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CHAPTER 5

JACOBIAN CONJECTURE
AND SPECHT AND BURNSIDE TYPE PROBLEMS

This chapter explores an approach to polynomial mappings and the Jacobian Conjecture and related
questions, initiated by A. V. Yagzhev, whereby these questions are translated to identities of algebras,
leading to a solution in [217] of the version of the Jacobian Conjecture for free associative algebras.
(The first version, for two generators, was obtained by Dicks and Levin (see [73,74]), and the full
version by Schofield [175].) We start by laying out the basic framework in this introduction. Next,
we set up Yagzhev’s correspondence to algebras in In Sec. 5.1, leading to the basic notions of weak
nilpotence and Engel type. In Sec. 5.2 we discuss the Jacobian Conjecture in the context of various
varieties, including the free associative algebra.

Given any polynomial endomorphism ¢ of the n-dimensional affine space A" = Speck|z1,...,z,]
over a field k, we define its Jacobian matriz as the matrix (9¢*(z;)/0x;),; ;<,- The determinant of
the Jacobian matrix is called the Jacobian of ¢. The celebrated Jacobian Conjecture JC,, in dimension
n > 1 asserts that for any field k of characteristic zero, any polynomial endomorphism ¢ of Ay having
Jacobian 1 is an automorphism. Equivalently, one can say that ¢ preserves the standard top-degree
differential form dzi A- - -Adxy, € Q" (A}). References to this well known problem and related questions
can be found in [21,135,202]. By the Lefschetz principle it is sufficient to consider the case k = C;
obviously, JC,, implies JC,,, if n > m. The conjecture JC,, is obviously true in the case n = 1, and it
is open for n > 2.

The Jacobian Conjecture, denoted as JC, is the conjunction of the conjectures JC,, for all finite
n. The Jacobian Conjecture has many reformulations (such as the Kernel Conjecture and the Image
Conjecture, cf. [90, 93,202,226, 227] for details) and is closely related to questions concerning quan-
tization. It is stably equivalent to the following conjecture of Dixmier, concerning automorphisms of
the Weyl algebra W,,, otherwise known as the quantum affine algebra.

Dixmier Conjecture DC,,. Is End(W,) = Aut(W,,)?

The implication DC,, — JC,, is well known, and the inverse implication JC5, — DC,, was recently
obtained independently by Tsuchimoto [191] (using p-curvature) and Belov and Kontsevich [41,42]
(using Poisson brackets on the center of the Weyl algebra). Bavula [30] has obtained a shorter proof,
and also obtained a positive solution of an analog of the Dixmier Conjecture for integro differential
operators, cf. [28]. He also proved that every monomorphism of the Lie algebra of triangular polynomial
derivations is an automorphism [29] (an analog of Dixmier’s conjecture).

The Jacobian Conjecture is closely related to many questions of affine algebraic geometry con-
cerning affine space, such as the Cancellation Conjecture (see Sec. 5.2.4). If we replace the variety
of commutative associative algebras (and the accompanying affine spaces) by an arbitrary algebraic
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variety !, one easily gets a counterexample to the JC. So, strategically these questions deal with some
specific properties of affine space which we do not yet understand, and for which we do not have the
appropriate formulation apart from these very difficult questions.

It seems that these properties do indicate some sort of quantization. From that perspective, non-
commutative analogs of these problems (in particular, the Jacobian Conjecture and the analog of
the Cancellation Conjecture) become interesting for free associative algebras, and more generally, for
arbitrary varieties of algebras.

We work in the language of universal algebra, in which an algebra is defined in terms of a set of op-
erators, called its signature. This approach enhances the investigation of the Yagzhev correspondence
between endomorphisms and algebras. We work with deformations and so-called packing properties
to be introduced in Secs. 5.2 and 5.2.2.1, which denote specific noncommutative phenomena which
enable one to solve the JC for the free associative algebra.

From the viewpoint of universal algebra, the Jacobian conjecture becomes a problem of “Burnside
type,” by which we mean the question of whether a given finitely generated algebraic structure satis-
fying given periodicity conditions is necessarily finite, cf. [225]. Burnside originally posed the question
of the finiteness of a finitely generated group satisfying the identity ™ = 1. (For odd n > 661, coun-
terexamples were found by Novikov and Adian, and quite recently Adian reduced the estimate from
661 to 101). Another class of counterexamples was discovered by Ol’'shanskij [151]. Kurosh posed the
question of local finiteness of algebras whose elements are algebraic over the base field. For algebraicity
of bounded degree, the question has a positive solution, but otherwise there are the Golod-Shafarevich
counterexamples.

Burnside type problems play an important role in algebra. Their solution in the associative case
is closely tied to Specht’s problem of whether any set of polynomial identities can be deduced from
a finite subset. The JC can be formulated in the context of whether one system of identities implies
another, which also relates to Specht’s problem.

In the Lie algebra case there is a similar notion. An element x € L is called Engel of degree n if
[...[ly,z],z]...,x] = 0 for any y in the Lie algebra L. Zelmanov’s result that any finitely generated Lie
algebra of bounded Engel degree is nilpotent yielded his solution of the Restricted Burnside Problem
for groups. Yagzhev introduced the notion of Engelian and weakly nilpotent algebras of arbitrary
signature (see Definitions 5.1.7 and 5.1.5), and proved that the JC is equivalent to the question of
weak nilpotence of algebras of Engel type satisfying a system of Capelli identities, thereby showing
the relation of the JC with problems of Burnside type.

A negative approach. Let us mention a way of constructing counterexamples. This approach, devel-
oped by Gizatullin, Kulikov, Shafarevich, Vitushkin, and others, is related to decomposing polynomial
mappings into the composition of o-processes [?,96,135,177,204-206]. It allows one to solve some poly-
nomial automorphism problems, including tameness problems, the most famous of which is Nagata’s
Problem concerning the wildness of Nagata’s automorphism

(2,y,2) = (& = 2(x2 + 9y — (22 + 9°)°2, y + (22 + %)z, 2),
cf. [148]. Its solution by Shestakov and Umirbaev [183] is the major advance in this area in the last
decade. The Nagata automorphism can be constructed as a product of automorphisms of K(z)[z,y],

some of them having non-polynomial coefficients (in K(z)). The following theorem of Abhyankar—
Moh-Suzuki [2,140,189] can be viewed in this context:

AMS Theorem. If f and g are polynomials in K|[z] of degrees n and m for which K|[f, g] = K|z],
then n divides m or m divides n.

Degree estimate theorems are polynomial analogs to Liouville’s approximation theorem in algebraic
number theory ( [49,106,137,143]). T. Kishimoto has proposed using a program of Sarkisov, in par-
ticular for Nagata’s Problem. Although difficulties remain in applying “o-processes” (decomposition
of birational mappings into standard blow-up operations) to the affine case, these may provide new

! Algebraic geometers use word wariety, roughly speaking, for objects whose local structure is obtained from the
solution of system of algebraic equations. In the framework of universal algebra, this notion is used for subcategories of
algebras defined by a given set of identities. A deep analog of these notions is given in [34].
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insight. If we consider affine transformations of the plane, we have relatively simple singularities at
infinity, although for bigger dimensions they can be more complicated. Blow-ups provide some un-
derstanding of birational mappings with singularities. Relevant information may be provided in the
affine case. The paper [47] contains some deep considerations about singularities.

5.1. THE JACOBIAN CONJECTURE AND BURNSIDE TYPE PROBLEMS, VIA ALGEBRAS

In this section we translate the Jacobian Conjecture to the language of algebras and their identities.
This can be done at two levels: At the level of the algebra obtained from a polynomial mapping, leading
to the notion of weak nilpotence and Yagzhev algebras and at the level of the differential and the algebra
arising from the Jacobian, leading to the notion of Engel type. The Jacobian Conjecture is the link
between these two notions.

5.1.1. The Yagzhev correspondence.

5.1.1.1.  Polynomial mappings in universal algebra. Yagzhev’s approach is to pass from algebraic
geometry to universal algebra. Accordingly, we work in the framework of a universal algebra A having
signature Q. A denotes A x --- x A, taken m times.

We fix a commutative, associative base ring C, and consider C-modules equipped with extra oper-
ators A — A, which we call m-ary. Often one of these operators will be (binary) multiplication.
These operators will be multilinear, i.e., linear with respect to each argument. Thus, we can define the
degree of an operator to be its number of arguments. We say an operator W(z1,...,z,,) is symmetric
if U(x1,...,%m) = Y (Tr1),- - Ta(m)) for all permutations 7.

