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of few-layered graphene particles by Raman spectroscopy
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Abstract: The purpose of the present work is to develop methods for assessing the quality of aqueous suspensions of few-
layered graphenes using Raman spectroscopy technique. Aqueous suspensions of few-layered graphene particles were
manufactured by direct exfoliation of natural graphite under with ultrasound in the presence of surfactants.
An experimental assessment of the effectiveness of different methods of Raman spectroscopy data analysis in order to
determine the average number of graphene layers and the defectiveness of few-layered graphene particles was carried out.
It is concluded that it is possible to determine the average number of graphene layers in aqueous suspensions of few-layer
graphene particles based on the ratio of integral intensities and the position of the G and 2D peaks. Additionally,
it is proposed to use the ratio of the peaks of the integrated intensities of peaks D and G as a parameter characterizing the
defectiveness of particles of few-layered graphenes. Examples are given of using this approach to assess the quality of
graphene samples obtained using various technologies via averaged distribution functions of the number of layers in
particles and the /p//¢ ratio. It was shown that samples with minimal amount of layers had minimal particle size and high
defectivity, while samples with higher number of layers had larger particle size with low defectivity.

Keywords: graphene; graphene suspensions; few-layered graphene; Raman spectroscopy; colloidal solutions; graphene
structure.
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Annoramus: llens paboTel — pa3paboTka CIIOCOOOB OICHKH KadecTBa BOJHBIX CYCIICH3WH MAalOCIOHHBIX TpadeHOB
C TIPUMCHEHUEM METOJIa PAMaHOBCKOW CHEKTPOCKOIHMH. BOIHBIC CYCIICH3UH YacTHUI] MaJOCIONHBIX Tpad)eHOB MOTYYCHBI
MyTeM MpsIMOi 3Kc(hOIHAMU [TPUPOAHOrO rpadurTa MOA BO3JACUCTBUEM YJIBTPa3ByKa B MPUCYTCTBHH IOBEPXHOCTHO-
aKTHBHBIX BellecTB. [IpoBe/ieHa IKCIEpUMEHTANIbHASL OlleHKa (PPEKTUBHOCTH HEKOTOPHIX METOJIMK aHAlM3a JaHHBIX
PaMaHOBCKOW CIEKTPOCKOMUK JUIsi OMPEJACICHHUsS CPEAHEro KOJIMYecTBa clioeB TpadeHa U JIeeKTHOCTH YaCTHIL
MaJocioiHbIX rpadenoB. Clenan BbIBOJ O BO3MOXHOCTH OINPEICIICHUS] CPEHEr0 KOJIMUECTBa CJI0eB rpadeHa B BOJHbBIX
CYCIEH3HUX YaCTHIl MAIOCIONHBIX IPad)eHOB 110 COOTHOLICHUIO MHTETPAJIbHBIX HHTEHCUBHOCTEH U TOJIOKEHUIO THKOB G
u 2D. JIONOJHUTENBHO TPEIUIOKEHO MCIIONb30BaTh MapaMeTp COOTHOLICHHS WHTETrPalbHBIX MHTEHCUBHOCTEH MHUKOB D
u G B Ka4yecTBe MapaMeTpa, XapaKTepH3yomero Ae(eKTHOCTh YacTUI] MAJIOCIOWHBIX rpadeHoB. [IpuBeacHbI pUMEpHI
UCIIOJIb30BaHKs JIAHHOT'O TMOJXO0Ja JUIS OIIGHKH KauecTBa IpadeHOBBIX IIPErnaparoB, IOJYYSHHBIX 110 pPa3IMYHBIM
TEXHOJIOTUAM C UCIIOJIB30BAHUEM YCPECAHCHHBIX (l)yHKL[I/lﬁ pacnopeaciacHrs KOJINYECTBA CJI0CB B HaCTULIAX U COOTHOLICHUS
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Ip/lg. TlokazaHo, 4TO MpemapaThl ¢ MUHIMAJIbHBIM KOJHYSCTBOM CIIOCB HMEITH MUHUMAJBHBIN pa3Mep YacTHUI] U BBICOKYIO
Je(eKTHOCTh, B TO BpEMsI KaK Mpernaparhbl ¢ 00j1ee BHICOKUM KOJMYECTBOM CJIOCB — OOJIBIIUIN pa3Mep YacTHIl IPHU HU3KOMH

JIe(PESKTHOCTH.

Kaiouessie ciioBa: rpaden; rpadeHOBBIE CyCIICH3UN; MAJOCIONHBIHN rpadeH; paMaHOBCKas CIIEKTPOCKOINS; KOJUIOUIHBIC

pacTBOpBI; CTPYKTypa rpadeHa.

Jos muruposanms: Goncharova NN, Samoilov VM, Elchaninova VA, Nakhodnova AV, Danilov EA, Tarasov KA.
Estimation of graphene layers number and defectiveness of few-layered graphene particle by Raman spectroscopy. Journal
of Advanced Materials and Technologies. 2024;9(2):084-090. DOI: 10.17277/jamt.2024.02.pp.084-090

1. Introduction

50 years ago, the British researchers Tuinstra
and Koenig first linked the parameters of Raman
spectroscopy of soot and pyrocarbon with the
diameter of crystallites [1], as determined by X-ray
diffraction. This marked the beginning of the
development of Raman spectroscopy as a structure-
sensitive method in relation to all classes of carbon
materials without exception. Among the “pioneers”
one cannot fail to mention the Brazilian researcher
Luis Conchado, who established the relationship
between the parameters of Raman spectroscopy and
the parameters of the crystal structure of graphite-like
materials determined by X-ray phase analysis [2].

