The history of the development of the Ishtan mire massif (Western Siberia)
- Authors: Shchuryakov D.S.1,2
-
Affiliations:
- Национальный исследовательский Томский государственный университет
- Институт биологии внутренних вод Российской академии наук им. И. Д. Папанин
- Issue: Vol 16, No 1 (2025)
- Pages: 4-12
- Section: Experimental works
- URL: https://bakhtiniada.ru/EDGCC/article/view/292154
- DOI: https://doi.org/10.18822/edgcc634517
- ID: 292154
Cite item
Full Text
Abstract
The study of peat macrofossil composition of peat is an important element of paleoecological research of mire. This makes it possible to identify the dynamics and features of the mire formation process. Despite their complexity and the small number of appropriate specialists, such studies do not lose their relevance, as confirmed by many publications in recent years [Kalnina et al., 2015; Baisheva et al., 2019; Vincze et al., 2019; Sinyutkina, 2020; Razjigaeva, 2021; Logvinova et al., 2022; Kutenkov et al., 2022; Maslov, 2023].
In this paper we present the results of studies of the mire formation process in the Ob River valley, based on the construction of successional series of paleoplant communities. We chose the Ishtan mire as the object of study. It is located in the southern part of the Krivosheinsky and northern part of the Shegarsky districts of the Tomsk region (Fig. 1). Drilling of the peat deposit with core sampling was carried out in different parts of the mire, taking into account environmental conditions and vegetation cover. The cores were named "I1", "I2" and "I3". In order to characterize the peat deposit, we prepared samples and analyzed the botanical composition of peat, the degree of decomposition of plant macrofossils and the level of mineral pollution of all three cores (120 samples in total): "I1" - 45 samples, "I2" - 40, "I3" - 35. Sampling was carried out at intervals of 10 cm. The results of the study of the botanical composition of peat are described in an earlier publication [Author, 2023].
The humified part of the samples was washed under running water through a sieve with a mesh diameter of 0.25 mm. The prepared sample was then examined under a microscope. Macroscopic remains were identified using specialized atlases [Dombrovskaya et al., 1959; Katz et al., 1977]. The degree of peat decomposition was assessed using macroscopic and microscopic methods. The classification proposed in 1976 by S. N. Tyuremnov was used as a methodological basis for peat classification [Tyuremnov, 1976].
Core sampling «И1». It is located in the near-terrace part of the massif. The depth of peat here is 4.5 m. Mire formation in this area differs from others. It began with Carex-Menyanthes communities. Tree species did not play a primary role in the formation of phytocenoses throughout the development of the mire (Fig. 2). For this site, the most frequent changes in the directions of transitions of peat types were noted (31 out of 61). The change of plant communities in response to changing environmental conditions occurred here more intensively.
Core sampling «И2». It is located in the central part of the mire massif, occupied by a community dominated by Betula fruticosa and Carex lasiocarpa. The beginning of mire formation in this area is associated with tree (coniferous) communities (Fig. 3). It is characterized by high stability and long-term dominance of trees. With a change in conditions (primarily moisture), sedges and pines settled on the site. As a result of further depletion of conditions, a period begins when the role of sphagnum mosses increases (up to 15% of the cover). Subsequently, the development of a grass community dominated by Carex lasiocarpa was discovered on the site. However, a gradual change in the structure of phytocenoses ultimately led to the formation of a complex multi-tiered community.
Core sampling «И3». It is located in the center of the forested zone of the mire, in an area where the highest plant species diversity was noted during geobotanical studies. The depth of peat here is 3.5 m. Communities with a developed tree layer occupy more than half of the mire area. Here, the greatest role of woody plants in the formation of phytocenoses is indicated throughout the history of the mire development (Fig. 4). Stable communities of woody (mainly coniferous) plants disappeared only once. In that case, they were replaced by a monodominant community of Menyanthes trifoliata. For this type of mire, Menyanthes trifoliata is an important peat-forming plant. According to our results, Menyanthes remains are the most common macrofossils in peat. In these types of mire, they are often found together with woody plants.
