
— 53 —

A.B. Mtaho. The Impact of Combining Follow-up Questions and Worked Examples in Program Visualization

UDK 378.14
DOI: 10.23951/2782-2575-2022-2-53-64

THE IMPACT OF COMBINING FOLLOW-UP QUESTIONS AND WORKED EXAMPLES
IN PROGRAM VISUALIZATION TOOL ON IMPROVING STUDENTS’ HELD MENTAL
MODELS OF POINTERS’ VALUE AND ADDRESS ASSIGNMENT
Adam Basigie Mtaho

Arusha Technical College, Tanzania

Abstract. Previous studies have shown that the lack of a useful mental model of pointers
is one of the reasons why many novice programmers fail the data structures course. This
study had two main objectives: to analyze the status of mental models of pointers (focusing
on value and address assignment); and to evaluate the impact of combining worked-examples
and follow-up questions in CeliotM program visualization (PV) tool in the learning of
pointers. The subjects of the study were sixty-two second-year undergraduate students taking
a course on data structures (PMT 221) at the College of Natural and Mathematical Sciences
(CNMS) of the University of Dodoma. Data were collected using pretest and posttest
questionnaires. The collected data were analyzed using descriptive statistics. The results
showed that 56.5% of the students had incorrect mental models of pointers. The results also
showed that using the proposed strategy improved the students’ mental models of pointers
from 56.5% to 87.1%. These results contribute to our understanding of the most common
misconceptions that novice students may have when learning pointers. The findings of this
study confirm previous studies that when the new innovative teaching strategies are used in
combination with PV tools in teaching and learning programming can help improve students’
programming comprehension.

Keywords: programming, program visualization, threshold concept, pointers, mental
model, follow-up questions

Introduction
Programming is the core competency in computer science (CS) education. To master

programming, a beginner must learn and understand various concepts of programming threshold
concepts. The Association for Computing Machinery (ACM) recognizes pointers as one of the
threshold concepts that any student who learns to program must understand well [1]. Furthermore,
pointers are prerequisite for learning data structures and other advanced programming topics in
CS education [2, 4]. Being threshold means that they are concepts that act as bridge stones, i.e.,
once a student masters them, he/she can quickly understand the rest of the topics in the course.

On the other hand, a student who does not understand such concepts well may get stuck and
be unable to learn a new concept [5]. Simply put, no student learning to program can implement
data structures such as linked lists, stacks, queues, and trees if such student holds an incorrect
mental model of pointers. Although pointers are “bridge stones” for learning data structures and
other advanced topics in programming courses, they are still considered one of the most difficult
concepts for novice programmers to learn and understand [3, 6].

Several studies have investigated students’ misconceptions when learning pointers and
suggested methods to address them [1, 3, 4, 7]. However, despite these efforts, few studies have
investigated the viability of mental models of pointers in novice programmers using mental model
theory [8]. To fill this research gap, this study used mental model theory [9] to investigate the
viability of mental models of pointers in novice programmers (considering pointer value and
address assignment); and evaluate the impact of combining follow-up questions and worked

Education & Pedagogy Journal. 2022. 2 (4)

— 54 —

examples in PV tool on improving students’ held mental models of pointers’ value ad address
assignment, hereafter referred to as the mental models of pointers.

Literature review
Mental Model: Theoretical framework

Students who learn basic programming concepts have problems in formulating a correct mental
model of program execution [10, 11]. In programming learning, the term mental model is often used
to describe how knowledge is organized in people’s minds. Essentially, a mental model is a person’s
internal (mental) representation of real-world objects and systems [12]. It is the learner’s
understanding of the hidden information process underlying the code and operations in the computer.

Mental model studies are widely used in introductory programming. According to Ma [10],
students constantly face the challenge of creating a new mental model when learning new
concepts [10]. Studies have shown that most students, when learning to program, lack viable
mental models when learning other threshold programming concepts. For example, in one study,
McCauley et al. [13] found that students learning data structures tend to build an incorrect or
inconsistent mental model of recursion and iteration when implementing a linked list.