Back in the 2000s, European scientists
undertook extensive research into a wide variety of
classes of carbon materials. In the studies by Ferrari
and his coworkers, the data from [1, 2] were
confirmed and refined, and the possibility of
determining not only the size of crystallites, but also
the concentration of defects in graphene layers was
established [3, 4]. Raman spectroscopy has become
one of the main methods for identifying graphene
[3—11], and a recognized method for studying carbon
nanostructures such as fullerenes [12, 13] and carbon
nanotubes [14, 15].

However, the main advantage of Raman
spectroscopy remains the possibility of non-
destructive testing of two-dimensional nanomaterials
and in particular graphenes, while intensive research
is aimed at finding ways to use Raman spectroscopy
for quality control of ready-to-use structures [3—10].

The most important figure of merit for the
quality of graphene structures, in addition to
defectiveness, is the number of graphene layers.
The aim of this study was to develop methods for
estimating the number of layers in particles of few-
layer graphenes using Raman spectroscopy.

2. Materials and Methods
2.1. Materials preparation

In order to develop a technique for determining
the number of layers in particles of few-layer
graphenes and studying them, liquid-phase exfoliated

samples were used. The initial raw material was
natural graphite of the GSM-2 or GE-2 grades, which
had previously undergone gas-thermal refining in
a Freon atmosphere at a temperature of 2000 °C and
processing on a cup vibrating grinder for 30-240 min.
An aqueous suspension was prepared from a sample
of natural graphite (300 mg), distilled water (50 mL)
and a surfactant (polyglycidyl ether 1H,1H,11H-
eicosofluoro-1-undecanol with a gross formula of
Ca6H34011F20) (30 mg).

The resulting suspension in a container was
treated with ultrasound with a submersible (horn-
type) concentrator on a MELFIZ MEF
391 installation with a frequency of 22.5 kHz and
an acoustic power of 200 W for 6 hours.

After removing the container from the ultrasonic
unit, a sample (at least 0.1 mL) was taken and placed
in liquid form on a single-crystalline silicon wafer,
then dried with hot air and submitted for Raman
assessment (series 1). Series 2 was obtained
in a similar way, with a sonication time of 4 hours.

Series 3 and 4 of suspension samples of few-
layered graphenes were obtained using a similar
method, however, before ultrasonic treatment, the
samples were crushed on a roller vibrating grinder
with a predominant abrasion-crushing action for
30 minutes (series 3) and 2 hours (series 4).

Samples of series 5 and 6, provided by GoldKG,
Bishkek (Kyrgyzstan), were obtained by circulating
a water-alcohol graphite-containing suspension
in a disintegrator with a rotor diameter of 200 mm,
at different speeds and process durations.

2.2. Raman spectroscopy

Raman spectroscopy is based on inelastic
scattering of photons. Light scattering occurs when
an electromagnetic wave interacts as it passes through
a crystal lattice. When a light wave interacts with the
surface of a material, the vast majority of photons
(>99.999 %) are elastically scattered without
changing wavelength (Rayleigh scattering), but
a small fraction of photons (<0.001 %) undergo
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inelastic (Raman) scattering with respective change
in energy and wavelength photons. The resulting
photon spectrum is passed through a filter that separates
the inelastically scattered photons. Said scattered
photons are amplified and directed to a detector, which
records their frequency change with respect to incident
photons (Raman shift) [16].

A Renishaw inVia Reflex confocal Raman
microspectrometer was used to study samples of
aqueous graphene suspensions. Suspensions were
applied onto a silicon wafer substrate with 300 nm
thermal oxide layer. The microspectrometer is
equipped with an optical microscope and a cooled
CCD detector. The laser radiation power did not
exceed 1 mW, and the laser spot had a diameter of
approximately 0.55 pum.

3. Results and Discussion

Figure 1 shows optical microphotographs and
Raman spectra of the studied samples of suspensions
of few-layered graphenes. It is obvious that the
applied coatings were very heterogeneous in their
particle size distributions (see Figs. la—e).
The Raman spectra of few-layered graphene samples
contained three main lines: D, G and 2D (see
Figs. 1f~/). In addition, the intense line (1000 cmﬁl)
inherent to silicon was clearly visible in the spectra.
The intensity of this line varied, decreasing as the
amount of graphene in the applied coating increased.
In this case (see Figs. 1/~/), it is obvious that the high
variation of the line intensity (1000 cmﬁl) indicated
the inhomogeneity of the applied coating.

As a rule, two characteristic bands are observed
in graphene, like many other carbon materials, in the
first-order Raman spectrum (1000-2000 cm ') (see
Fig. 1). One of them is the Raman-allowed band at
1580 cmﬁl, corresponding to the ideal graphite
vibrational mode with Ep, symmetry, often referred
to as the G-mode or G band, which is determined by
the vibrations of carbon atoms in the plane of the
“graphene” layers and is associated with carbon
atoms in the state of sp2 hybridization [2—4]. Another
active Raman band at 1360 cm ' is induced by
disordered carbon atoms, corresponds to lattice
vibrations with A4;, symmetry, and is called the
D-mode. Band D is associated with carbon atoms also
in the state of both sp2 and sp3 hybridization,
localized in the area of defects and the periphery of
“graphene” layers [2—8]. The D band may be absent
in highly perfect graphites: single-crystalline

graphite, highly oriented samples of pyrolytic
graphite (HOPG), some samples of natural graphite,
and an increase in its intensity is considered to be the
result of an increase in the amount of disordered
carbon or peripheral atoms [2—-6].