It can be concluded that the mire-forming process in most of the territory began with water-logging of coniferous tree communities. With the overall high dynamics of phytocenosis change, this process was most clearly manifested in the near-terrace part. We associate intensive structural transformations with the influence of flood processes, with the active approach/removal of the Ob River bed and flooding of the territory. The active influence of the river is also indicated by the shells of freshwater mollusks, often found in peat at different depths. Based on our research, we come to the conclusion that the vegetation in the mires of river valleys developed both in the direction of increasing the complexity of the phytocenotic structure (for example, increasing species diversity) and in the direction of depletion of the floristic composition (the appearance of monodominant communities with Carex lasiocarpa or Menyanthes trifoliata).
Full Text
##article.viewOnOriginalSite##About the authors
D. S. Shchuryakov
Национальный исследовательский Томский государственный университет; Институт биологии внутренних вод Российской академии наук им. И. Д. Папанин
Author for correspondence.
Email: shuryakoff@yandex.ru
ORCID iD: 0000-0003-3237-1538
SPIN-code: 9917-3985
Scopus Author ID: 57759579400
Russian Federation, Томск; Борок
References
- Baisheva E.Z., Muldashev A.A., Martynenko V.B., Fedorov N.I., Bikbaev I.G., Minaeva N.Yu., Sirin A.A. 2019. Plant diversity and spatial vegetation structure of the calcareous spring fen in the “Arkaulovskoye Mire” Protected Area (Southern Urals, Russia). Mires and Peat, 24(13): 25 pp. doi: 10.19189/MaP.2019.0MB.StA.1890
- Cherepanov S.K. 1995. Vascular plants of Russia and adjacent countries (within the former USSR). Sankt-Peterburg, 990 p. (in Russian). [Черепанов С.К. 1995. Сосудистые растения России и сопредельных государств (в пределах бывшего СССР). Санкт-Петербург, 990 с.]
- Dombrovskaya A.V., Koreneva M.M., Tyuremnov S.N. 1959. Atlas of plant remains found in peat. Gosenergoizdat, Мoscow–Leningrad, 137 p. (in Russian). [Домбровская А.В., Коренева М.М., Тюремнов С.Н. 1959. Атлас растительных остатков, встречаемых в торфе. М.–Л.: Госэнергоиздат, 137 с.]
- Gudilin I.S. (ed.). 1980. Landscape map of the USSR scale 1:2500000. Ministerstvo geologii USSR, Moscow. (in Russian). [Гудилин И.С. (ред.). 1980. Ландшафтная карта СССР масштаба 1:2500000. М.: Министерство геологии СССР.]
- Il’ina I.S., Lapshina E.I., Lavrenko N.N., Mel’tser L.I., Romanova E.A., Bogoiavlenskii B.A., Makhno V.D. 1985. Vegetation cover of the West Siberian Plain. Novosibirsk: Nauka, 251 p. (in Russian). [Ильина И.С., Лапшина Е.И., Лавренко Н.Н., Мельцер Л.И., Романова Е.А., Богоявленский Б.А., Махно В.Д. Растительный покров Западно-Сибирской равнины. Новосибирск: Наука, 251 c.]
- Kalnina L., Kuske E., Ilze Ozola. 2015. Peat stratigraphy and changes in peat formation during the Holocene in Latvia. Quaternary International, 383: 186–195. doi: 10.1007/978-3-319-04364-7_179
- Kats N.Ya., Kats S.V., Skobeyeva Ye.I. 1977. Atlas of plant remains in peat. Nedra: Moscow, 371 p. (in Russian). [Кац Н.Я., Кац С.В., Скобеева Е.И. 1977. Атлас растительных остатков в торфах. М.: Недра, 1977. 371 с.]
