, López-Pingarrón L, et al. Melatonin’s role in preventing toxin-related and sepsis-mediated hepatic damage: a review. Pharmacol Res. 2016;105:108–120. doi: 10.1016/j.phrs.2016.01.018
- Yatsuji S, Hashimoto E, Tobari M, et al. Influence of age and gender in Japanese patients with non-alcoholic steatohepatitis. Hepatol Res. 2007;37(12):1034–1043. doi: 10.1111/j.1872-034X.2007.00156.x
- Hajam YA, Rai S. Melatonin and insulin modulates the cellular biochemistry, histoarchitecture and receptor expression during hepatic injury in diabetic rats. Life Sci. 2019;239:117046. doi: 10.1016/j.lfs.2019.117046
- Corona-Pérez A, Díaz-Muñoz M, Rodríguez IS, et al. High sucrose intake ameliorates the accumulation of hepatic triacylglycerol promoted by restraint stress in young rats. Lipids. 2015;50(11):1103–1113. doi: 10.1007/s11745-015-4066-0
- Schott MB, Rasineni K, Weller SG, et al. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure. J Biol Chem. 2017;292(28):11815–11828. doi: 10.1074/jbc.M117.777748
- Panasiuk A, Dzieciol J, Panasiuk B, Prokopowicz D. Expression of p53, Bax and Bcl-2 proteins in hepatocytes in non-alcoholic fatty liver disease. World J Gastroenterol. 2006;12(38):6198–6202. doi: 10.3748/wjg.v12.i38.6198
- Fu L, Pelicano H, Liu J, et al. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50. doi: 10.1016/s0092-8674(02)00961-3
- Hardeland R. Melatonin and the pathologies of weakened or dysregulated circadian oscilla sis. Oncotarget. 2017;8(57):96476–96477. doi: 10.18632/oncotarget.22255
- Scheving LA. Biological clocks and the digestive system. Gastroenterology. 2000;119(2):536–549. doi: 10.1053/gast.2000.9305
- Zatloukal K, Denk H, Spurej G, Hutter H. Modulation of protein composition of nuclear lamina. Reduction of lamins B1 and B2 in livers of griseofulvin-treated mice. Lab Invest. 1992;66(5):589–597.
- Chua EC, Shui G, Lee IT, et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans. Proc Natl Acad Sci USA. 2013;110(35):14468–14473. doi: 10.1073/pnas.1222647110
- Bailey SM. Emerging role of circadian clock disruption in alcohol-induced liver disease. Am J Physiol Gastrointest Liver Physiol. 2018;315(3):G364–G373. doi: 10.1152/ajpgi.00010.2018
- DePietro RH, Knutson KL, Spampinato L, et al. Association between inpatient sleep loss and hyperglycemia of hospitalization. Diabetes Care. 2017;40(2):188–193. doi: 10.2337/dc16-1683
Supplementary files