In this regard, discussions continue on the origin
of the main second-order spectrum feature, the
2D line [4], since it was initially assumed that it is
a 2nd order mode with respect to the D line.
However, recent theoretical research has indicated
a different nature of the generation of this line
associated with the crystal structure of the material
under study, in particular with the influence of
graphene layers located under the main layer [3-5].

According to the results of numerous works
[2-10], the ratio of the integral intensities of these
bands, the Ip/l; parameter is determined by the
average distances between defects in the case of
amorphized, in particular irradiated, graphene-like
structures, and the sizes of L, crystallites for natural
graphites and various carbon materials after high-
temperature processing at the graphitization stage
[3-5]. For graphitized materials, the parameters of
Raman spectroscopy can be used to determine other
parameters of the crystal structure, such as the
interlayer distance dygp and the height of crystallites

L. [2]. Numerous studies have shown the
applicability of Raman spectroscopy for determining
the number of graphene layers in various graphene
like structures [3—11].

The most sensitive to the number of graphene
layers is the Ipp/l; parameter. This parameter that
was used in works [4-11] for demonstrating the
spectral differences between graphite and graphene.
Figure 2 shows experimental data obtained by Holmi
[10], who performed more than 2000 measurements
on graphene samples (see Fig. 1a) obtained by the
CVD method, and the calibration dependence for
determining the average number of layers,
n, proposed based on the results of work [10], is as
follows (see Fig. 2b):

B / b
(Iyp/Ig)-a ,

where b=1.667, a=0.238. Subsequently, this
dependence was used to determine the number of
graphene layers on samples of dried suspensions.
Figure 3 shows the distribution functions by the
number of graphene layers for the studied
suspensions of few-layered graphenes, calculated

using the I»p/lg ratio.
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Fig. 1. Optical micrographs (e¢—e) and Raman spectra (f~/) of the studied few-layered graphenes suspensions
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Fig. 3. Distribution functions by the graphene layers number for studied few-layered graphene suspensions
calculated using the />p/I parameter

Additionally, the Ip/l; parameter was used to
characterize the quality of suspensions. Since the
degree of graphitization of all starting materials —
natural graphites — is almost the same, an increase in
the intensity of the I peak relative to the intensity of
the I; peak shows a change in the degree of
defectiveness of the material during the exfoliation
process. The results representing the distribution
functions of the Ip/l; parameter for the studied
suspensions are presented in Fig. 4.

4. Conclusion

Based on the data obtained, it should be
concluded that exfoliation under the effect of
ultrasound in the presence of a surfactant makes it
possible to obtain suspensions of few-layered
graphenes with a minimum number of layers, while
the graphene layers have minimal defects. Reducing
the ultrasonic treatment time leads to an increase in
the average number of layers. The use of preliminary
mechanical treatment does not lead to a decrease
in the number of layers in the resulting suspensions,
but the defectiveness of the layers greatly increases.
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Fig. 4. Ip/I; distribution functions for investigated suspensions

When using a disintegrator, it was not possible
to obtain suspensions with very few graphene layers,
but the defectiveness of graphene layers in the
suspensions remained quite low. It should be noted
that the latter method for producing few-layered
graphenes has an undoubted advantage, since it has
a productivity of about 0.5-1.0 kg of dry powder of
few-layer graphene per hour, while the productivity
of an ultrasonic installation, even at a power of 1 kW,
does not exceed 0. 3-0.5 g-hﬁl.

In general, the study results are consistent with
the results of the extensive study of various
commercial graphene samples performed by the
authors of [17], where a general trend was
established: samples with a minimal number of layers
had a minimal particle size and maximum
defectiveness, while preparations with a higher
number of layers had a larger particle size with low
defectiveness.

Thus, the results obtained will allow further
research in the development of effective technologies
for producing few-layered graphenes in the form of
suspensions using Raman spectroscopy parameters,
striving to obtain materials with maximum valuesof

the Irp/lg parameter and minimum values of the

Ip/lG parameter, in parallel using other developed we
previously described control methods.
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Modification of fine-grained concrete with carbon nanotubes
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Abstract: The article considers the possibility of using nanotechnology in the production of concrete. Special attention is
paid to the method of administration of nano-sized additives, due to their low concentration in the composition of concrete,
as well as their tendency to form aggregates. Experimental data on the selection of a type of plasticizing additive to obtain
optimum plastic properties of a concrete mix are presented. Thus, on the basis of the experimental data, the plasticizer
SP-3 was selected, which allowed to reduce the water-cement ratio from 0.48 to 0.36 without losing the plasticity of the
mixture. Data on the development of the composition of nanomodified fine-grained concrete by introducing Taunit-M
carbon nanotubes in the amount of 0.01-0.001 % by weight of the binder are also presented. Two methods of introducing
carbon nanotubes are considered, namely the technology of ultrasonic dispersion and the use of a vortex layer apparatus.
The possibility of combining the two technologies to introduce a complex additive into concrete is considered.
The greatest increase in strength (up to 26 %) was achieved when nanotubes were introduced into the mix using a linear
induction rotator together with the introduction of a plasticizer into the water using an ultrasonic disperser.