Definition 5.1.1. A string of operators is defined inductively. Any operator ¥(xi,...,x,,) is a
m

string of degree m, and if s; are strings of degree d;, then W(sy,...,sy,) is a string of degree ) d;. A

mapping j=1
a:AM A

is called polynomial if it can be expressed as a sum of strings of operators of the algebra A. The degree

of the mapping is the maximal length of these strings.

Example 5.1.2. Assume that an algebra A has two extra operators: a binary operator «(z,y) and
a tertiary operator 3(z,y,z). The mapping F': A — A given by = — = + a(x,z) + B(a(x, ), z,x) is
a polynomial mapping of A, having degree 4. Note that if A is finite dimensional as a vector space,
not every polynomial mapping of A as an affine space is a polynomial mapping of A as an algebra.

5.1.1.2.  Yagzhev’s correspondence between polynomial mappings and algebras. Here we associate an
algebraic structure to each polynomial map. Let V' be an n-dimensional vector space over the field k,
and F' : V — V be a polynomial mapping of degree m. Replacing F' by the composite TF', where T
is a translation such that TF(0) = 0, we may assume that F(0) = 0. Given a base {e;}"; of V, and
for an element v of V' written uniquely as the sum ) x;e;, for z; € k, the coefficients of e; in F'(v)
are (commutative) polynomials in the x;. Then F' can be written in the following form:

T — FOZ(ZII) + Fh(ill) + -+ sz(az)
where each Fj;(x) is a homogeneous form of degree a, i.e.,
Foi(z) = Z kgl xin,
]1++]n:a
with Fp; = 0 for all 4, and

n
Fii(@) = phiy.
k=1

We are interested in invertible mappings that have a nonsingular Jacobian matrix (y;;). In partic-
ular, this matrix is nondegenerate at the origin. In this case det(u;;) # 0, and by composing F' with
an affine transformation we arrive at the situation for which ug; = dg;. Thus, the mapping F' may be
taken to have the following form:
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m
Z; —).’L‘Z—ZFM (5.1.1)
k=2

Suppose we have a mapping as in (5.1.1). Then the Jacobi matrix can be written as £ —G1 — - - —
Gm—1 where G; is an n X n matrix with entries which are homogeneous polynomials of degree i. If the
Jacobian is 1, then it is invertible with inverse a polynomial matrix (of homogeneous degree at most
(n —1)(m — 1), obtained via the adjoint matrix).

If we write the inverse as a formal power series, we compare the homogeneous components and get:

> M=o, (5.1.2)

where M is the sum of products aq,aq, in which the factor a; occurs m; times, and J denotes the
multi-index (j1,...,Jq)-

Yagzhev considered the cubic homogeneous mapping * — « + (x,z,x), whereby the Jacobian
matrix becomes F — (G3. We return to this case in Remark 5.1.9. The slightly more general approach
given here presents the Yagzhev correspondence more clearly and also provides tools for investigating
deformations and packing properties (see Sec. 5.2.2.1). Thus, we consider not only the cubic case (i.e.
when the mapping has the form

a:i—>xi+Pi(a:1,...,a;n); 1=1,...,n,

with P; cubic homogenous polynomials), but the more general situation of arbitrary degree.

For any ¢, the set of (vector valued) forms {F};}"; can be interpreted as a homogeneous mapping
Oy : V — V of degree £. When char(k) does not divide ¢, we take instead the polarization of this
mapping, i.e. the multilinear symmetric mapping

R
such that
(FM(xl), . ,Fg,i(xn)) = \I/g(w, e ,:I}) . 6'
Then Eq. (5.1.1) can be rewritten as follows:

a:—>zc—z\llg(az,...,a:). (5.1.3)
=2

We define the algebra (A, {¥,}), where A is the vector space V' and the ¥, are viewed as operators
Al = A,

Definition 5.1.3. The Yagzhev correspondence is the correspondence from the polynomial map-
ping (V, F) to the algebra (A,{¥,}).

5.1.2. Translation of the invertibility condition to the language of identities. The next
step is to bring in algebraic varities, defined in terms of identities.

Definition 5.1.4. A polynomial identity (PI) of A is a polynomial mapping of A, all of whose
values are identically zero.

The algebraic variety generated by an algebra A, denoted as Var(A), is the class of all algebras
satisfying the same Pls as A.

Now we come to a crucial idea of Yagzhev: The invertibility of F' and the invertibility of the Jacobian
of F can be expressed via (5.1.2) in the language of polynomial identities.

Namely, let
m
y="F(z) =z Wx)
=2
Then

Flz)=> t(), (5.1.4)
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where each t is a term, a formal expression in the mappings {¥,};*, and the symbol z. Note that
the expressions Wq(x, Us(z,z,x)) and VUo(Vs(x,x,x),z) are different although they represent same
element of the algebra. Denote by |¢| the number of occurrences of variables, including multiplicity,
which are included in ¢.

The invertibility of F' means that, for all ¢ > qq,

D ta)=0, Vae A (5.1.5)
[t|=q
Thus we have translated invertibility of the mapping F' to the language of identities. (Yagzhev had
an analogous formula, where the terms only involved ¥3.)
Definition 5.1.5. An element a € A is called nilpotent of index < n if
M(a,a,...,a)=0
for each monomial M (z1,xs,...) of degree > n. A is weakly nilpotent if each element of A is nilpotent.
A is weakly nilpotent of class k if each element of A is nilpotent of index k. (Some authors use the
terminology index instead of class.) Equation (5.1.5) means A is weakly nilpotent.
To stress this fundamental notion of Yagzhev, we define a Yagzhev algebra of order qg to be a weakly

nilpotent algebra, i.e., satisfying the identities (5.1.5), also called the system of Yagzhev identities
arising from F.

Summarizing, we get the following fundamental translation from conditions on the endomorphism
F to identities of algebras.

Theorem 5.1.6. The endomorphism F is invertible if and only if the corresponding algebra is a
Yagzhev algebra of high enough order.

5.1.2.1.  Algebras of Engel type. The analogous procedure can be carried out for the differential
mapping. We recall that ¥, is a symmetric multilinear mapping of degree £. We denote the mapping
y— Uy, x,...,x) as Ady_1(x).

Definition 5.1.7. An algebra A is of Engel type s if it satisfies a system of identities

> > Adg,(x)---Adg,(z) = 0. (5.1.6)

Imy=s Qi+-Foag=my
A is of Engel type if A has Engel type s for some s.

Theorem 5.1.8. The endomorphism F has Jacobian 1 if and only if the corresponding algebra has
Engel type s for some s.

Proof. Let 2’ = x + dx. Then
Uy(z') = Uy(x) + £¥(dx,z,...,2) +forms containing more than one occurence of dz.  (5.1.7)

Hence the differential of the mapping

m
F::cH:c—Z\Ifg(m,...,ac)

(=2
is
m
(E - ZeAd“(g;)> -dx
(=2
The identities (5.1.2) are equivalent to the system of identities (5.1.6) in the signature =
(Va,...,¥y), taking aa; = Ady, and m; = deg ¥y — 1. O

Thus, we have reformulated the condition of invertibility of the Jacobian in the language of identities.
As explained in [202], it is well known from [21,220] that the Jacobian Conjecture can be reduced
to the cubic homogeneous case; i.e., it is enough to consider mappings of type

r— z+ Us(z,z,x).
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In this case the Jacobian assumption is equivalent to the Engel condition — nilpotence of the mapping
Ads(x)[y] (i.e. the mapping y — (y,z,z)). Invertibility, considered in [21], is equivalent to weak
nilpotence, i.e., to the identity Zm:k t = 0 holding for all sufficiently large k.

Remark 5.1.9. In the cubic homogeneous case, j = 1, a; = 2 and m; = s, and we define the
linear map
Ady, ry — (z,2,9)
and the index set T; C {1,...,q} such that i € Tj if and only if oy = j.
Then Eq. (5.1.6) has the following form:

Ads/? =o.

Thus, for a ternary symmetric algebra, Engel type means that the operators Ad,, for all z are
nilpotent. In other words, the mapping

Ads(z) 1y — (z,2,y)

is nilpotent. Yagzhev called this the Engel condition. (For Lie algebras the nilpotence of the operator
Ad, : y — (z,y) is the usual Engel condition. Here we have a generalization for arbitrary signature.)

Here are Yagzhev’s original definitions, for edification. A binary algebra A is Fngelian if for any
element a € A the subalgebra < R,, L, > of vector space endomorphisms of A generated by the left
multiplication operator L, and the right multiplication operator R, is nilpotent, and weakly Engelian
if for any element a € A the operator R, + L, is nilpotent.

