Том 5, № 1 (2024)

Обложка

Весь выпуск

ТЕОРИЯ БЕТОНА И ЖЕЛЕЗОБЕТОНА

Исследование влияния местной низкой прочности бетона на несущую способность изгибаемых железобетонных балок

Тамразян А.Г.

Аннотация

В железобетонных балках может возникать местная низкая прочность бетона при определенных условиях, например, плохая практика строительства может вызвать такие проблемы как пустоты в бетоне, образование полостей на поверхности, образование трещин в блоках, появление поверхностных раковин и создать участки с низкой прочностью бетона. В этом исследовании представлена реакция изгибаемых шарнирно опертых железобетонных балок с различными местными участками низкой прочности бетона вдоль пролета. Для описания свойств бетона приняты модифицированные модели, а для свойств стали -идеальная упругопластическая модель. Балка разделена на три основные части: одна чувствительна к изгибающему моменту, вторая чувствительна к сдвигу, а третья чувствительна к сцеплению. Переменные включали два типа прочности бетона и один диаметр арматуры. Результаты исследования показывают, что наиболее критическая область с низкой прочностью бетона вдоль пролета балки представляет собой зону вблизи опор, что отражается на пластичности кривых нагрузка-прогиб. Разработана новая обобщенная эмпирическая модель для предсказания эффекта снижения несущей способности от местного низкопрочного бетона.
Железобетонные конструкции. 2024;5(1):3-14
pages 3-14 views

Прогнозирование остаточного срока эксплуатации железобетонных конструкций

Терехов И.А., Трекин Н.Н., Кодыш Э.Н.

Аннотация

Основными показателями долговечности, которые характеризуют время работы конструкции до наступления аварийного состояния, являются общий срок службы и остаточный срок эксплуатации, определение которых позволяет более обоснованно подойти к вопросу планирования текущего или капитального ремонта в здании.Рассмотрены наиболее распространенные инженерные методики, которые позволяют прогнозировать для железобетонных конструкций остаточный срок эксплуатации: по нормативным срокам и объектам-аналогам, по внешним признакам, на основе изменения коэффициентов запаса и по критерию прочности. Для ряда методик приведены их модификации. По результатам анализа методик были установлены их основные преимущества и недостатки.В качестве предложения по совершенствованию существующих подходов предложена методика, в которой за остаточный срок эксплуатации принят интервал между визуальными обследованиями.
Железобетонные конструкции. 2024;5(1):15-26
pages 15-26 views

Оценка прочности и деформативности уголковых анкерных упоров в монолитных сталежелезобетонных перекрытиях

Тонких Г.П., Чесноков Д.А.

Аннотация

Существующие подходы к проектированию узлов объединения монолитных сталежелезобетонных перекрытий оперируют прочностными и деформативными характеристиками анкерных упоров, которые определяются путем сдвиговых испытаний. В статье рассмотрены основные механизмы разрушения узла объединения сталежелезобетонного перекрытия на уголковых анкерных упорах, закрепляемых с помощью стальных дюбелей; дана оценка влияния основных конструктивных параметров узла на прочность и деформативность данных упоров. В статье проанализированы результаты сдвиговых испытаний, выполненных как авторами, так и другими исследователями. Установлена зависимость прочности и деформативности уголковых анкерных упоров от их высоты, ориентации относительно вектора сдвигающей силы и геометрических параметров профилированного настила.
Железобетонные конструкции. 2024;5(1):27-44
pages 27-44 views

Разработка датчика напряжений твердых тел

Трекин Н.Н., Кодыш Э.Н., Шмаков С.Д., Чаганов А.Б., Черепанов А.В.

Аннотация

В публикации представлены результаты опытного конструирования корпуса закладного датчика напряжений, позволяющего определять напряжения в сечении масштабных лабораторных монолитных конструкций, выполненных на основе минеральных и полимерных вяжущих (бетон, гипс и т.п.). Задачами конструирования являлась разработка конструктивного решения корпуса датчика напряжения на основе тензорезисторов, имеющего малые размеры, низкую стоимость изготовления, а также высокую разрешающую способность и стабильность показаний на всем участке чувствительности (напряжение до 400 кгс/см2).Датчик напряжения позволяет с высокой точностью определять напряжение в лабораторных конструкциях, не оказывая значительного влияния на напряженно-деформированное состояние сечения на разных этапах работы конструктивного элемента.
Железобетонные конструкции. 2024;5(1):45-56
pages 45-56 views

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В СТРОИТЕЛЬСТВЕ

Обеспечение сейсмостойкости железобетонных зданий

Мкртычев О.В., Решетов А.А.