Keywords: nanomodified concrete; carbon nanotubes; linear induction rotator; ultrasonic dispersion; superplasticizer;
compressive strength; bending strength.
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AHHOTanusi: PaccMoTpeHa BO3MOXHOCTh MCIIOJIB30BAHUS HAHOTEXHOJIOTHI B NMpou3BoAcTBE OeToHa. Ocoboe BHHUMaHME
yJIeJIeHO CHOoco0y BBEACHHS HaHOPa3MEpHBIX 100aBOK, M3-3a MX MaJOW KOHLEHTPAaLMH B COCTaBe OETOHA, a TAaKKe UX
CKJIOHHOCTH K 0O0pa3oBaHMIO arperaToB. llpencraBieHbl OSKCHEpUMEHTANbHBbIE Jl@aHHbIE M0 IMOAOOpY BHUIA
acTuuIupyomed 100aBKM U MOJYYEHHsS ONTHUMAIBHBIX IUIACTHYECKMX CBOWCTB OeToHHOM cmecu. Ha ocHoBe
9KCIIEPUMEHTANIBHBIX JaHHbIX moxo0paH mmiactudukarop CII-3, KOTOpBI MO3BONMI IOHU3UTH BOJOLEMEHTHOE
orHomrenne ot 0,48 mo 0,36 6e3 morepu IUIACTHYHOCTH cMecH. [lokasaHel JaHHBIE 1O pa3pabOTKE COCTaBa
HAaHOMOIU(HUIIUPOBAHHOTO MEJIKO3EPHUCTOrO OETOHA IyTEM BBEICHHUS YIIIEPOJHBIX HAHOTPYOOK TayHnT-M B KOJIMUecTBe
0,01...0,001 % mo wmacce BsbKymiero. PaccMOTpeHO J1Ba MeToJa BHECEHHS YIJIEPOIHBIX HAHOTPYOOK, a HMEHHO
TEXHOJIOTHS YJIBTPa3ByKOBOTO JWCIIEPIHPOBAHMS, NPUMEHEHHE anmapaTa BUXPEBOTO CJIOSI U COBMECTHOE NPHUMEHEHHE
JIByX TEXHOJIOTHH Il KOMIUIEKCHOH 100aBku B OeToH. Hanbonpmiee moBwienne mpogHoCcTH (10 26 %) TOCTUTANOCh IPU
BBEJICHNH B CMECh HAaHOTPYOOK C IOMOILNBIO JIMHEWHO WHIYKIIMOHHOTO BpAIATeNs, COBMECTHO C BBEJICHHEM B BOIY
3aTBOPEHUS INIACTU(HUKATOPA C TIOMOIIBIO YIBTPa3BYKOBOT'O JHUCHEPTraTopa.

KaioueBsie ciioBa: HaHOMOIU(DUIIMPOBAHHBINA OETOH; yIJIEpoAHbIE HAHOTPYOKHM; JMHEHHO MHIYKIHMOHHBIA BpaliaTellb;
YJIBTPa3BYKOBOE JHCIEPTUPOBAHHUE; CYNEPINIACTU(PHUKATOP; NPOYHOCTH IIPH CXKATHH; TPOYHOCTH MPH H3THOE.

s mutupoBanms: Lyashenko DA, Perfilov VA. Modification of fine-grained concrete with carbon nanotubes. Journal of
Advanced Materials and Technologies. 2024;9(2):091-099. DOI: 10.17277/jamt.2024.02.pp.091-099
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1. Introduction

Active mineral additives and superplasticizers
occupy a special place among the available additives
for concrete preparation. The analysis of literature
data [1, 2] shows that the most effective additives are
cement stone modifiers, which have a similar
crystallo-chemical structure to inorganic nanoparticles
(e.g. SiO;). However, modification with such
nanoparticles is difficult to apply as it is difficult to
distribute the additive uniformly throughout the
material. For this purpose, such additives can be used
as a suspension with water for binder hydration [3-5].
In addition, there is the problem of distributing
nanoscale additives uniformly throughout the volume
of the mix. This is due to the fact that such additives
are introduced in tenths and hundredths of a percent
by weight of other components of the mix. In this
context, the search for the most efficient and at the
same time cost-effective methods of nanomodified
concrete is an urgent task. The development of
technologies for obtaining nanomaterials with
different properties dictates the need to study the
effect of introduced nanoparticles on the properties of
silicate systems [6-9]. Problems related to the
controlled improvement of structural concrete
properties such as compressive and flexural strength,
waterproofing, frost resistance, etc. [10, 11], as well
as the effect on the performance of other building
materials including binders (cement, gypsum, lime)
are of considerable interest. There are experimental
data on the use of fullerenes in the production of
cinder and aerated concrete blocks, according to
which the strength of conventional blocks increases
by 16-18% and their density decreases by 8-10 %
at a concentration of fullerene-like compounds equal
to 1-10 g per ton of concrete. It also leads to
a reduction in the production cycle [12].