This leads us to the Generalized Jacobian Conjecture:

Conjecture. Let A be an algebra with symmetric k-linear operators Wy, for £ = 1,...,m. In any
variety of Engel type, A is a Yagzhev algebra.

By Theorem 5.1.8, this conjecture would yield the Jacobian Conjecture.

5.1.2.2. The case of binary algebras. When A is a binary algebra, Fngel type means that the left
and right multiplication mappings are both nilpotent.

A well-known result of S. Wang [21] shows that the Jacobian Conjecture holds for quadratic map-
pings

x— x+ Uy, x).

If two different points (z1,...,z,) and (y1,...,yn) of an affine space are mapped to the same
point by (fi,..., fn), then the fact that the vertex of a parabola is in the middle of the interval
whose endpoints are at the roots shows that all f;(x) have gradients at this midpoint P = (= + y)/2
perpendicular to the line segment [x,y]|. Hence the Jacobian is zero at the midpoint P. This fact
holds in any characteristic # 2.

In Sec. 5.1.3 we prove the following theorem of Yagzhev, cf. Definition 5.1.15 below:

Theorem 5.1.10 (Yagzhev). FEvery symmetric binary Engel type algebra of order k satisfying the
system of Capelli identities of order n is weakly nilpotent, of weak nilpotence index bounded by some
function F(k,n).

Remark 5.1.11. Yagzhev formulated his theorem as follows: Every binary weakly Engel algebra of
order k satisfying the system of Capelli identities of order n is weakly nilpotent, of index bounded by
some function F(k,n). We obtain this reformulation, by replacing the algebra A by the algebra A™
with multiplication given by (a,b) = ab + ba.

The following problems may help us understand the situation.

Problem. Obtain a straightforward proof of this theorem and deduce from it the Jacobian Con-
jecture for quadratic mappings.

Problem (generalized Jacobian Conjecture for quadratic mappings). Is every symmetric binary
algebra of Engel type k, a Yagzhev algebra?
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5.1.2.8.  The case of ternary algebras. As we have observed, Yagzhev reduced the Jacobian Conjec-
ture over a field of characteristic zero to the question:

Question 5.1.12. Is every finite dimensional ternary Engel algebra a Yagzhev algebra?

Druzkowski [84, 85] reduced this to the case when all cubic forms W3; are cubes of linear forms. Van
den Essen and his school reduced the JC to the symmetric case (see [91,92] for details). Bass, Connell,
and Wright [21] use other methods including inversions. Yagzhev’s approach matches that of [21], but
using identities instead.

5.1.2.4. An example in nonzero characteristic of an Engel algebra that is not a Yagzhev algebra.
Now we give an example, over an arbitrary field k of characteristic p > 3, of a finite dimensional
Engel algebra that is not a Yagzhev algebra, i.e., not weakly nilpotent. This means that the situation
for binary algebras differs intrinsically from that for ternary algebras, and it would be worthwhile to
understand why.

Theorem 5.1.13. Ifchar(k) = p > 3, then there exists a finite dimensional k-algebra that is Engel
but not weakly nilpotent.

Proof. Consider the noninvertible mapping F' : k[z] — k[z] with Jacobian 1:
F:z—x+al.

We introduce new commuting indeterminates {y;}?" ; and extend this mapping to k[z,y1,...,yn] by
sending y; — y;. If n is big enough, then it is possible to find tame automorphisms G; and G2 such
that G o F' o G is a cubic mapping * — x + U3(x), as follows:

Suppose we have a mapping

F:z;— Plx)+ M
where M = tqtotsts is a monomial of degree at least 4. Introduce two new commuting indeterminates
z,y and take F'(z) = z, F(y) = y.

Define the mapping G via G1(z) = z+t1ta, G1(y) = y+tsty with Gy fixing all other indeterminates;
define Go via Go(x) = = — yz with G fixing all other indeterminates.

The composite mapping G o F o G sends x to P(x) —yz — ytity — ztsts, y to y +tste, 2z to z +t1ta,
and agrees with F' on all other indeterminates.

Note that we have removed the monomial M = titotsty from the image of F', but instead have
obtained various monomials of smaller degree (t1to , tsts, 2y, ztsts, ytita). It is easy to see that this
process terminates.

Our new mapping H(x) = z + Ua(x) + ¥3(x) is noninvertible and has Jacobian 1. Consider its
blowup

R:z— o+ T?y+TUy(z), y—y— Us(z), T T.
This mapping R is invertible if and only if the initial mapping is invertible, and has Jacobian 1
if and only if the initial mapping has Jacobian 1, by [220, Lemma 2]. This mapping is also cubic
homogeneous. The corresponding ternary algebra is Engel, but not weakly nilpotent. U

This example shows that a direct combinatorial approach to the Jacobian Conjecture encounters
difficulties, and in working with related Burnside type problems (in the sense of Zelmanov [225],
dealing with nilpotence properties of Engel algebras, as indicated in the introduction), one should
take into account specific properties arising in characteristic zero.

Definition 5.1.14. An algebra A is nilpotent of class < n if M(ay,as,...) = 0 for each monomial
M (z1,x9,...) of degree > n. An ideal I of A is strongly nilpotent of class < n if M(ay,as,...) =0
for each monomial M (z1,x2,...) in which indeterminates of total degree > n have been substituted
to elements of I.

Although the notions of nilpotent and strongly nilpotent coincide in the associative case, they
differ for ideals of nonassociative algebras. For example, consider the following algebra suggested by
Shestakov: A is the algebra generated by a,b, z satisfying the relations a? = b, bz = a and all other
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products 0. Then I = Fa+ Fb is nilpotent as a subalgebra, satisfying I2 = 0 but not strongly nilpotent
(as an ideal), since
b= ((a(bz))z)a # 0,
and one can continue indefinitely in this vein. Also, [107] contains an example of a finite dimensional
non-associative algebra without any ideal which is maximal witih respect to being nilpotent as a
subalgebra.
In connection with the Generalized Jacobian Conjecture in characteristic 0, it follows from results

of Yagzhev [222], also cf. [97], that there exists a 20-dimensional Engel algebra over QQ, not weakly
nilpotent, satisfying the identities

2y =—yr®,  ((y2*)2*)a®)2® =0, (zy+yx)y =2 2, 2°y° =0.

However, this algebra can be seen to be Yagzhev (see Definition 5.1.5).

For associative algebras, one uses the term “nil” instead of “weakly nilpotent.” Any nil subalgebra
of a finite dimensional associative algebra is nilpotent, by Wedderburn’s Theorem [207]). Jacobson
generalized this result to other settings, cf. [159, Theorem 15.23], and Shestakov [179] generalized it
to a wide class of Jordan algebras (not necessarily commutative).

Yagzhev’s investigation of weak nilpotence has applications to the Koethe Conjecture, for algebras
over uncountable fields. He reproved the following fact: In every associative algebra over an uncount-
able field, the sum of every two nil right ideals is a nil right ideal. This fact was proved first by
Amitsur [3]. Amitsur’s result is for affine algebras, but one can easily reduce to the affine case.

5.1.2.5.  Algebras satisfying systems of Capelli identities.
Definition 5.1.15. The Capelli polynomial C} of order k is

Cri= > (=1)7To)¥1 - Toiy V-

€Sk

It is obvious that an associative algebra satisfies the Capelli identity ¢ if and only if, for any

monomial M (x1,..., Tk, y1,...,y,) multilinear in the x;, the following equation holds identically in A:
Z (=17 M (Vg(1)s -+ > Vo (k) Y15 - - - Yr) = 0. (5.1.8)
oc€Sk

However, this does not apply to nonassociative algebras, so we need to generalize this condition.

Definition 5.1.16. The algebra A satisfies a system of Capelli identities of order k, if (5.1.8) holds
identically in A for any monomial M (z1,..., %k, y1,.-.,Yy,) multilinear in the z;.

Any algebra of dimension < k over a field satisfies a system of Capelli identities of order k. Alge-
bras satisfying systems of Capelli identities behave much like finite dimensional algebras. They were
introduced and systematically studied by Rasmyslov [155,156].

Using Rasmyslov’s method, Zubrilin proved (see [231] and also [157,229]) that if A is an arbitrary
algebra satisfying the system of Capelli identities of order n, then the chain of ideals defining the
solvable radical stabilizes at the nth step. More precisely, we utilize a Baer-type radical, along the
lines of Amitsur [4].