Danielsiek et al. [14] also found that some students had the misconception that every binary
tree is a search tree. In addition, some students were found to have a false mental model of
assignment (i.e., they confused = in mathematics with that in programming. The term “false
mental” model implies that the way a student thinks about code may differ from that of the
notional machine [16]. It is well known that students with false mental models cannot understand
programming [10]. To help such students build a viable mental model of the key programming
concepts and gain programming competencies, previous studies have suggested the use of
visualization tools [14, 22, 26].

Mental Model Theory
The term mental model refers to the mental representations or beliefs of real things. It refers

to how people understand the world and things around them, how they work, and how they are
used and operated [17]. They are representations of reality that people use to understand certain
phenomena. According to Johnson-laird [9], when the mind is confronted with a new learning
task about a particular phenomenon or entity, the object or concept to be learned is represented by
a token in the model. Depending on the phenomenon or concept under study, multiple models are
usually created in the mind when learning a particular phenomenon. The properties of its tokens
represent the properties of a particular entity, and the relationships between tokens represent the
relationships between entities in people’s minds (memory). When the learner needs to apply the
model to solve a new problem, his or her cognitive system must create one or more models that
represent states or situations consistent with the premises and “read” the inference from the
model(s). If a conclusion is successfully read, a deception phase follows in which an attempt is
made to construct a mental model that contradicts the proposed conclusion. If this is unsuccessful,
the conclusion is accepted, and the mental model is updated [9].

It follows that when we learn a new concept or experience an event, the degree of accuracy of
what we express to others depends on how correctly or incorrectly we have initially internalized
the original knowledge and how we succeed in retrieving the “correct” mental models from
several held models we have in our minds. However, the quality and accuracy of the mental
models we hold are not always consistent and static. They are constantly changing and depend
mainly on how they are stored and organized in our long-term memory. According to Norman
[12], their modification and evaluation are inevitable to ensure that the mental models we possess
remain useful for learning [12].

— 55 —

Mental models and learning
Mental model theory helps us understand our learning environments in several ways [18].

According to Edwards-Leis [18], mental models help us explain, predict, control actions and
thoughts, diagnose, communicate, and remember. The explanatory function enables understanding
and strategy selection because mental models “facilitate cognitive and physical interactions with
the environment, with others, and with artifacts.” The predictive function enables problem-
solving in new situations. The control function provides a platform from which decisions can be
made. The diagnostic function of mental models enables students to develop metacognitive
awareness and assimilate new knowledge with existing knowledge. Finally, the communication
function allows others to see, understand, and remember the externalization of a person’s mental
models. How well a person accesses or retrieves the desired mental model, or part of it, depends
on the efficiency of the memory process and the relevance of the perceived relations [18].

Visualization in learning programming
According to Petre and de Quincey [24], the term visualization refers to the use of a graphical

representation of information to assist human comprehension of and reasoning about that
information. Wright & Laboratories [25] argue that visualizations are more useful in learning
programming since they display information in a format that is closer to the user’s mental
representations of problems and will allow data to be processed in a format closer to the way
objects are manipulated in the real world; they are easier to understand for novice programmers
[25]. They are also useful for describing intricate programs that are difficult to describe with text
languages, so graphical specifications may be more appropriate [26]. Through the use of
visualizations, a learner can help a learner to understand the logic behind an idea by showing the
intermediate steps and transitions [26].

Visualization in programming is grouped into two fundamental categories, namely, program
visualization (PV) and algorithm visualization (AV), depending on whether they animate a code
or algorithm under execution by relating to the code or not. PVs are used for visualizing either the
construction or execution (and sometimes both) of a program [27]. They are used to depict the
source code or the state of a program or its execution with the visual means. Examples of PVs are
Jeliot 3 [28] and Jype [29]. AVs are used for visualizing data structures and their operations
according to a particular algorithm and transition between those states during the execution of the
algorithm. Examples of AVs are AP-SA [30] and SDA-TRAKLA2 [31]. Research shows that
using PV/AV tools help beginners to develop a viable understanding of the notional machine that
runs the programs that they write, thereby helping them to learn how to program and improve
both programming and problem-solving skills. [26, 32]. Due to the benefits that visualizations
have brought to learning programming, several studies have examined their usage in learning
programming. Closest to our works are those of Ma et al. [10], Adcock et al. [4], Rørnes [19], and
Almadhoun and Parham-Mocello [20].