Strotsky et al. [13] showed that in concrete
production, the introduction of carbon nanoparticles
with sizes ranging from 10 to 50 nm in the amount of
0.004 wt. % with respect to cement improved the
effect of silica microadditive (8 wt. %) and increased
the compressive strength of concrete up to
104.5 MPa. It also resulted in a significant increase in
Young's modulus, Poisson's ratio, density and
decrease in water permeability of concrete.
The increase in concrete shrinkage, which was up to
30% with a single microsilica additive, disappeared.

Nanomodified  concretes are  essentially
composed of the same materials as conventional
concrete mixes, but their composition is chosen to
ensure durability through the formation of new
structural properties of the material. Concretes with

improved performance characteristics are called high-
performance concretes. Research in this direction is
being carried out in Germany, Japan, Norway and
Switzerland [15-19].

In Galinovsky et al. [20] the introduction of
carbon structures into concrete mixing water is
considered. Carbon nanotubes (CNTs) are an
example of such additives. They are layers of
graphene coiled into cylinders with lengths from 1 to
100 pm and different diameters. CNTs have
improved mechanical properties [21, 22]. Depending
on the number of graphene layers, there are both
single-walled carbon nanotubes (SWCNTs) and
multi-walled  carbon  nanotubes (MWCNTS).
SWCNTs are strips of graphene sheets and have
a diameter of 6-13 nm. MWCNTs have a larger
number of these layers and their inner diameter varies
between 6—16 nm, while their outer diameter is up to
100 nm. Due to their very small size, CNTs are
subject to van der Waals forces, which cause them to
agglomerate. This disadvantage of nanoscale
additives requires methods to introduce them into the
material composition. The most common methods are
ultrasonic dispersion of such particles (ultrasonic
dispersers, cavitators and ultrasonic  baths),
mechanical grinding and the combination of these
technologies with the use of superplasticisers. There
are many examples of the use of these methods in the
scientific literature [23, 24]. We also previously
considered the possibility of using nanomodifying
additives, namely carbon nanotubes, where
an increase in strength of over 15 % was observed
[25, 26].

The aim of the present work is to study the effect
of the introduced complex admixture in concrete
containing carbon nanotubes and superplasticiser on
the physical and mechanical properties of concrete
and concrete mix.

2. Materials and Methods

2.1. Initial materials

For all conducted experiments the test beams of
40x40x160 mm size were made. The following
materials were used for laboratory tests: cement
Eurocement of MS500D0 grade (JSC Cemros,
Moscow); quartz sand with a grain size modulus of
1.9; plasticising additives: superplasticisers under
trade mark “Linamix SP-180”, “Polyplast Premium”,
“Aeroplast”, “Relamix T2”, “C-3”, “Polyplast SP-3”,
“PFM NLK”, “POLYPLAST SP-4”, “Polyplast SP
Sub”. All additives were introduced into the concrete
mix in the form of suspension together with mixing
water, in the amount of 0.5 wt. % of cement weight.
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CNTs “Taunit-M” (NanoTechCenter LLC,
Tambov, Russia) were used as a nanomodifier. CNTs
are hollow carbon tubes with an outer diameter of
10-30 nm, inner diameter of 5-15 nm and length up
to 2 um.

2.2. Equipment for making
and examining concrete samples

To investigate the mechanism of additives
influence on the performance characteristics of fine-
grained concrete, laboratory studies were carried out
using the following equipment:

— ultrasonic device with visualization “Pulsar-
1.2” (Interpribor LLC, Russia). It was used for the
determination of strength characteristics by non-
destructive method, including the early hardening of
concrete;

— scanning electron microscope (SEM) “Versa
3d” (FEICompany, USA) was used to study the
structure of nanomodified concrete;

— ultrasonic dispersant “UzG13-0,1/22”
(Techcentre, Russia) was used for the introduction of
additives into the mixing water;

— linear induction rotator “LIV-2”
(Manufacturer — Russia) was used for introduction of
carbon nanoadditives into dry mix, as well as for the
activation of cement binder.

2.3. Preparation of the samples

One of the most important properties of a
concrete mix is its mobility or plasticity, as this factor
affects the technical and economic characteristics of
the concrete works. This parameter is directly
influenced by the amount of water added to the mix.
Concrete mixes have their own water-holding
capacity, which is determined by experimentation.

It is well known that the introduction of more water
leads to an increase in the porosity of the material and
therefore a decrease in strength. In order to maintain
strength with the same amount of water, different
plasticizer additives are used. A group of plasticizers
was selected for this study. The effect of each
plasticizer was determined by Suttard viscometer
tests. In order to study the strength properties, test
beams of 40x40x160 mm were prepared with the
following composition C — 500 g; sand — 1500 g;
W/C — 0.36; plasticizer — 0.5 % by weight of the
binder; CNT — 0.01-0.001 % by weight of the binder.
The strength properties of the test specimens after 7,
14 and 28 days were investigated using the “Pulsar
1.2” device. The flexural strength of the 28-day
samples was determined in accordance with Russian
Standard 10180.

3. Results and Discussion

3.1. Selection of a plasticizer

The first part of the study aimed to determine the
optimum performance characteristics of the concrete
mix. Plasticizers were selected for the development
of complex modifying additives in concrete. The
results show that plasticizers have selective effects on
different types of cement, due to the mineral and
chemical composition of the binder on water-soluble
additives. In this work, the water-cement ratio was
determined experimentally in order to obtain a mix
with optimum mobility. Samples were taken from
each mix under normal curing conditions.