Given an algebra A, we define

Solv; := Solvy(4) = Z{strongly nilpotent ideals of A},

and inductively, given Solvy, define Solvyi1 by Solvgiq /Solvg = Solvy(A/ Solvy). For a limit ordinal
a, define

Solv, = U Solvg .
B<a

This must stabilize at some ordinal «, for which we define Solv(A) = Solv,, .
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Clearly, Solv(A/Solv(A)) = 0; i.e., A/ Solv(A) has no nonzero strongly nilpotent ideals. Actually,
Amitsur [4] defines ((A) as built up from ideals having trivial multiplication, and proves [4, Theo-
rem 1.1] that ((A) is the intersection of the prime ideals of A.

We shall use the notion of sandwich, introduced by Kaplansky and Kostrikin, which is a powerful
tool for Burnside type problems [225]. An ideal I is called a sandwich ideal if, for any k,

M(z1,29,21,...,25) =0

for any z1,29 € I, any set of elements x1,...,z, and any multilinear monomial M of degree k + 2.
(Similarly, if the operations of an algebra have degree < /¢, then it is natural to use f-sandwiches,
which by definition satisfy the property that

M(Zl,...,Zg,.’L'l,...,{L'k):O

for any z1,...,2¢ € I, any set of elements 1, ..., x, and any multilinear monomial M of degree k+¢.)
The next useful lemma follows from a result from [231]:

Lemma 5.1.17. If an ideal I is strongly nilpotent of class £, then there exists a decreasing sequence
of ideals I =1y O -+ 2 Ij11 = 0 such that Is/Is11 is a sandwich ideal in A/Is11 for all s <.

Definition 5.1.18. An algebra A is representable if it can be embedded into an algebra finite
dimensional over some extension of the ground field.

Remark 5.1.19. Zubrilin proved (see [231]) a more precise statement, namely, if an algebra A of
arbitrary signature satisfies a system of Capelli identities C,,+1, then there exists a sequence By C
By C --- C B, of strongly nilpotent ideals such that:

(i) the natural projection of B; in A/B;_1 is a strongly nilpotent ideal;
(ii) A/B,, is representable;
(iii) if 1 € Iy € --- C I, is any sequence of ideals of A such that I;,1/l; is a sandwich ideal in
A/I;, then B, D I,.

Such a sequence of ideals will be called a Baer—Amitsur sequence. In affine space the Zariski closure
of the radical is radical, and hence the factor algebra is representable. (Although the radical coincides
with the linear closure if the base field is infinite (see [37]), this assertion holds for arbitrary signatures
and base fields.) Hence in representable algebras, the Baer—Amitsur sequence stabilizes after finitely
many steps. Lemma 5.1.17 follows from these considerations.

Our next main goal is to prove Theorem 5.1.22 below, but first we need another notion.

5.1.2.6. The tree associated to a monomial. Effects of nilpotence have been used by different authors
in another language. We associate a rooted labelled tree to any monomial: Any branching vertex
indicates the symbol of an operator, whose outgoing edges are the terms in the corresponding symbol.
Here is the precise definition.

Definition 5.1.20. Let M(z1,...,2,) be a monomial in an algebra A of arbitrary signature. One
can associate the tree Th; by an inductive procedure:

(i) If M is a single variable, then T), is just the vertex e.

(ii) Let M = g(My,..., M), where g is a k-ary operator. We assume inductively that the trees
T;,i=1,...,k, are already defined. Then the tree T}, is the disjoint union of the T;, together
with the root e and arrows starting with e and ending with the roots of the trees T;.

Remark 5.1.21. Sometimes one labels Ty; according to the operator g and the positions inside g.

If the outgoing degree of each vertex is 0 or 2, the tree is called binary. If the outgoing degree of
each vertex is either 0 or 3, the tree is called ternary. If each operator is binary, Ths will be binary; if
each operator is ternary, Ty will be ternary.
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5.1.3. Lifting Yagzhev algebras. Recall Definitions 5.1.5 and 5.1.7.

Theorem 5.1.22. Suppose A is an algebra of Engel type, and let I be a sandwich ideal of A. If
A/I is Yagzhev, then A is Yagzhev.

The proof follows easily from the following two propositions.

Let k be the class of weak nilpotence of A/I. We call a branch of the tree fat if it has more than k
entries.

Proposition 5.1.23.

(a) The sum of all monomials of any degree s > k belongs to I.

(b) Let x1,...,x, be fized indeterminates and M be an arbitrary monomial with s1,...,sp > k.
Then
Z M(z1,...,2n,t1,...,t) = 0. (5.1.9)
[t1]=51,...,
[tel=s¢

(c¢) The sum of all monomials of degree s, containing at least £ nonintersecting fat branches, is zero.

Proof. Assertion (a) is just a reformulation of the weak nilpotence of A/I; (b) follows from (a) and the
sandwich property of an ideal I. To get (c) from (b), it suffices to consider the highest nonintersecting
fat branches. U

Proposition 5.1.24 (Yagzhev). The linearization of the sum of all terms with a fized fat branch
of length n is the complete linearization of the function

> T[Adk,,)(2)®).
oESy

Theorem 1.2, Lemma 5.1.17, and Zubrilin’s result give us the following major result.

Theorem 5.1.25. In characteristic zero, the Jacobian conjecture is equivalent to the following
statement: Any algebra of Engel type satisfying some system of Capelli identities is a Yagzhev algebra.

This theorem generalizes the following result of Yagzhev.

Theorem 5.1.26. The Jacobian conjecture is equivalent to the following statement: Any ternary
Engel algebra in characteristic 0 satisfying a system of Capelli identities is a Yagzhev algebra.

The Yagzhev correspondence and the results of this section (in particular, Theorem 5.1.25) yield
the proof of Theorem 5.1.10.

5.1.83.1. Sparse identities. Generalizing Capelli identities, we say that an algebra satisfies a sys-
tem of sparse identities when there exist k and coefficients «, such that for any monomial
M(x1,...,2k, Y1, - .., y,) multilinear in x;, the following equation holds:

Z OéUM<Cl'UU(1)d1, ‘e ,ckva(k)dk, Yiy--- 7yr> = 0. (5.1.10)

Note that one need only check (5.1.10) for monomials. The system of Capelli identities is a special
case of a system of sparse identities (when o, = (—1)?). This concept ties in with the following “few
long branches” lemma [230], concerning the structure of trees of monomials for algebras with sparse
identities:

Lemma 5.1.27 (Few long branches). Suppose an algebra A satisfies a system of sparse identities
of order m. Then any monomial is linearly representable by monomials such that the corresponding
tree has not more than m — 1 disjoint branches of length > m.

Lemma 5.1.27 may be useful in studying nilpotence of Engel algebras.
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5.1.4. Inversion formulas and problems of Burnside type. We have seen that the JC relates
to problems of “Specht type” (concerning whether one set of polynomial identities implies another),
as well as problems of Burnside type.

Burnside type problems become more complicated in nonzero characteristic; cf. Zelmanov’s review
paper [225].

Bass, Connell, and Wright [21] attacked the JC by means of inversion formulas. D. Wright [208]
wrote an inversion formula for the symmetric case and related it to a combinatorial structure called
the Grossman—Larson Algebra. Namely, write F' = X — H, and define J(H) to be the Jacobian matrix
of H. Wright proved the JC for the case where H is homogeneous and J(H)3 = 0, and also for the
case where H is cubic and J(H)* = 0; these correspond in Yagzhev’s terminology to the cases of Engel
type 3 and 4, respectively. Also, the so-called chain vanishing theorem in [208] follows from Engel
type. Similar results were obtained earlier by Singer [186] using tree formulas for formal inverses. The
inversion formula, introduced in [21], was investigated by D. Wright and his school. Many authors
use the language of so-called tree expansion (see [186,208] for details). In view of Theorem 5.1.13, the
tree expansion technique should be highly nontrivial.

The Jacobian Conjecture can be formulated as a question of quantum field theory (see [1]), in which
tree expansions are seen to correspond to Feynmann diagrams.

In [186,208] (see also [209]), trees with one label correspond to elements of the algebra A built by
Yagzhev, and 2-labelled trees correspond to the elements of the operator algebra D(A) (the algebra
generated by operators * — M (z,y), where M is some monomial). These authors deduce weak
nilpotence from the Engel conditions of degree 3 and 4. The inversion formula for automorphisms
of tensor product of Weyl algebras and the ring of polynomials was studied intensively in the papers
[27,30]. Using techniques from [42], this yields a slightly different proof of the equivalence between
the JC and DC, by an argument similar to one given in [223]. Yagzhev’s approach makes the situation
much clearer, and the known approaches to the Jacobian Conjecture using inversion formulas can be
explained from this viewpoint.