Аннотация

В большинстве современных исследований, как правило, не учитывается случайный характер сейсмического воздействия, которое является ярко выраженным нестационарным случайным процессом. Адекватная оценка сейсмостойкости зданий и сооружений возможна только на основе методик, позволяющих учесть большую изменчивость параметров сейсмического воздействия. В статье представлена вероятностная методика расчета многоэтажных железобетонных зданий, проектируемых в сейсмически районах с учетом физической, геометрической и конструктивной нелинейности, а также взаимодействия сооружения с нелинейно-деформируемым основанием. Разработанная методика позволяет обеспечить требуемый уровень сейсмостойкости для проектируемых зданий на основе критерия необрушения. В качестве примера рассматривается расчет многоэтажного железобетонного здания. Внешнее сейсмическое воздействие рассматривается в виде нестационарного случайного процесса, который получен посредством умножения стационарного случайного процесса на детерминированную огибающую функцию. Для моделирования нелинейной работы железобетонных конструкций используется модель бетона с функцией накопления повреждений при циклических нагрузках, а также учитывающая деградацию прочности и жесткости материала при интенсивном землетрясении. Расчет проводился с использованием явных методов интегрирования уравнений движения на вычислительном кластере с применением технологии параллельных вычислений. Представленная методика позволяет исследовать характер разрушения железобетонных конструкций при интенсивных землетрясениях и выявлять зоны с дефицитом несущей способности. Предлагаемый вероятностный подход к моделированию сейсмического воздействия как реализации нестационарного случайного процесса с заданными параметрами совместно с учетом нелинейного деформирования железобетонных конструкций здания и основания позволяет управлять уровнем надежности и проектировать здания с заданной обеспеченностью сейсмостойкости.
Железобетонные конструкции. 2024;5(1):57-67
pages 57-67 views

Вариационно-разностный метод расчета слоистых резинометаллических виброизоляторов, применяемых для защиты железобетонных зданий от техногенной вибрации

Сизов Д.К.

Аннотация

В современном строительном комплексе г. Москвы для защиты зданий и сооружений от техногенной вибрации, возникающей от движения составов рельсового транспорта (поездов метрополитена, линий железной дороги и трамваев) используются слоистые резинометаллические виброизоляторы [1]. Чаще всего для определения их статических и динамических характеристик применяют метод конечного элемента (МКЭ), который позволяет определить все компоненты напряженно-деформированного состояния и частоты свободных колебаний в нагруженном состоянии практически для любых конструктивных форм изоляторов. Однако, для наиболее популярных программных комплексов, реализующих МКЭ, задача оптимизации конструктивной формы виброизолятора все еще требует значительных временных затрат на многократное изменение расчетной сетки конечных элементов, повторного задания граничных условий и реализацию серии расчетов. Лишь некоторые из программных комплексов, реализующих МКЭ, решают оптимизационные задачи формы рассчитываемого изделия, чаще всего, это относятся к иностранным программным продуктам с универсальным функционалом. Наиболее близко к методу конечного элемента (МКЭ) по своим вычислительным возможностям соответствует вариационно-разностный метод (ВРМ). С использованием ВРМ возможно создать программные модули, многократно автоматически решающие трехмерные задачи теории упругости с учетом изменившейся геометрии виброизолятора: габаритов изделия, расположения перфораций в пределах резиновых слоев, а также толщин резинового слоя и других параметров, важных для получения эффективного технического решения для виброизоляции зданий. Далее в статье описывается методика реализации вариационно-разностного метода (ВРМ) применительно к решению задачи определения компонент напряженно-деформированного состояния внутри трехмерного слоистого виброизолятора с перфорациями различных размеров, имеющими различное расположение относительно контура виброизолятора, т.е. приводится решение задачи оптимизации трехмерной формы виброизолятора.
Железобетонные конструкции. 2024;5(1):68-78
pages 68-78 views

Сборно-монолитные железобетонные большепролетные оболочки уникальных зданий из укрупненных элементов

Раззаков Н.С.

Аннотация

Приводятся результаты экспериментально-теоретических исследований, разработанных большепролетных сборно-монолитных железобетонных оболочек сложной геометрии, собираемых из укрупненных монтажных элементов. Исследования проводились на натурных составных оболочках пролетом 48 и 96 м, ее укрупненных элементов 3х18м и 3х24м, а также на модели оболочки в масштабе 1:10 и 1:4. Исследовано напряженно-деформированное состояние оболочек подобного типа при разных вариантах монтажа и раскружаливания конструкции. Даются рекомендации по рациональным методам возведения оболочек из укрупненных элементов для уникальных зданий общественного назначения.
Железобетонные конструкции. 2024;5(1):79-90
pages 79-90 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».