After 28 days, each sample of fine-grained
concrete was tested for compressive and bending
strength using a non-destructive control method with
the ultrasonic device “Pulsar 1.2”. The results of the
research are presented in Table 1.

Table 1. Characteristics of the studied compositions using various plasticisers

Plasticiser W/C The blurring of the cone, mm Density, kg.nf3 Compressive strength, MPa
- 0.48 106 2220.7 53.7
SP-4 0.36 108 22773 68.1
PolyplastSP-3 0.36 113 2235.6 67.8
C-3 0.36 106 2281.3 64.5
PFM NLK 0.36 107 2250 62.9
Linamix SP-180 0.36 110 2286.3 65.4
Polyplast Premium 0.36 111 2264.5 66.4
Aeroplast 0.36 109 2234.4 60.7
Relamix 2T 0.36 107 2217.6 68.7
Polyplast SP Sub 0.36 109 2235.6 65.9
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The standard cone blur method was used to
determine the plasticizing effect of the additives on
the mix. The best effect was shown by the plasticizer
“Polyplast SP-3”. At the same time, the fine-grained
concrete samples with the superplasticizers “Relamix
2T”, “SP-4” and “Polyplast SP-3” had higher
strength. The increase in strength in comparison with
the reference composition was 22, 21.3 and 20.6 %,
respectively.

The obtained results of experimental studies
confirm that the most effective plasticizers are those
based on polycarboxylates at the same quantity of the
added additive. Such plasticizers are less sensitive to
the composition of the concrete and the type of
cement binder.

The study of the obtained compositions shows a
positive plasticizing effect. It should be noted that the
additive “Polyplast SP-3” showed the best
performance. Thus, the introduction of 0.5 % of the
additive by weight of cement made it possible to
reduce the water-cement ratio by 25 %, which
ultimately led to an increase in strength.

3.2. Determining the efficiency
of CNT introduction by ultrasonic dispersion

After selecting the superplasticizer, it was
decided to use additional modifying additives,
namely CNTs “Taunit-M” in small quantities
(0.001-0.0001 wt. % by weight of the binder).

A staged series of tests was prepared for the
research. The composition of fine-grained concrete
including cement, sand and water was chosen as a
control composition. The proportions of the
components were chosen on the basis of optimum
mobility of the mix. For additional analysis, a mix
containing the plasticizer “Polyplast SP-3” was also
prepared. The plasticizer was introduced in two ways:
by mechanical stirring in the mixing water and by
ultrasonic dispersion using the USG13-0.1/22 device.
In this case, the use of ultrasonic treatment allowed
the amount of plasticizer to be reduced from 0.6 to
0.5 wt. % by weight of the binder in the same mixes.
On the basis of the literature data, it was decided to
prepare three other mixtures with the use of plasticizer
together with carbon nanotubes “Taunit-M” in the
amount of 0.003, 0.004, 0.005 wt. % by weight of
cement. The plasticizer and carbon nanotubes were
introduced together into the mixing water under
ultrasonic action for 5 minutes. Table 2 below shows
the composition of the samples tested.

Table 2. Compositions of the studied mixes

Composition Polyplast Taiiliiﬁ\/[, Reom,  Roend,
SP-3,g o MPa  MPa

1 (control) - - 27.4 5.53
2 3.0 - 35.6 5.86

3 2.5 - 352 6.43

4 2.5 0.003 37.4 6.53

5 2.5 0.004 39.7 6.63

6 2.5 0.005 40.2 6.80

Based on the laboratory test done, results were
also obtained for the strength characteristics of the
samples for each composition at 28 days of age
(Figs. 1 and 2). It was found that the use of plasticizer
increased the strength by 16 % both in compression
(Reom) and in bending (Rpend). At the same time,
however, the ultrasonic influence during the
introduction of the plasticizer made it possible to
reduce the amount of plasticizer additive without
losing the strength properties (Compositions 2, 3).
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Fig. 1. Compressive strength test
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Fig. 2. Bending strength test
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Table 3. The studied compositions and strength characteristics

. . Reom, MPa
Composition  SP-3, g CNTs, wt. % by weight of cement
7 days 14 days 28 days
1 (control) 2.5 - 36.5 39.0 40.8
2 2.5 0.001 39.3 40.8 45.5
3 2.5 0.002 40.0 40.8 43.6
4 2.5 0.003 39.7 42.5 47.2
5 2.5 0.004 41.1 42.7 45.8
6 2.5 0.005 41.8 43.6 47.6
7 2.5 0.006 41.4 44.5 46.7
8 2.5 0.007 41.7 44.0 47.6
9 2.5 0.008 41.2 43.4 47.2
10 2.5 0.009 40.8 434 47.1
11 2.5 0.01 432 443 48.4
The use of a complex additive of plasticizer and -
CNTs increased the strength as the concentration of 49 184
nanotubes increased. The introduction of carbon £
nanotubes increased the strength in the range of 26 to E 403 467
31 %. It can be concluded that further tests are & o 432
needed to determine the rational amount of additive L a3 43.6
with increasing concentration of the introduced — w e 108
additive. E 39
Further, to study the effect of CNTs & ¥
nanoadditive on the strength characteristics of fine- 37 A 0
grained concrete, another series of tests was prepared . . .
from 11 compositions of C:S — 1:3, W/C — 0.36, 7 days 14 days 28 days
SP-3 — 0.5 wt. % by weight of binder and different 106411

concentration of CNTs. Carbon nanotubes were
introduced in the amount from 0.001 to 0.01 wt. % by
weight of cement. The control samples (composition 1)
did not include the nanoadditive. The investigated
compositions are presented in the table below.
For each composition the compressive strength was
determined using non-destructive method of control
with the device “Pulsar 1,2 at the age of 7, 14,
28 days. The results of the obtained data are given
in Table 3.