- Kutenkov S.A. 2013. The computer program «Korpi» for the construction of stratigraphic charts of peat composition. Trans. Karelian Res. Cent. Russ. Acad. Sci. 6, 171–176 (in Russian). [Кутенков С.А. 2013. Компьютерная программа для построения стратиграфических диаграмм состава торфа "Korpi" // Труды Карельского научного центра Российской академии наук. № 6. С. 171–176].
- Kutenkov S., Chakov V., Kuptsova V. 2022. Topology, vegetation and stratigraphy of far eastern Aapa mires (Khabarovsk region, Russia). Land. 11(1): 96. doi: 10.3390/land11010096
- Lamentowicz M., Marcisz K., Zielińska M., Kaliszan K., Fiałkiewicz-Kozieł B., Kołaczek P., Słowiński M., Lapshina E., Gilbert D., Buttler A., Jassey V.E.J., Laggoun-Defarge F. 2015. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quaternary Research, 84(3): 312–325. doi: 10.1016/j.yqres.2015.09.002
- Lapshina E.D. 1987. The structure and dynamics of the floodplain mires of the Ob River (in the south of the Tomsk Province). Abstract dis. cand. biol. sciences. Tomsk, 18 pp. (in Russian). [Лапшина Е.Д. 1987. Структура и динамика болот поймы реки Оби (на юге Томской области): Автореф. дис. … канд. биол. наук. Томск. 18 с.].
- Lapshina E.D. 1995. The main features of the structure and development of floodplain mires. In: Memory reading of Yu.A. L’vov, Tomsk. pp. 52–56 (in Russian). [Лапшина Е.Д. 1995. Основные черты строения и развития пойменных болот // Чтения памяти Ю.А. Львова. Томск: НИИББ при Том. ун-те. С. 52–56].
- Lapshina E.D., Zarov E.A. 2023. Stratigraphy of peat deposits and mire development in the south and middle taiga zones of Westerns Siberia in Holocene. Environmental Dynamics and Global Climate Change, 14(2): 70–101. doi: 10.18822/edgcc568688
- Liss O.L., Abramova L.I., Avetov N.A., Berezina N.A., Inisheva L.I., Kurnishkova T.V., Sluka Z.A., Tolpycheva T.Yu., Shvedchikova, N.K. 2001. Mire systems of Western Siberia and their environmental importance. Grif i Ko, Tula, 584 p. (in Russian). [Лисс О.Л., Абрамова Л.И., Аветов Н.А., Березина Н.А., Инишева Л.И., Курнишкова Т.В., Слука З.А., Толпышева Т.Ю., Шведчикова Н.К. 2001. Болотные системы Западной Сибири и их природоохранное значение. Тула : Гриф и К, 584 с.]
- Logvinova L.A., Zykova M.V., Krivoshchekov S.V., Drygunova L.A., Perederina I.A., Golubina O.A., Perminova I.V., Konstantinov A.I., Belousov M.V. 2022. Comparative pharmacognostic study of different origin low woody-grass types peats for substantiation of their use as prospective sources of biologically active humic. Khimiya Rastitel'nogo Syr'ya, 1: 277–288. (in Russian). [Логвинова Л.А., Зыкова М.В., Кривощеков С.В., Дрыгунова Л.А., Передерина И.А., Голубина О.А., Перминова И.В., Константинов А.И., Белоусов М.В. 2022. Сравнительное фармакогностическое исследование низинных древесно-травяных видов торфа различного происхождения для обоснования их использования в качестве перспективных источников биологически активных гуминовых кислот // Химия растительного сырья. №1. С. 277–288.] doi: 10.14258/jcprm.20220110663
- L’vov Yu.A. 1991. Swamp resources. In: Prirodnye resursy Tomskoi oblasti, (Gadzhiev I.M., Zemtzov A.A., eds.), pp. 67–83, Nauka, Sibirskoe otdelenie, Novosibirsk (in Russian). [Львов Ю.А. 1991. Болотные ресурсы // Природные ресурсы Томской области / под ред. И.М. Гаджиева, А.А. Земцова. Новосибирск: Наука, Сибирское отделение. С. 67–83.]