Remark 5.1.28. The most recent inversion formula (and probably the most algebraically explicit
one) was obtained by V. Bavula [26]. The coefficient gy can be made explicit in (5.1.5), by means of
the Gabber Inequality, which says that if

f:Kn—>Kn; xZ—>fZ(a:)

is a polynomial automorphism, with deg(f) = max; deg(f;), then deg(f~!) < deg(f)" 1)

In fact, we are working with operads, cf. the classical book [146]. A review of operad theory
and its relation with physics and Pl-theory in particular Burnside type problems, will appear in
D. Piontkovsky [153] (see also [109,154]). Operad theory provides a supply of natural identities and
varieties, but they also correspond to geometric facts. For example, the Jacobi identity corresponds
to the fact that the altitudes of a triangle are concurrent. M. Dehn’s observations that the Desargue
property of a projective plane corresponds to associativity of its coordinate ring, and Pappus’ property
to its commutativity, can be considered as a first step in operad theory. Operads are important in
mathematical physics, and formulas for the famous Kontsevich quantization theorem resemble formulas
for the inverse mapping. The operators considered here are operads.

5.2. THE JACOBIAN CONJECTURE FOR VARIETIES, AND DEFORMATIONS

In this section we consider analogs of the JC for other varieties of algebras, partially with the aim
on throwing light on the classical JC (for the commutative associative polynomial algebra).

5.2.1. Generalization of the Jacobian Conjecture to arbitrary varieties. J. Birman [48]
already proved the JC for free groups in 1973. The JC for free associative algebras (in two generators)
was established in 1982 by W. Dicks and J. Levin [73,74], utilizing Fox derivatives, which we describe
later on. Their result was reproved by Yagzhev [218], whose ideas are sketched in this section. Also
see Schofield [175], who proved the full version. Yagzhev then applied these ideas to other varieties
of algebras [217,222] including nonassociative commutative algebras and anti-commutative algebras;
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U. U. Umirbaev [195] generalized these to “Schreier varieties,” defined by the property that every
subalgebra of a free algebra is free. The JC for free Lie algebras was proved by Reutenauer [158],
Shpilrain [185], and Umirbaev [194].

The Jacobian Conjecture for varieties generated by finite dimensional algebras, is closely related to
the Jacobian Conjecture in the usual commutative associative case, which is the most important.

Let 91 be a variety of algebras of some signature 2 over a given field k of characteristic zero, and
kon (x) the relatively free algebra in 9t with generators @ = {x; : i € I}. We assume that ||, |I| < oo,
I=1,....,n.

Take a set y = {y;}I"; of new indeterminates. For any f(x) € kop (x) one can define an element

f(x,y) € kop (x,y) via the equation

f@i+yi, o xn+ya) = f(y) + f(2,y) + R(z,y) (5.2.1)
where f(m, y) has degree 1 with respect to @, and R(x,y) is the sum of monomials of degree > 2 with

respect to x; f is a generalization of the differential.
Let a € End(koy (x)), i.e.,

a:z;— fi(x); i=1,...,n. (5.2.2)
Definition 5.2.1. Define the Jacobi endomorphism & € End(kgy (x,y)) via the equality
a: { zi = filx), (5.2.3)
Yi = Yi-

The Jacobi mapping f — f satisfies the chain rule, in the sense that it preserves composition.

Remark 5.2.2. It is not difficult to check (and is well known) that if o € Aut(kgy (x)) then
& € Aut(koy (z,y)).
The inverse implication is called the Jacobian Conjecture for the variety M. Here is an important

special case.

Definition 5.2.3. Let A € 9 be a finite dimensional algebra, with base {e;}X,. Consider a set
of commutative indeterminates v = {vg|s =1,...,n;i =1,..., N}. The elements

N
Zj = E Vji€q; jzl,...,n,
i=1
are called generic elements of A.

Usually in the matrix algebra M, (k), the set of matrix units {e;;}";_; is taken as the base. In this
case e;je = 0j ey and
z = Z)\ﬁjeij, l=1,...,n.
ij

Definition 5.2.4. A generic matriz is a matrix whose entries are distinct commutative indeter-
minates, and the so-called algebra of generic matrices of order m is generated by associative generic
m X m matrices.

The algebra of generic matrices is prime, and every prime, relatively free, finitely generated asso-
ciative Pl-algebra is isomorphic to an algebra of generic matrices. If we include taking traces as an
operator in the signature, then we get the algebra of generic matrices with trace. That algebra is a
Noetherian module over its center.

Define the k-linear mappings

Q kg (x) = k[v]; i=1,....n

via the relation
N

N N
f (Z V1i€4y ..y Z I/m‘ei> = Z(fQ’)eZ
i=1 i=1

i=1
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It is easy to see that the polynomials f{2; are uniquely determined by f.
One can define the mapping

©vA : End(kon (x)) — End(k[v])
as follows. If
a € End(kgy (@) : x5 — fs(x) s=1,...,n,
then p4(a) € End(k[v]) can be defined via the relation
vala) vy = Py(v); s=1,...,n; i=1,...,n,
where Py;(v) = fs£;.

The following proposition is well known.

Proposition 5.2.5 (see [222]). Let A € MM be a finite dimensional algebra, and x = {x1,...,z,}
be a finite set of commutative indeterminates. Then the mapping p4 is a semigroup homomorphism,
sending 1 to 1, and automorphisms to automorphisms. Also the mapping s commutes with the

operation” of taking the Jacobi endomorphism, in the sense that va(a) = pa(&). If ¢ is invertible,
then @ is also invertible.

This proposition is important, since as noted after Remark 5.2.2, the opposite direction is the JC.
5.2.2. Deformations and the Jacobian Conjecture for free associative algebras.

Definition 5.2.6. A T-ideal is a completely characteristic ideal, i.e., stable under any endomor-
phism.

Proposition 5.2.7. Suppose A is a relatively free algebra in the variety M, I is a T-ideal in A,
and M = Var(A/I). Any polynomial mapping F : A — A induces a natural mapping F' : A/T — A/I,
as well as a mapping Fin 9. If F is invertible, then F' is invertible; ifﬁ’ is invertible, then s
also invertible.

For example, let F' be a polynomial endomorphism of the free associative algebra k (x), and I,, be
the T-ideal of the algebra of generic matrices of order n. Then F(I,,) C I,, for all n. Hence F' induces
an endomorphism F7, of k(x) /I,. In particular, this is a semigroup homomorphism. Thus, if F' is
invertible, then F7, is invertible, but not vice versa.

The Jacobian mapping FI: of the reduced endomorphism Fj, is the reduction of the Jacobian
mapping of F'.

5.2.2.1.  The Jacobian Conjecture and the packing property. This subsection is based on the packing
property and deformations. Let us illustrate the main idea. It is well known that the composite of
ALL quadratic extensions of Q is infinite dimensional over Q. Hence all such extensions cannot be
embedded (“packed”) into a single commutative finite dimensional Q-algebra. However, all of them
can be packed into My (Q). We formalize the notion of packing in §5.2.5. Moreover, for ANY elements
NOT in Q there is a parametric family of embeddings (because it embeds non-centrally and thus can
be deformed via conjugation by a parametric set of matrices). Uniqueness thus means belonging to
the center. Similarly, adjoining noncommutative coefficients allows one to decompose polynomials, as
to be elaborated below.

This idea allows us to solve equations via a finite dimensional extension, and to find a parametric
sets of solutions if some solution does not belong to the original algebra. That situation contradicts
local invertibility.

Let F' be an endomorphism of the free associative algebra having invertible Jacobian. We suppose
that F'(0) = 0 and

F(x;) =z + Zterms of order > 2.

We intend to show how the invertibility of the Jacobian implies invertibility of the mapping F.
Let Yi,..., Y% be generic m x m matrices. Consider the system of equations

(F(X1,.... X)) =Yy i=1,.. k).
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This system has a solution over some finite extension of order m of the field generated by the center
of the algebra of generic matrices with trace.
Consider the set of block diagonal mn x mn matrices:

A 0 0
0 A, 0 0
A= . ) (5.2.4)
0 An
where the A; are m x m matrices.
Next, we consider the system of equations
{Fi(Xq1,...,Xn) =Y i=1,...,k}, (5.2.5)

where the mn x mn matrices Y; have the form (5.2.4) with the A; generic matrices.

Any m-dimensional extension of the base field k is embedded into M,,, (k). But M,,, (k) ~ M,, (k) ®
M, (k). It follows that for appropriate m, the system (5.2.5) has a unique solution in the matrix ring
with traces. (Each is given by a matrix power series where the summands are matrices whose entries are
homogeneous forms, seen by rewriting ¥; = X; + > terms of order 2 as X; = Y; 4+ > _ terms of order 2,
and iterating.) The solution is unique since their entries are distinct commuting indeterminates.