As can be seen from the data obtained, the
introduction of CNTs leads to an increase in the
strength of fine-grained concrete. For example, the
minimum amount of nanoadditive increased the
compressive strength by 10 %. The maximum
increase in strength is characteristic of Composition
11 and was 16 %. However, due to the insignificant
difference in the strength values, it can be concluded
that the introduction of nanotubes “Taunit-M” in the
amount of 0.005-0.01 wt. % by weight of the binder
has almost the same effect.

Fig. 3. The character of the strength gain
of the fine-grained concrete

It should be noted that the increase in strength is
already observed on the 7™ day. Thus, for the
composition with the maximum concentration of
CNTs, the increase was 15 %. It is known that the
increase in strength in the early curing period has
a positive effect on the production processes
associated with the manufacture of concrete products.

As can be seen in Fig. 3, the samples modified
with nanoadditives showed an accelerated intensity of
strength  increase compared to the control
composition.

3.3. Study of the method of CNTs introduction
using a linear-induction rotator

In this work, the method of introduction of
carbon nanostructures using a vortex layer apparatus
was also investigated. A series of samples were
prepared in which carbon nanotubes were introduced
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into the cement binder using a linear induction rotator
(LIR). For comparison, one series was prepared by
ultrasonic dispersion technique. The preparation
technology was as follows: cement binder and sand
(C:S — 1:3) were jointly loaded into the LIR chamber,
together with CNTs and ferromagnetic grinding
bodies. The components were processed in the
apparatus for 2 min. Plasticizer was introduced into
the mixing water. All components were mixed to
obtain a homogeneous mixture and samples were
molded. Thus, four compositions were prepared
including a control one without CNTs and three
compositions with inclusion of nanoadditive in
different concentrations. The compositions with the
obtained characteristics are shown below in Table 4.
According to the data in the table, it is clear that
the introduction of CNTs by LIR technology allows
obtaining an insignificant increase in strength.
The compressive strength increased in the case of
ultrasound by 14 %, and when using LIR — by 15 %.
This is explained by an additional effect of vortex
influence, namely, activation of concrete mix
components by grinding with grinding bodies.

3.4. Method of introduction of the complex additive

The last stage of the research was the joint
application of the two technologies. The introduction
of the complex additive was carried out sequentially

in two stages: 1) introduction of a plasticiser by
dispersion in mixing water; 2) introduction of CNTs
into cement binder in LIR chamber. After treatment,
all components were mixed for further moulding of
the samples. After 28 days, the compressive and
flexural strength limits were determined for each
sample (Table 5).

3.5. Study of the structure
of nanomodified concrete

In order to study the morphology of the
nanomodified concrete, the samples destroyed during
the tests were crushed to a powdery state, and a small
amount of them were placed in a microscope
chamber.

As shown in the images (Fig. 4a, b), the carbon
nanotubes have a stable diameter value along the
length of the fiber. This provides good conditions for
the growth of cement stone around the carbon
inclusions. Concrete modification at the nanoscale is
evidenced by the discrete reinforcement of the
cement matrix, where ettringite minerals together
with nanotubes (Fig. 4a) allow the new formations to
be combined into a single structure. The nanotube
modified concrete has a dense arrangement of
particles, resulting in an increase in strength
properties.

Table 4. Compositions of the studied mixtures of fine-grained concrete

Composition ~ CNTs, wt. % per g SP-3, ¢ LIR Rcom, MPa Ultrasound Reom, MPa
1 - 40.8 40.8
2 0.004/0.020 3 459 47.9
3 0.005/0.025 47.7 48.1
4 0.006/0.030 46.8 47.2
Table 5. Strength characteristics of the studied samples
Composition CNTs, wt. % Rcom, MPa Rpend, MPa

1 - 53.6 6.8

2 0.0001 65.0 8.1

3 0.0002 65.8 8.2

4 0.0003 67.0 8.2

5 0.0004 66.1 8.6

6 0.0005 68.2 9.0

7 0.0006 67.0 8.7

8 0.0007 66.2 8.4

9 0.0008 67.1 8.6

10 0.0009 67.4 8.7

11 0.0010 68.6 9.0
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(a)

(b)

Fig. 4. SEM-images of nanomodified concrete: a — magnification 60.000x; b — magnification 8.000x

The experimental data show that the maximum
increase in strength is achieved at the maximum
concentration of CNTs (Composition 11). This was
27 %. It should be noted that a slight difference in
strength increase was achieved in composition 6
(26 %). From this it can be concluded that it would be

more rational to use a lower amount of additive when
selecting the concrete composition.