- Maslov S.G., Inisheva L.I., Porokhina E.V. 2023. Composition of organic matter and microelements of sphagnum peat of the northern part of the Vasyuganskoye deposit and the direction of their use. Khimiya Rastitel'nogo Syr'ya, 2: 311–318. doi: 10.14258/jcprm.20230211764 (in Russian). [Маслов С.Г., Инишева Л.И., Порохина Е.В. 2023. Состав органического вещества и микроэлементов сфагновых торфов северной части месторождения Васюганское и направление их использования // Химия растительного сырья. 2023. № 2. С. 311–318.]
- Nosova M.B., Lapshina E.D., Notov A.A., Ignatov M.S. 2022. Holocene dynamics of a relict moss complex in the Korotovskoe mire (State Complex "Zavidovo", Russia). Nature Conservation Research, 7(1): 80–95. doi: 10.24189/ncr.2022.010 (In Russian). [Носова М.Б., Лапшина Е.Д., Нотов А.А., Игнатов М.С. 2022. Голоценовая динамика реликтового комплекса мхов Коротовского болота (Государственный комплекс "Завидово", Россия) // Nature Conservation Research. Заповедная наука. 2022. Т.7, № 1. С. 80–95.]
- Razjigaeva N.G., Grebennikova T.A., Ganzey L.A., Mokhova L.M., Chakov V.V., Klimin M.A., Zakharchenko E.N. 2021. The Stratigraphy of the Blanket Peatland and the Development of Environments on Bolshoi Shantar Island in the Late Glacial–Holocene. Russian Journal of Pacific Geology. 15(3): 252–267. doi: 10.1134/S1819714021030064
- Schuryakov D. S. 2023. The results of study of botanical composition of peat deposit of the Ishtan swamp massif. In: Botanika i botaniki v menyayushchemsya mire: Trudy Mezhdunarodnoi nauchnoi konferentsii, posvyashchennoi 135-letiyu kafedry botaniki i 145-letiyu Tomskogo gosudarstvennogo universiteta, NI TSU, Tomsk, p. 323–329 (in Russian). [Щуряков, Д. С. Результаты исследования ботанического состава торфяной залежи болотного массива Иштан / Д. С. Щуряков // Ботаника и ботаники в меняющемся мире: Труды Международной научной конференции, посвященной 135-летию кафедры ботаники и 145-летию Томского государственного университета, Томск, 14–16 ноября 2023 года. Томск: НИ ТГУ, 2023. С. 323–329.] doi: 10.17223/978-5-7511-2661-2/75
- Sinyutkina A.A. 2020. Estimation of the raised bogs peat deposit transformation of West Siberia south-eastern part. Geosphere Res., 1: 78–87. (in Russian). [Синюткина А. А. 2020. Оценка трансформации торфяной залежи осушенных верховых болот юго-восточной части Западной Сибири // Геосферные исследования. №1. С. 78–87.] doi: 10.17223/25421379/14/6
- Tsyganov A. N., Zarov E.A., Mazei Yu.A., Kulkov M.G., Babeshko K. V., Payne R.J., Ratcliffe J.L., Fatynina Yu.A., Zazovskaya E., Lapshina E.D.2021. Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene. Ambio. doi: 10.1007/s13280-021-01545-7
- Tyuremnov S.N. 1976. Peat deposits. Nedra: Moscow. 488 pp. (In Russian). [Тюремнов С.Н. 1976. Торфяные месторождения. М.: Недра, 1976. 487 с.]
- Vincze I., Finsinger W., Jakab G., Braun M., Hubay K., Veres D., Deli T., Szalai Z., Szabó Z., Magyari E. 2019. Paleoclimate reconstruction and mire development in the Eastern Great Hungarian Plain for the last 20,000 years. Review of Palaeobotany and Palynology, 271: 104112. doi: 10.1016/j.revpalbo.2019.104112
Supplementary files