Related works
Ma et al. [10] conducted a study to investigate the viability of novice programmers’ mental

models of basic programming concepts, focusing on value and reference assignments. The results
showed that one-third of the students appeared to have “non-viable” mental models of value
assignment, and only 17% held a viable mental model of reference assignment. To address this
problem, Ma et al. [10] proposed a teaching technique that integrates PV and cognitive conflict
strategies. A number of studies have found that using the cognitive conflict strategy is potentially
effective in learning programming because it improves learner engagement and helps novice
programmers develop a better understanding of key programming concepts.

A.B. Mtaho. The Impact of Combining Follow-up Questions and Worked Examples in Program Visualization

Education & Pedagogy Journal. 2022. 2 (4)

— 56 —

Adcock et al. [4] investigated the impact of using a pair programming approach on
undergraduate programming instruction. The approach combined instruction with hands-on
exercises to allow beginning students to visualize these difficult concepts and understand how
they work and why they need them. Results showed that using this approach reduced student
frustration and improved retention in learning programming.

Kumar and Road [2] studied the effects of using software to learn pointers. The software
helped students learn how to implement pointer programs. The effects of using the software
teaching tool were evaluated using a pretest and a posttest. The results showed that the average
performance of the posttest exceeded that of the pretest by 100%.

Rørnes [19] surveyed the different mental models associated with students’ misconceptions
in learning reference tasks and references in a Python programming course. The results showed
that students had incorrect mental models related to reference assignments and/or calling a
function. The results of this study were very useful because they helped instructors learn how
students understand reference assignments and references when learning to program

Almadhoun and Parham-Mocello [20] conducted the study to investigate the status of
conceptual and procedural mental models of eleven students who were engaged in creating
programs with linked lists in the C programming language. The results showed that no participants
held correct mental models of a simple linked list in C.

The reviewed studies have shown that the majority of students taking programming courses
still hold incorrect mental models of threshold programming concepts. However, they have also
shown that visualizations can help improve students’ mental models of both basic and threshold
programming concepts.

Overview of the proposed approach
The proposed approach involves the use of follow-up questions embedded in worked

examples in a CeliotM (PV) tool [21]. CeliotM is a PV tool intended for teaching and learning
computer programming in C++ for novice programmers. CeliotM supports the visualization and
compilation of both data structures and basic programming concepts in the C++ programming
language. The tool offers a code view and an animation view. The source code view provides a
text editor for writing code. The animation view provides the dynamic view of the program.
CeliotM allows the user to work with different examples of threshold concepts in programming.
Once a user opens an example, it appears in the source code view. Follow-up questions usually
appear after each program example in the CeliotM. These follow-up questions were programmed
into the tool to provide a natural interface to texts and other content in the PV tool, as
recommended by Sorva et al. [22]. It follows that before a student compiles or runs the animations
for any example program, he or she must answer the following questions:

1. Does this program contain any errors?
2. Can you predict the output of this program?
3. Can you simply sketch on paper, either with a memory diagram, a variable diagram, a state

diagram, or some other way to illustrate how this program works?
4. Now click the animation button to compile the program
5. Play the animation. Watch how the program runs
6. Repeat the animation, but this time use the next step button.
7. Remove the specified static comments and write dynamic comments (explanations) for the

selected code.
8. Run the animation. Observe the dynamic comments you wrote.
9. Discuss with your colleague how this program works
10. Work on other questions from this section.

— 57 —

Figure 1 shows the view of the source code view and follow-up questions in CeliotM

Fig. 1. Source code, animation views, and follow-up questions in CeliotM

Once a student has answered the follow-up questions, he/she can switch to view the
animation. Figure 2 shows a visualization of a pointer program in CeliotM. The animation in the
method area displays the visualization of lines of code by indicating the status of the memory
(RAM), whether it is free, reserved, or already assigned, as the program runs. For example, the
program shown in the CeliotM source code view in Figure 2 has currently been executed from
line 1 to line 7. Meanwhile, variable x is now assigned int 50, while pointer p* has not been
assigned to any value, so its memory location is reserved.

