Assessment of chewing efficiency with artificial intelligence

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Artificial intelligence (AI) is a system based on machine learning of neural networks. AI structure resembles nerve tissue, having the so called “neurons”, i.e. mathematical codes. A neural network has three levels, including the input layer (information enters the system), the hidden layer (multidimensional data is analyzed), and the output layer (the system generates conclusions). Current neural networks use a “perceptron”, i.e. a neuron consisting of a large number of interconnected input and hidden layers, which makes the system capable of self-learning and analysis of non-linear data and generalization and processing of incomplete information, including the method of projection onto latent structures.

AIM: To develope a program based on multivariate data analysis to determine the chewing efficiency at the stages of prosthetics.

METHODS: In 2016, the Department of Orthopedic Dentistry and Orthodontics developed and tested a program for determining chewing efficiency based on the analysis of digital occlusiograms obtained by scanning dental prints on a wax plate. The results were processed by mathematical methods of multivariate data analysis using the projection on latent structures (the partial least-squares [PLS-2] model), which allowed assessing the relationship between the value of chewing efficiency and the area and brightness characteristics of the areas corresponding to occlusal contacts. The program compared the measurement results with the reference occlusiograms in the database and gave a conclusion. The experiments yielded statistically significant results for the efficiency of the program compared to traditional chewing tests. Due to the relevance of implementing AI in orthopedic treatment, the decision was made to improve the training methods of the program to update the existing array of reference data. Starting in 2019, 24 occlusiograms were added to the previously received data with dental defects from 9 to 12 teeth. Using an expanded database, the program, when analyzing the occlusiogram of a new patient, allowed to consider changes in chewing efficiency obtained earlier with the Trezubov chewing test for various defects of the dentition and compare the reference and minimally achievable values of chewing efficiency. The program algorithm was verified by the researchers using the classical Trezubov chewing test. Chewing efficiency was measured as a percentage.

RESULTS: The obtained combinations of the digital algorithm parameters for assessing chewing efficiency resulted in increased accuracy in the range of 4%–6% compared to the traditional Rubinov and Ryakhovsky chewing tests.

CONCLUSIONS: A digital algorithm for assessing chewing efficiency allows for quick and accurate assessment without the use of time-consuming analog tests.

About the authors

Nikita E. Levashov

Ryazan State Medical University named after academician I.P. Pavlov

Author for correspondence.
Email: nik13373228@mail.ru
ORCID iD: 0009-0007-7667-6356
Russian Federation, Ryazan

Alexander V. Gus’kov

Ryazan State Medical University named after academician I.P. Pavlov

Email: guskov74@gmail.com
ORCID iD: 0000-0001-9612-0784
Russian Federation, Ryazan

Aleksandr A. Oleynikov

Ryazan State Medical University named after academician I.P. Pavlov

Email: bandprod@yandex.ru
Russian Federation, Ryazan

Nikolai S. Domashkevich

Ryazan State Medical University named after academician I.P. Pavlov

Email: domashkevich71@gmail.com
ORCID iD: 0000-0002-9181-9462
Russian Federation, Ryazan

References

  1. Apresyan SV. Kompleksnoe tsifrovoe planirovanie stomatologicheskogo lecheniya [dissertation]. Мoscow; 2020. 218 p. (In Russ).
  2. Zhu H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annual Review of Pharmacology and Toxicology. 2020;60:573–589. doi: 10.1146/annurev-pharmtox-010919-023324
  3. Mitin NE, Vasilyeva TA, Vasilyev EV. The chewing efficiency determining method based on application of original computer program using multivariate data analysis. I.P. Pavlov Russian Medical Biological Herald. 2016;(1):129–133.
  4. Vasil’eva TA. Sovershenstvovanie kontrolya vosstanovleniya zhevatel’noi effektivnosti na etapakh ortopedicheskogo lecheniya nes’’emnymi zubnymi protezami [abstract of dissertation]. Voronezh; 2021. 25 p. (In Russ).
  5. Guyter OS, Mitin NE, Oleynikov AA, et al. Research of chewing efficiency in patients with extensive acquired defects of the upper jaw after resections of nasopharyngeal zone tumors and various terms of orthopedic rehabilitation. Stomatologiya. 2019;98(4):80–83. (In Russ). doi: 10.17116/stomat20199804180

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».