If F' is invertible, then this solution must have block diagonal form. However, if F' is not invertible,
this solution need not have block diagonal form. Now we translate invertibility of the Jacobian to the
language of parametric families or deformations.

Consider the matrices

E 0 ... 0
0 .. 0
E{=]0 ... \-E 0
0 E

where E denotes the identity matrix. (The index ¢ designates the position of the block A - E.) Taking
X not to be a block diagonal matrix, then for some ¢ we obtain a non-constant parametric family
E{X;(E{)"! dependent on .

On the other hand, if Y; has form (5.2.4), then EﬁYZ(Ef\)_l =Y, foral A\£0;¢(=1,... k.

Hence, if F7, is not an automorphism, then we have a continuous parametric set of solutions. But if
the Jacobian mapping is invertible, it is locally 1:1, a contradiction. This argument yields the following
result:

Theorem 5.2.8. For F' € End(k (x)), if the Jacobian of F is invertible, then the reduction Fr, of
F, modulo the T-ideal of the algebra of generic matrices, is invertible.

For details of the proof, see [217]. Because any relatively free affine algebra of characteristic 0 satisfies
the set of identities of some matrix algebra, it is the quotient of the algebra of generic matrices by
some T-ideal J. But J maps into itself after any endomorphism of the algebra. We conclude the
following fact.

Corollary 5.2.9. If F' € End(k (z)) and the Jacobian of F is invertible, then the reduction Fj of
F modulo any proper T-ideal J is invertible.

In order to get invertibility of F itself, Yagzhev used the additional ideas:

1. The block diagonal technique works equally well on skew fields.

2. The above algebraic constructions can be carried out on Ore extensions, in particular for the Weyl
algebras Wy, = K[z, ..., xy;01,. .., 0]

3. By a result of L. Makar-Limanov, the free associative algebra can be embedded into the ring of
fractions of the Weyl algebra. This provides a nice presentation for mapping the free algebra.
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Definition 5.2.10. Let A be an algebra, B C A a subalgebra, and « : A — A a polynomial
mapping of A (and hence a(B) C B, see Definition 5.1.1). B is a test algebra for «, if a(A\B) # A\B.

The next theorem shows the universality of the notion of a test algebra. An endomorphism is called
rationally invertible if it is invertible over Cohn’s skew field of fractions [65] of k (z).

Theorem 5.2.11 (Yagzhev). For any o € End(k (x)), one of the two statements holds:

(i) « is rationally invertible, and its reduction to any finite-dimensional factor also is rationally
invertible;
(ii) there exists a test algebra for some finite dimensional reduction of c.

This theorem implies the Jacobian conjecture for free associative algebras. We do not go into details,
referring the reader to the papers [217,222].

Remark 5.2.12. The same idea is used in quantum physics. The polynomial z2? + y? + 22 cannot
be decomposed for any commutative ring of coefficients. However, it can decomposed using noncom-
mutative ring of coefficients (Pauli matrices). The Laplace operator in 3-dimensional space can be
decomposed in such a manner.

5.2.2.2.  Reduction to nonzero characteristic. One can work with deformations equally well in nonzero
characteristic. However, the naive Jacobian condition does not give us parametric families, because of
consequences of inseparability. Hence it is interesting using deformations to get a reasonable version of
the JC for characteristic p > 0, especially because of recent progress in the JC related to the reduction
of holonomic modules to the case of characteristic p and investigation of the p-curvature or Poisson
brackets on the center (see [41,42,190]).

In his very last paper [223], A. V. Yagzhev approached the JC using positive characteristics. He
noted that the existence of a counterexample is equivalent to the existence of an Engel, but not
Yagzhev, finite dimensional ternary algebra in each positive characteristic p > 0. (This fact was also
used in [41,42,190].)

If a counterexample to the JC exists, then such an algebra A exists even over a finite field, and
hence can be finite. It generates a locally finite variety of algebras that are of Engel type, but not
Yagzhev. This situation can be reduced to the case of a locally semiprime variety. Any relatively free
algebra of this variety is semiprime, and the centroid of its localization is a finite direct sum of fields.
The situation can be reduced to one field, and he tried to construct an embedding which is not an
automorphism. This would contradict the finiteness property.

Since a reduction of an endomorphism as a mapping on points of finite height may be an au-
tomorphism, the issue of injectivity also arises. However, this approach looks promising, and may
involve new ideas, such as in [41,42,190]. Perhaps different infinitesimal conditions (like the Jacobian
condition in characteristic zero) can be found.

5.2.3. The Jacobian Conjecture for other classes of algebras. Although the Jacobian Con-
jecture remains open for commutative associative algebras, it has been established for other classes
of algebras, including free associative algebras, free Lie algebras, and free metabelian algebras (for
further details, see Sec. 5.2.1).

An algebra is said to be metabelian if it satisfies the identity [z, y][z,t] = 0.

The case of free metabelian algebras, established by Umirbaev (see [193]), involves some interesting
new ideas that we describe now. His method of proof is by means of co-multiplication, taken from the
theory of Hopf algebras and quantization. Let A°P? denote the opposite algebra of the free associative
algebra A, with generators t;. For f € A we denote the corresponding element of A°? as f*. Consider
the mapping

AAPRA— A, A(fo@gi):Zfigi-
Then I := ker(\) is a free A bimodule with generators tf ® 1 — 1 ® t;. The mapping
dg:A— 1y, dpola)=a"®1-1®a
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is called the wuniversal derivation of A. The Fox derivatives da/0t; € AP ® A (see [94]) are defined as

0
da(a) =Y (i @1-10t)2r

7

(cf. [74,193)).
Let C = A/Id([A, A]) be a free commutative associative algebra and B = A/Id([A, A])? be a free

metabelian algebra. Let
da da
(9((1) = <a—tl,,a—tn> .

One can define the natural derivations
DA (AQA" = (C'o0), d:A— (C'2C)" = C", (5.2.6)
where the mapping (C' ® C)™) — C" is induced by A. Then
ker(9) = 1d([A, A])? + F

and 0 induces a derivation B — (¢’ @ C)", whereas 0 induces the usual derivation C' — C™. Let
A :C — C"® C be the mapping induced by d_g, i.e.,

and let z; = A(x;). The Jacobi matriz is defined in the natural way, and provides the formulation of
the JC for free metabelian algebras. One of the crucial steps in proving the JC for free metabelian
algebras is the following homological lemma from [193].

Lemma 5.2.13. Let u = (ug,...,u,) € (C? @ C)*. Then u = d(w) for some w € 1d([A, A]) if

and only if
Z ziu; = 0.
The proof also requires the following theorem.
Theorem 5.2.14. Let ¢ € End(C). Then ¢ € Aut(C) if and only if Id(A(p(z;)))i; = Id(z)i .
The paper [193] also includes the following result.

Theorem 5.2.15. Any automorphism of C can be extended to an automorphism of B, using the
JC for the free metabelian algebra B.

This is a nontrivial result, unlike the extension of an automorphism of B to an automorphism of
A/Id([A, A])™ for any n > 1.

5.2.4. Questions related to the Jacobian Conjecture. Let us turn to other interesting ques-
tions which can be linked to the Jacobian Conjecture. The quantization procedure is a bridge between
the commutative and noncommutative cases and is deeply connected to the JC and related questions.
Some of these questions also are discussed in the paper [81].

Relations between the free associative algebra and the classical commutative situation are very
deep. In particular, Bergman’s theorem that any commutative subalgebra of the free associative
algebra is isomorphic to a polynomial ring in one indeterminate is the noncommutative analog of
Zak’s theorem [224] that any integrally closed subring of a polynomial ring of Krull dimension 1 is
isomorphic to a polynomial ring in one indeterminate. For example, Bergman’s theorem is used to
describe the automorphism group Aut(End(k(z1,...,z,))) (see [39]); Zak’s theorem is used in the
same way to describe the group Aut(End(k[z1,...,x,])) (see [43]).

Question 5.2.16. Can one prove Bergman’s theorem via quantization?

Quantization could be a key idea for understanding Jacobian type problems in other varieties of
algebras.
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Cancellation problems. We recall the following three classical problems.

1. Let K; and K>3 be affine domains for which Kj[t] ~ Ks[t]. Is it true that K ~ K57
2. Let K; and K3 be an affine fields for which K;(t) ~ Ks(t). Is it true that K; ~ K37 In
particular, if K(t) is a field of rational functions over the field k, is it true that K is also a field
of rational functions over k?
3. If K[t] ~ k[z1,...,x,), is it true that K ~ k[z1,...,2,-1]7
In general, the answer to Problems 1 and 2 is negative (even if k = C; see [31,36] and the references
therein). However, Problem 2 has a positive solution in low dimensions. Problem 3 is currently
called the Cancellation Conjecture, although Zariski’s original cancellation conjecture was for fields
(Problem 2). (For Zariski’s conjecture and related problems, see [68,105,147,187].) For n > 3, the
Cancellation Conjecture (Problem 3) remains open, to the best of our knowledge, and it is reasonable
to pose the Cancellation Conjecture for free associative rings and pose the following question.