Fig. 2. The visualization of a pointer program in CeliotM

A.B. Mtaho. The Impact of Combining Follow-up Questions and Worked Examples in Program Visualization

Education & Pedagogy Journal. 2022. 2 (4)

— 58 —

Thus, through the use of animation, system-defined explanation, and other features, the
learner understands the programming logic and improves programming comprehension. Figure 3
shows the final state of the animation of a given pointer program. It also displays the output of the
program.

Fig. 3. The final animation state of a pointer program in CeliotM
Materials and methods

A mixed research design was used in this study. The pretest and posttest questionnaires were
used to examine the status of the mental pointer models that the students held before and after the
intervention. The experimental method was used to examine the effect of the proposed approach
on the improvement of students’ mental pointer models.

The structure of the pretest and posttest questionnaires
The structure of the pretest and posttest questionnaires
The pretest questionnaire was used to examine the status of students’ held mental models of

pointers. It consisted of a multiple-choice question with a set of options for the mental models
and an option to indicate the correct mental models if the participant did not find a correct option
in the given ranges. The researcher’s first work was to conduct an independent analysis of
students’ possible (a-priori) responses to the questions in the questionnaire that would correspond
to a student’s mental model type. These priorities are listed in Table1. Each student was assumed
to have a latent cognitive structure underlying his or her responses to the questions in the
questionnaire, referred to as “mental models.” This method was adopted by Dehnadi and Bornat
[23]. Before the pretest questionnaire was given to the participants, it was first validated. Then, a
small pilot test was conducted in which students completed the questionnaire and expressed their
opinions about the usefulness of the instruments. The comments given were processed by
changing some options of the questionnaire. The posttest was constructed to measure the same
cognitive level of mental models as the pretest. However, the format of the posttest questions and
the level of cognitive ability measured remained the same as in the pretest. What was changed
were the variable names and assigned values, but the programming logic remained the same. The
maximum duration of the test was 20 minutes. After the posttest was administered, students’
responses on the status of their held mental models were collected and analyzed using descriptive
statistics.

— 59 —

Table 1
Pretest Questionnaire

Select one by putting a tick (√) in the option with a correct answer. If there is no correct option, specify yours
Consider the following code fragment: –

int *p;
int x;

Suppose that we have the memory allocation
for p and x as shown in Figure 1 below:

Fig 1. Memory allocation.
Suppose that the following statements are

executed in the order given:
x = 50;
p = &x;
*p = 38;

After the execution of statement *p = 38,
the new values of *p, & x, and x are: –

⁪ *p = 38, &x = 1750, x = 38
⁪ (*p = 50, &x = 1750, x =50)
⁪*p=50, &x=1400, x= 50,
⁪ (p=38, &x = 1750, x =50)
⁪*p = 88, &x = 1750, x=50
⁪*p = 50, &x = 1750, x=38
⁪*p = 38, &x = 3150, x = 38
⁪*p = 38, &x = 350, x = 38
⁪ Any other values of
	 *p and x are:
	 *p = 	 x =

Use this column for
your rough notes,

please

Two mental model categories were proposed to analyze the status of students’ mental models
of pointers: the Correct Mental models (CMM) and Incorrect Mental Models (IMM). In addition,
the IMM was further categorized into eight other subcategories, namely IMM1, IMM2, IMM3,
IMM4, IMM5, IMM6, IMM7, and IMM8. Table 2 provides more details on the categories of
these mental models.

Table 2
Categories of Mental Models

MENTAL MODEL DESCRIPTION CATEGORY
*p = 38, &x = 1750, x = 38 The value stored in variable x will be overwritten by the value

assigned to a pointer *p. The two values will thus be equal. The
addresses of the reference variables will not be affected during runtime

CMM

*p = 50, &x = 1750 x = 50 Assigning the value to a pointer *p has no effect on its referenced
variable x; instead, the value of the dereferenced pointer that has been

assigned value will retrieve the value held by the referenced
variable. The addresses of the reference variables will not be affected

during runtime

IMM1

*p = 50, &x = 1400, x = 50 Assigning the value to a pointer *p has no effect on its referenced
variable x; instead, the pointer will indirectly access the value stored in
variable x. however, variable x will now use the address of the pointer

*p during runtime

IMM2

p = 38, &x = 1750, x = 50 The value in variable x will not change. The pointer *p will hold the
value assigned to it like a normal variable. The addresses of the

reference variables will not be affected during runtime

IMM3

*p = 88, &x = 1750, x = 50 The value assigned to the pointer will be incremented by the value
from variable x, but the value of variable x will remain unchanged.

IMM4

*p = 50, &x = 1750, x = 38 The value assigned to variable x and pointer *p will be swapped. The
addresses of the reference variables will not be affected during runtime

IMM5

p = 38, &x = 3150, x = 38 The value stored in variable x will be overwritten by the value
assigned to a pointer *p. The two values will thus be equal. The

addresses of the pointer and reference variable address will sum up
during runtime

IMM6

p = 38, &x = 350, x = 38 The value stored in variable x will be overwritten by the value
assigned to a pointer *p. The two values will thus be equal. The

addresses of the reference variables will be subtracted from that of *p
during runtime

IMM7

Others Undefined mental models. These are models that were difficult to
define and interpret

IMM8

A.B. Mtaho. The Impact of Combining Follow-up Questions and Worked Examples in Program Visualization

Education & Pedagogy Journal. 2022. 2 (4)

— 60 —

The experiment
This experiment aimed to investigate the impact of combining follow-up questions and

worked examples in the CeliotM PV tool on improving novice programmers’ held mental models
of pointers. The subjects of the study were sixty-two (62) second-year undergraduate students
taking the course PMT 221 (Data Structure) at the College of Natural and Mathematical Sciences
(CNMS) of the University of Dodoma. These students had already learned the basic concepts of
the programming course in C++. These students voluntarily participated in this study. The
protocol for the test was as follows: Students were first informed about the purpose of the study.
Then, students were asked to complete the pretest questionnaire within 20 minutes. After they
completed the pretest questionnaire, it was collected for analysis. The results on the status of
students’ held mental models can be found in the next section. After completing the pretest,
students were proportionally divided into two equal groups, Group 1 (G1) and Group 2(G2),
based on the status of their held mental models. Both G1 and G2 were then given a similar set of
pointers exercises to practice. The G1 students used the Borland C++ compiler for practice, while
the G2 students used the CeliotM PV tool. After participating in the hands-on exercises for
12 hours per week for two weeks, all students completed the posttest. The duration of the test was
20 minutes. The students were not told if they could repeat the posttest. The results of the
experiment are presented in the next section. It was hypothesized that students who used CeliotM
would improve the status of their held mental models of pointers better than those who used
conventional C++ compilers (Borland compilers).

Results and discussion
Results

Figure 4 shows the status of the mental models that the students were holding before applying
the proposed learning approach. Figure 4 shows that of the 62 students who participated in the
pretest, only 27 students (43.5%) held the CMMs of pointers, while 35 students (56.5%) held the
IMMs. Figure 3 shows the status of the students’ held mental models of pointers before the
intervention.

Fig. 4. The status of the students’ held mental models of pointers before the intervention

As seen in Figure 4, more than half of the students (56.5%) had incorrect mental models of
pointers. Table 3 shows the categories of IMMs that students had before using the proposed
intervention.

— 61 —

Table 3
Categories of IMMs that students had before applying the proposed approach

MM TYPE N (35) PERCENTAGE
IMM1 5 8.1%
IMM2 3 4.8%
IMM3 18 29.0%
IMM4 2 3.2%
IMM5 3 4.8%
IMM6 1 1.6%
IMM7 1 1.6%
IMM8 2 3.2%

As shown in Table 3, the largest proportion of students with wrong mental models belonged
to the IMM3 category. Such students had the misconception that assigning the value to a pointer
*p had no effect on its referenced variable x (*p = 38, &x = 1750 x = 50). This misconception
happened because when declaring a pointer, some students tend to confuse between the roles of
memory address and variable location. Basically, when you assign a value to variable x, the value
assigned to variable x will be stored to the address, say FFFF of variable x. It follows that if you
assign address FFFF to the pointer *p and then assign a value to the pointer *p, the original value
of variable x will be overwritten by the new value assigned to pointer *p. The output values for
both variable x and the pointer *p will finally be the same.