Question 5.2.17. If K « k[t] ~ k(x1,...,2,), then is K ~k(z1,...,2,-1)7
This question was solved for n = 2 by V. Drensky and J. T. Yu (see [79]).

2. The Tame Automorphism Problem. Yagzhev applied his approach to study the tame auto-
morphism problem. Unfortunately, these papers have not survived.

It is easy to see that every endomorphism ¢ of a commutative algebra can be lifted to some endo-
morphism of the free associative algebra, and hence to some endomorphism of the algebra of generic
matrices. However, it is not clear that any automorphism ¢ can be lifted to an automorphism.

We recall that an automorphism of k[z1,...,x,] is elementary if it has the form

x1 =1+ f(z,...,2n), m—x;, Vix2.

A tame automorphism is a product of elementary automorphisms, and a non-tame automorphism is
called wild. The “tame automorphism problem” asks whether any automorphism is tame. Jung [103]
and van der Kulk [203] proved this for n = 2, (also see [149, 150] for free groups, [65] for free Lie
algebras, and [67,141] for free associative algebras), so one takes n > 2.

Elementary automorphisms can be lifted to automorphisms of the free associative algebra; hence
every tame automorphism can be so lifted. If an automorphism ¢ cannot be lifted to an automorphism
of the algebra of generic matrices, it cannot be tame. This give us approach to the tame automorphism
problem.

We can lift an automorphism of k[z1,...,x,] to an endomorphism of k (x1,...,z,) in many ways.
Then replacing z1,...,x, by generic (N x N)-matrices induces a polynomial mapping

F(N) : an2 — anQ.

For each automorphism ¢, the invertibility of this mapping can be transformed into compatibility
of some system of equations. For example, [152, Theorem 10.5] asserts that the Nagata automorphism
is wild, provided that a certain system of five equations in 27 unknowns has no solutions. Whether
Peretz’ method can effectively attack tameness questions remains to be seen. The wildness of the
Nagata automorphism was established by Shestakov and Umirbaev [183]. One important ingredient
in the proof is degree estimates of an expression p(f,g) of algebraically independent polynomials f
and ¢ in terms of the degrees of f and g, provided neither leading term is proportional to a power of
the other, initiated by Shestakov and Umirbaev [182]. An exposition based on their method is given
in Kuroda [106].

One of the most important tools is the degree estimation technique, which in the multidimensional
case becomes the analysis of leading terms, and is more complicated. We refer to the deep papers
[49,106,108]. Several papers of Kishimoto contain gaps, but also provide deep insights.

One can also ask the weaker question of “coordinate tameness:” Is the image of (z,y, z) under the
Nagata automorphism the image under some (other) tame automorphism? This also fails, by [200].

An automorphism ¢ is called stably tame if, when several new indeterminates {¢;} are adjoined,
the extension of ¢ given by ¢'(t;) = t; is tame; otherwise it is called stably wild. Stable tameness of
automorphisms of k[x,y, z] fixing z is proved in [47]; similar results for k(z,y, z) are given in [44].
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Yagzhev tried to construct wild automorphisms via polynomial automorphisms of the Cayley-
Dickson algebra with base {e;}5_;, and the set {1;,&;,;}5_; of commuting indeterminates. Let

T = Zviei, y = Zﬁz‘ez‘, z= Zgiei-

Let (z,y, z) denote the associator (xy)z — z(yz) of the elements x,y, z, and write

('Ia Y, Z)2 = Z fi(ya Ea g)ei-
Then the endomorphism G of the polynomial algebra given by
G:vi—vi+t fi(v,§6), &G—& <=,

is an automorphism, which likely is stably wild.

In the free associative case, perhaps it is possible to construct an example of an automorphism, the
wildness of which could be proved by considering its Jacobi endomorphism (Definition 5.2.1). He tried
to find an automorphism « of an Yagzhev tried to construct examples of algebras R = A ® A°P over
which there are invertible matrices that cannot decompose as products of elementary ones. Yagzhev
conjectured that the automorphism

1 = 21+ y1(T1y2 — yixe), T2 — T2 + (T1y2 — Y1T2)Y2, Y1 = Y1, Y2 — Y2

of the free associative algebra is wild.

Umirbaev [196] proved in characteristic 0 that the Anick automorphism x — x+y(zy —yz), y — v,
z = z+ (zy — yz)y is wild, by using metabelian algebras. The proof uses description of the defining
relations of 3-variable automorphism groups [197-199]. Drensky and Yu [80,82] proved in characteristic
0 that the image of  under the Anick Automorphism is not the image of any tame automorphism.

Stable Tameness Conjecture. FEvery automorphism of the polynomial algebra k[x1, ..., x,] (re-
spectively, of the free associative algebra k (x1,...,x,)) is stably tame.

Lifting in the free associative case is related to quantization. It provides some light on the similarities
and differences between the commutative and noncommutative cases. Every tame automorphism of
the polynomial ring can be lifted to an automorphism of the free associative algebra. There was a
conjecture that any wild z-automorphism of k[x,y, z| (i.e., fizing z) over an arbitrary field k cannot
be lifted to a z-automorphism of k (x,y,z). In particular, the Nagata automorphism cannot be so
lifted [81]. This conjecture was solved by Belov and J.-T. Yu [38] over an arbitrary field. However, the
general lifting conjecture is still open. In particular, it is not known whether the Nagata automorphism
can be lifted to an automorphism of the free algebra. (Such a lifting could not fix z.)

The paper [38] describes all the z-automorphisms of k (z,y, z) over an arbitrary field k. Based on
that work, Belov and J.-T. Yu [44] proved that every z-automorphism of k (z,y, z) is stably tame,
for all fields k. A similar result in the commutative case is proved by Berson, van den Essen, and
Wright [47]. These are important first steps towards solving the stable tameness conjecture in the
noncommutative and commutative cases.

The free associative situation is much more rigid than the polynomial case. Degree estimates
for the free associative case are the same for prime characteristic (see [137]) as in characteristic 0
(see [143]). The methodology is different from the commutative case, for which degree estimates (as
well as examples of wild automorphisms) are not known in prime characteristic.

J.-T. Yu found some evidence of a connection between the lifting conjecture and the Embedding
Conjecture of Abhyankar and Sathaye. Lifting seems to be “easier”.

5.2.5. Reduction to simple algebras. This subsection is devoted to finding test algebras.

Any prime algebra B satisfying a system of Capelli identities of order n + 1 (n minimal such) is
said to have rank n. In this case, its operator algebra is PI. The localization of B is a simple algebra
of dimension n over its centroid, which is a field. This is the famous rank theorem (see [156]).
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5.2.5.1. Packing properties.

Definition 5.2.18. Let M = {9, : i € I} be an arbitrary set of varieties of algebras. We say that
M satisfies the packing property, if for any n € N there exists a prime algebra A of rank n in some
9M; such that any prime algebra in any 9; of rank n can be embedded into some central extension
K ® A of A.

M satisfies the finite packing property if, for any finite set of prime algebras A; € 9;, there exists
a prime algebra A in some 91, such that each A; can be embedded into A.

The set of proper subvarieties of associative algebras satisfying a system of Capelli identities of some
order k satisfies the packing property (because any simple associative algebra is a matrix algebra over
field).

However, the varieties of alternative algebras satisfying a system of Capelli identities of order > 8,
or of Jordan algebras satisfying a system of Capelli identities of order > 27, do not even satisfy
the finite packing property. Indeed, the matrix algebra of order 2 and the Cayley-Dickson algebra
cannot be embedded into a common prime alternative algebra. Similarly, Hs and the Jordan algebra
of symmetric matrices cannot be embedded into a common Jordan prime algebra. (Both of these
assertions follow easily by considering their Pls.)

It is not known whether or not the packing property holds for Engel algebras satisfying a system
of Capelli identities; knowing the answer would enable us to resolve the JC, as will be seen below.

Theorem 5.2.19. If the set of varieties of Engel algebras (of arbitrary fized order) satisfying a
system of Capelli identities of some order satisfies the packing property, then the Jacobian Conjecture
has a positive solution.

Theorem 5.2.20. The set of varieties from the previous theorem satisfies the finite packing prop-
erty.

Most of the remainder of this section is devoted to the proof of these two theorems.