Another category that performed poorly next to the IMM3 group was IMM1. This group
constituted 8.1% of the total participants. Students with this category of wrongly held mental
models had the misconception that any value that had been assigned to the pointer *p would have
no effect on its referenced variable x; instead, the value of the dereferenced pointer that had been
assigned value would hold and output the value held by the referenced variable. These students
are confused between variable assignments and address assignments.

Table 3 also shows that 4.8% of the students were holding IMM5. The majority of the students
had the misconception that when you assign a new value to a variable (that was initially assigned
a value) via a pointer, such values will be swapped. As shown from the code fragment in Table 1,
since the only statement that exists between the statements in line 3 (i.e., x = 50;) and line 5
(i. e. *p = 38;) is line 4 (i. e. p = &x;); these students might have confused the difference between
the pointer’ address assignment and swapping. Results from Table 3 further showed that some of
the students (3.2%) were found to hold wrong mental modes that were difficult to classify.

The results of the experiment
Having identified a large number of IMMs in this study, it was decided to investigate whether

using the newly proposed strategy that combines follow-up questions and worked examples in the
PV (CeliotM) could help improve the status of students’ mental models of pointers. Table 4 shows
the results of the proposed approach on students held mental models of pointers between G1
(control group) and G2 (experimental group).

Table 4
The status of students held mental models of pointers after the intervention for G1 and G2

MM Type
Non experimented sample (N = 62) G1 (N = 31) G2 (N = 31)

N % N % Change N % Change (%)
CMM 27 43.5 18 58.1 14.6 27 87.1 +43.6
IMM 35 56.5 13 41.9 –14.6 4 12.9 –43.6

A.B. Mtaho. The Impact of Combining Follow-up Questions and Worked Examples in Program Visualization

Education & Pedagogy Journal. 2022. 2 (4)

— 62 —

As shown in Table 4, the students who used Borland C++ compilers (G1) slightly improved
their held mental models by 14.5%., while those who used CeliotM (G2) to learn pointers
improved the status of their held mental models from IMM to CMM by 43.6%, raising the
percentage to 87.1%. This is a substantial number taking into consideration that pointer is one of
the challenging topics for novice programmers to grasp. Table 5 shows the detailed distribution of
the IMMs with reference to the preliminary status of the students held mental models before the
intervention.

Table 5
Detailed distribution of the IMMs after the intervention

IMM TYPE
Non experimented sample (N = 62) G1 (N = 31) G2 (N = 31)

N % N % Change N % Change (%)
IMM1 5 8.1 3 9.7 –1.6 1 3.2 –4.9
IMM2 3 4.8 1 3.2 –16.1 0 0 –4.8
IMM3 18 29.0 4 12.9 0 3 9.7 –19.3
IMM4 2 3.2 1 3.2 –1.6 0 0 –3.2
IMM5 3 4.8 1 3.2 1.6 0 0 –4.8
IMM6 1 1.6 1 3.2 1.6 0 0 –1.6
IMM7 1 1.6 1 3.2 0 0 0 –1.6
IMM8 2 3.2 1 3.2 1.6 0 0 –3.2

As indicated in Table 5, the IMM3 for the experimental group (G2) was largely affected by
the intervention since the number of students who were holding IMMs decreased by 19.3%
compared to other IMMs. It is also worth noting that whereas all IMMs were improved in G2,
this was not the case for students in G1. For example, while mental model categories IMM6,
IMM7, and IMM8 were all improved and eliminated for G2, they were not improved at all for
G1. This implies that students the use of CeliotM helped to improve the status of the students’
held mental models compared to the use of the traditional lecture method.

Discussion
This study had two main objectives: to analyze the status of mental models of pointers

(focusing on value and address assignment); and to evaluate the impact of combining worked-
examples and follow-up questions in the CeliotM PV tool in the learning of pointers.

The study findings show that more than half of the students (56.5%) in the Data structure
course had an incorrect mental model of pointer assignment. Such students were holding a wide
range of incorrect mental models of pointer value and address assignment. That misconception
happened because students did not exactly understand the roles and functions of the pointer. In
general, a pointer is a variable. When you declare a pointer, it is given both the memory address
and location, just like other variables. But unlike a normal variable, the pointer contains only the
address of the variable. When you assign a value to the pointer, that pointer does not actually
store that value but points to the memory location to which it was referenced.

As shown from the code fragment in Table 1, the statement x = 50; is followed by the
statement p = &x, which implies assigning the address of variable x to the pointer *p. The symbol
& is called the addressing operator and is used in particular to pass the address of a particular
variable to the pointer variable so that the pointer can point to that variable. Also, the symbol (*)
that precedes the pointer identifier p is called a dereferencing or redirection operator. It is read as
“value pointed to by.” The function of the dereferencing operator is to restore the memory location

— 63 —

pointed to by the value of the variable. More specifically, the dereferencing operator is used to
indirectly access the data stored at the memory location pointed to by the pointer. Any change in
the dereferenced pointer directly affects the value of the variable it points to.

Findings from the study have also shown that the use of the proposed approach that applies a
combination of worked examples and follow-up questions in the CeliotM PV tool has managed to
improve the status of students’ held mental models of pointers up to 87.1%. The results suggest
that using the proposed approach can greatly improve the status of students’ held mental models
of pointer threshold concepts. One possible reason that the proposed approach improved the
status of students’ flawed mental models of pointers was that, while the use of PV helped students
understand the notional machine, follow-up questions helped students naturally engage in the
learning process, explore deeper knowledge from their own minds and learn from others. In this
way, students managed to construct and reconstruct their false mental models and hence, greatly
improved their programming comprehension.

Conclusion and future research work
In this study, eight categories of students’ wrongly held mental models of pointers were

identified. To improve the mental models, a strategy that involves the use of worked examples
along with follow-up questions within the CeliotM PV tool was employed. The results show that
the use of the proposed approach largely helped to reduce the number of students with flawed
mental models of the pointers compared to the use of the traditional lecture approach. The
proposed strategy seems to have a positive effect on improving students’ conceptual, program
tracing, and problem-solving skills. Analyzing students’ mental models is very important because
it allows instructors to explore the overall picture of students’ comprehension patterns. It also
allows instructors to identify the type (s) of student misconceptions and thus determine the best
strategy to help students understand programming. This study identified several misconceptions
that students have when learning pointers. However, it only examined the status of the students’
held mental models of pointers within a short period of time and with a small sample size. Future
studies should examine the effectiveness of using the proposed approach with a larger sample in
longitudinal studies. In addition, the study focused on static pointer´s address and value
assignment. It did not go so far as to try to investigate the status of students’ mental models of
dangling pointers, dynamic pointer declarations, and the use of pointers as reference parameters
in function calls. Future studies should also investigate the status of students’ held mental models
with respect to these aspects.

References
1.	 Hind M. Pointer Analysis: Haven’ t We Solved This Problem Yet? ACM 1-58113-413-4/01/0006. 2001.
2.	 Kumar A.N., Road R.V. Learning the Interaction Between Pointers and Scope in. 2001;45–8.
3.	 Daly J. The Usage of Pointers, Arrays, and Structures. 2012;1–12.
4.	 Adcock B., Bucci P., Heym W.D., Hollingsworth J.E., Long T., Weide B.W. Which Pointer Errors Do Students

Make? 2007;9–13.
5.	 Sanders K, Mccartney R. Threshold Concepts in Computing: Past, Present, and Future. 2016;91–100.
6.	 Lahtinen E., Ala-Mutka K., Järvinen H.M. A study of the difficulties of novice programmers. Proc 10th Annu

SIGCSE Conf Innov Technol Comput Sci Educ. 2005;14–8.
7.	 Kumar A, Kumaresan S. Use of Mathematical Software for Teaching and Learning Mathematics. 2001:373–88.
8.	 Johnson-laird P.N. Mental models and human reasoning. 2001.
9.	 Johnson-laird P.N. Mental models and human reasoning. 2010.
10.	Ma L., Ferguson J., Roper M., Wood M. Investigating the Viability of Mental Models Held by Novice

Programmers. 2007;499–503.

A.B. Mtaho. The Impact of Combining Follow-up Questions and Worked Examples in Program Visualization

Education & Pedagogy Journal. 2022. 2 (4)

— 64 —

11.	Heinsen Egan M., McDonald C. Program visualization and explanation for novice C programmers. Conf Res
Pract Inf Technol Ser. 2014;148:51–7.