Problem. Using the packing property and deformations, give a reasonable analog of the JC in
nonzero characteristic. (The naive approach using only the determinant of the Jacobian does not
work.)

5.2.5.2.  Construction of simple Yagzhev algebras. Using the Yagzhev correspondence and composi-
tion of elementary automorphisms it is possible to construct a new algebra of Engel type.

Theorem 5.2.21. Let A be an algebra of Engel type. Then A can be embedded into a prime algebra
of Engel type.

Proof. Consider the mapping F': V — V (cf. (5.1.1)) given by
F:xin—>xi+z\llij; 1=1,...,n,
J
where the U;; are homogenous forms of degree j. Adjoining new indeterminates {t;};,, we put
F(t;)=t;fori=0,...,n.
Now we take the transformation
G: to—ty, x;— x;, tﬂ—)ti—i-t()a}? for i=1,...,n.

The composite F' o G has invertible Jacobian (and hence the corresponding algebra has Engel type)
and can be expressed as follows:

FOG:.’L‘Z‘HQJZ‘—FZ\I/Z‘]', to — to, tin—>ti+t0x? for i=1,...,n.
J

It is easy to see that the corresponding algebra A also satisfies the following properties:

(a) A contains A as a subalgebra (for to = 0);
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(b) if A corresponds to a cubic homogenous mapping (and thus is Engel) then A also corresponds
to a cubic homogenous mapping (and thus is Engel);
(c) if some of the forms ¥;; are not zero, then A does not have nonzero ideals with product 0, and
hence is prime (but its localization need not be simple!).
Any algebra A with operators can be embedded, using the previous construction, to a prime algebra
with nonzero multiplication. The theorem is proved. O

Embedding via the previous theorem preserves the cubic homogeneous case, but does not yet give
us an embedding into a simple algebra of Engel type.

Theorem 5.2.22. Any algebra A of Engel type can be embedded into a simple algebra of Engel
type.

Proof. We start from the following observation:

Lemma 5.2.23. Suppose A is a finite dimensional algebra, equipped with a base ey, ..., en,epi1. If
for any 1 <i,j < n+1 there exist operators w;; in the signature Q(A) such that wij(e;, ... €, €nq1) =
ej, with all other values on the base vectors being zero, then A is simple.

This lemma implies:

Lemma 5.2.24. Let F be a polynomial endomorphism of Clxy,...,xy;t1,t2], where
J

For notational convenience we put xn4+1 = t1 and xpyo = ta. Let {kij}le,j be a set of natural numbers
such that

o For any x; there exists k;; such that among all V;; there is exactly one term of degree k;;, and

it has the form \I/i,kij - tlx;ﬁjfl.

e For ty and any x; there exists ki, such that among all V;; there is exactly one term of degree
kig, and it has the form W, 1o, = tlx;?iq_l

e For t1 and any x; there exists ki such that among all V;; there is exactly one term of degree
kig, and it has the form W, 1y, = tgx;?iq_l.

Then the corresponding algebra is simple.

Proof. Adjoin the term tgxffl to the x;, for £ = 1,2. Let e; be the base vector corresponding to x;.
Take the corresponding k;;-ary operator

w:w(e,... e,eny)) = €j,

with all other products zero. Now we apply the previous lemma. U

Remark 5.2.25. In order to be flexible with constructions via the Yagzhev correspondence, we
are working in the general, not necessary cubic, case.

Now we can conclude the proof of Theorem 5.2.22. Let F' be the mapping corresponding to the
algebra A:

szi'_)fi‘{'z\l’ija ’L'Zl,...,n,
J
where W;; are forms of homogeneous degree j. Let us adjoin new indeterminates {t1,t2} and put
F(tz) = ti, for ¢ = 1, 2.
We choose all k3 > max(deg(V;;)) and assume that these numbers are sufficiently large. Then we
consider the mappings

e !

Kii— . .
Z.j:a:in—>x,~+xj] ty, i<n; ti—=ty; tar>te; x> xs for s F#£ .
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kij—1

Gki(n+2) il Tttty zgragfor 1 <s <on.
kij—1

Gki(n+l) it Y Tty tarr ity g g for 1 <s<on.

These mappings are elementary automorphisms.

Consider the mapping H = o, Gy, o F', where the composite is taken in order of ascending kqg,
and then with F. If the k.3 grow quickly enough, then the terms obtained in the previous step do
not affect the lowest term obtained at the next step, and this term will be as described in the lemma.
The theorem is proved. O

Proof of Theorem 5.2.20. The direct sum of Engel type algebras is also of Engel type, and by Theo-
rem 5.2.22 can be embedded into a simple algebra of Engel type. O

The Yagzhev correspondence and algebraic extensions.

For notational simplicity, we consider a cubic homogeneous mapping

F: xj— o+ \Ifgz(w)

We shall construct the Yagzhev correspondence of an algebraic extension.

Consider the equation

S
£ = At
p=1

where the )\, are formal parameters. If m > s, then for some \p,,, which can be expressed as
s—1

polynomials in {\, p—1: We have

S
= Apmt* P
p=1
Let A be the algebra corresponding to the mapping F. Consider
ARk, ..., A

and its finite algebraic extension A=A k[A1,..., A, t]. Now we take the mapping corresponding
(via the Yagzhev correspondence) to the ground ring R = k[A1, ..., \] and algebra A.

For m = 1,...,s — 1, we define new formal indeterminates, denoted as T™x;. Namely, we put
T ; = x; and for m > s, we identify T™z; with

S

s—
E )\me pl'i,
p=1

where {)\p};;% are formal parameters in the centroid of some extension R ® A. Now we extend the
mapping F', by setting

F(mei) :Tma:i—i—TSm\I/gi(a:), m=1,...,s —1.

We get a natural mapping corresponding to the algebraic extension.

Now we can take more symbols T}, j = 1,...,s, and equations
S
p=1
and a new set of indeterminates x;;, = foi forj=1,...,sand i =1,...,n. Then we set

S
_pm,. s—p
Tijm =T} x; = g AjpmT; s
p=1

and
F(zijm) = xijm + 7}3m\113i(m), m=1,...,s— 1.

This yields an “algebraic extension” of A.
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Deformations of algebraic extensions. Let m = 2. Let us introduce new indeterminates y,y2, put
F(y;) =vy1, i = 1,2, and compose F' with the automorphism

1 1 1 1 .
G:Tix;—=Tizi+yizi, Tixi—=Thz+yiz, x—x, =12,

Y1 =y + Y30, Yo = v
(Note that the Tllxi and T21xi are new indeterminates and not proportional to x;!) Then compose G
with the automorphism H : yo ~— yo + y7, where H fixes the other indeterminates. Let us call the
corresponding new algebra A. It is easy to see that Var(A) # Var(A).

Define an identity of the pair (A, B), for A C B to be a polynomial in two sets of indeterminates
%, zj that vanishes whenever the z; are evaluated in A and z; in B.) The variety of the pair (A, B)
is the class of pairs of algebras satisfying the identities of (A, B).

Recall that by the rank theorem, any prime algebra A of rank n can be embedded into an n-
dimensional simple algebra A. We consider the variety of the pair (A, /1)

Considerations of deformations yield the following;:

Proposition 5.2.26. Suppose for all simple n-dimensional pairs there exists a universal pair in
which all of them can be embedded. Then the Jacobian Conjecture has a positive solution.

We see the relation with the following assertion.

The Razmyslov—Kushkulei theorem [see [156]]. Over an algebraically closed field, any two
finite dimensional simple algebras satisfying the same identities are isomorphic.

The difficulty in applying this theorem is that the identities may depend on parameters. Also,
the natural generalization of the Rasmyslov—Kushkulei theorem for a variety and subvariety does not
hold: Even if Var(B) C Var(A), where B and A are simple finite-dimensional algebras over some
algebraically closed field, B need not be embeddable to A.

CONCLUSION

The quantization program constitutes a substantial and well designed approach to the Jacobian con-
jecture, as well as to various related topics in algebra and algebraic geometry. The recent developments
presented in this review have been instrumental in our investigation of Kontsevich conjecture as well
as the establishment of results of independent interest.

Furthermore, as can be seen from the discussion of the work of A.V. Yagzhev, there are substantial
areas of the theory which require further development and which might, conceivably, hold the insights
necessary for the resolution of the Jacobian conjecture.

While at present the quantization approach does not seem to be adequately developed for a suc-
cessful attack on the Jacobian problem to happen (as evidenced by our discussion of Kontsevich
conjecture), and the rather substantial critique of the general quantization and lifting philosophy (due
to Orevkov and others) exists, further research and development of the theory is well advised.
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