12.	Norman D.A. Some observations on mental models. Ment Model. 1983;7(112):7–14.
13.	Mccauley R., Hanks B., Fitzgerald S., Murphy L. Recursion vs. Iteration: An Empirical Study of Comprehension

Revisited. 2015;350–5.
14.	Danielsiek H., Paul W., Vahrenhold J. Detecting and understanding students’ misconceptions related to algorithms

and data structures. In: Proceedings of the 43rd ACM technical symposium on Computer Science Education.
2012:21–6.

15.	Winslow L.E. Programming Pedagogy – A Psychological Overview. ACM SIGCSE Bull. 1996;28(3):17–23.
16.	Sorva J. Notional Machines and Introductory Programming Education. 2013;13(2).
17.	Moreno A. Animation Re-designing Program Animation. University of Eastern Finland;2014.
18.	Edwards-Leis C. Challenging learning journeys in the classroom : Using mental model theory to inform how

pupils think when they are generating solutions. 2010:153–62.
19.	Rørnes K.M. Mental Models in Programming Python. 2019.
20.	Almadhoun E., Parham-Mocello J. Exploratory Study on Accuracy of Students’ Mental Models of a Singly

Linked List. In: 2021 IEEE Frontiers in Education Conference (FIE). IEEE; 2021:1–9.
21.	Mtaho A.B. Devising a New Congruent Visualization Framework for Minimizing Learners ’ Cognitive Load in

Teaching a Learning Data Structures and Algorithms. The University of Dodoma; 2020.
22.	Sorva J., Karavirta V., Malmi L. A review of generic program visualization systems for introductory programming

education. ACM Trans Comput Educ. 2013;13(4).
23.	Dehnadi S., Bornat R. The camel has two humps (working title). Middlesex Univ UK [Internet]. 2006;1–21.

Available from: http://mrss.dokoda.jp/r/http://www.eis.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf
24.	Petre M., & de Quincey E. A gentle overview of software visualisation. PPIG News Letter, 2006:1–10. (Original

work published).
25.	Wright A.F., & Laboratories A. Taxonomies of Visual Programming and Program Visualization*. 1990;0:97–123.

(Original work published).
26.	Bergin J., Patiho-matt M., Brodlie K., Mcnally M., College A., Goldweber M., … Wilson J. An overview of

visualization: Report of the Working Group on Visualization. 1996:192–200. (Original work published).
27.	Scott A.S. Using Flowcharts , Code and Animation for Improved Comprehension and Ability in Novice

Programming Certificate of Research. 2010 (March); 430. Retrieved from http://dspace1.isd.glam.ac.uk/dspace/
bitstream/10265/460/1/Dr Andrew Scott – PhD Thesis.pdf (Original work published).

28.	Moreno A., Myller N., & Sutinen E. Visualizing Programs with Jeliot 3. 2004. (Original work published).
29.	Helminen J., & Malmi L. Jype – A Program Visualization and Programming Exercise Tool for Python Categories

and Subject Descriptors. 2010:153–162. (Original work published).
30.	Jonathan F.C., Karnalim O., & Ayub M. Extending The Effectiveness of Algorithm Visualization with

Performance Comparison through Evaluation-integrated Development. 2016:16–21. (Original work published).
31.	Nikander J., Helminen J., & Korhonen A. Algorithm Visualization System for Teaching Spatial Data Algorithms.

Journal of Information Technology Education: Innovations in Practice, 2010;9:201–225. https://doi.
org/10.28945/1305 (Original work published).

32.	Hidalgo-Céspedes J., Mar\’\in-Raventós G., & Lara-Villagrán V. (2016). Learning principles in program
visualizations: A systematic literature review. Proceedings – Frontiers in Education Conference, FIE,
2016-Novem. https://doi.org/10.1109/FIE.2016.7757692 (Original work published).

Adam B. Mtaho, PhD, Lecturer, Department of in Information and Communication Technology,
Arusha Technical College, P. O. Box 296, Arusha, Tanzania.
E-mail: abasigie@.yahoo.com

Submitted July 7, 2022