The microscope was also used to study the
structure of samples obtained from the destruction of
beams on presses. These are particles of fine-grained
concrete (up to 5 mm in size).

Fig. 5. SEM-images of the nanomodified samples:
a, b — control sample; ¢, d — nanomodified sample
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The use of the nanostructured CNTs “Taunit-M”
additive results in a denser and stronger concrete
structure (Fig. 5), which is the reason for the increase
in strength properties.

4. Conclusion

According to experimental studies, the
introduction of carbon nanotubes “Taunit-M” leads to
an increase in compressive and bending strength.
An insignificant amount of the introduced additive
(0.0001 wt. % by weight of the binder and higher)
together with the plasticizer allows to noticeably
increase the strength properties. It should be noted
that there is an insignificant difference in the increase
of strength characteristics when using from 0.0005 to
0.001 wt. % of CNTs by weight of cement. On this
basis, it can be concluded that there is an optimal
amount of the additive, regardless of the method of
its introduction into the concrete composition. At the
same time, it should be noted that the use of LIR
allows slightly higher strength values to be obtained
due to the additional grinding of the dry components.
The study of the morphology of the interpore
partitions of concrete using electron microscopy
shows that the samples modified with nanotubes have
a denser structure, which increases the strength
properties. The micrographs show the inclusions of
nanotubes, whose reinforcement can reduce the
formation of nanoscale cracks and increase the
durability of modified fine-grained concrete.
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Abstract: Creation of biodegradable polymers is one of the most prospective trends aimed at solving problems of polymer
waste accumulation and processing, and the development of effective oxo-additives for polyolefin raw materials.
It is considered to be one of the most promising ways to ensure accelerated degradation of polymer waste in natural
conditions. The present research work studies the effect of nanostructured iron oxide microspheres produced with
ultrasonic aerosols pyrolysis on accelerated atmospheric aging of polyethylene. Two types of microspheres were used to

modify polyethylene microspheres consisting of X-ray amorphous FepOs3 (initial microspheres after synthesis) and

microspheres, consisting of crystalline Fe,Os (heat-treated). Samples of polyethylene modified with microspheres were
aged by simulating cyclic climatic effects (temperature, UV, moisture). After the aging of polyethylene modified with
microspheres, a higher degree of surface oxidation was discovered using the method of infrared spectroscopy. A strong
surface erosion of polyethylene was observed with the addition of microspheres after aging at the same time, untreated
polyethylene was preserved almost unchanged. The present study has shown that modification of polyethylene with iron
oxide microspheres beyond the end of materials useful life provides its accelerated decomposition under the influence of
the main components of atmospheric impact: light, temperature and humidity. At the same time, the complex of
mechanical and technological properties of modified polyethylene remained at the acceptable level, which allows using the
developed material for the production of packaging, agricultural and landscape films, which will decompose in natural
conditions after the end of their lifetime.
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CBHIPBIO paccMaTpuBaeTCs Kak OAWH W3 HauOoliee MEPCIEeKTHBHBIX CIOCOOOB OOECICUeHUs] YCKOPEHHOW IeCTPYKLHH

100 Metlenkin D.A., Kiselev N.V., Khaydarov B.B., Suvorov D.S. et al.



Journal of Advanced Materials and Technologies. 2024. Vol. 9, No. 2

MIOJIMMEPHBIX OTXOJIOB B MPHPOIHBIX YCIOBUAX. VccienoBaHO BIMSHHE HAHOCTPYKTYPHPOBAHHBIX MHKpoOC(ep OKCHIa
JKeye3a, MOJydeHHBIX METOJOM IHpOJIN3a YIbTPAa3BYKOBBIX a’p030Jed, Ha YCKOPEHHOEe aTMOoc(epHOoe cTapeHHe
nonuaTrieHa. s MoxuduKanuy moaudTUIeHa ObUIH MCIIOJIB30BaHbl MUKPOC(EpPhI IBYX TUIIOB: IIEPBBI THII HA OCHOBE
perrreHoamopguoro FeyO3 (ncxonubie MUKpocdepsl 1Mociae CHHTE3a), BTOPOM THIT Ha OCHOBe KpucTayuimueckoro FeyO3
(TepmooOpaborannpie). OOpaspl  MONUAITWICHA, MOJU(PHUIMPOBAHHOTO MHKpOC(pEpaMH, COCTApHBATIH ITyTEM
MOJICIIUPOBAHMS IUKIHMYECKIX KINMAaTHYSCKUX BO3ICHCTBUI (Temmeparypa, Y®, Bmaxuocth). [locime ycKOpeHHOTO
cTapeHuss MOAU(HUIIMPOBAHHOTO MHUKpOC(hEpaMH TONMITHICHA METOJ0M HH(PaKpacHOH CIIEKTPOCKONHH OOHapyKeHa
Gosmee BbICOKas CTENEHb OKUCICHMS TOBEPXHOCTH. Iloka3aHa cuiibHas MOBEPXHOCTHAs 3pO3Usl TOJMITHIICHA
¢ nobaBiieHHEM MHUKpocdep IOocie CTapeHHs, HNPH 3TOM HEOOpaOOTAaHHBIA IONMATHICH COXPAHSIICS IPaKTUYECKH
B HEM3MEHHOM BHuje. IIpencraBneHHoe nccne10BaHue MOKa3ano0, YT0 MOAU(UKAIMS TOJIMITHICHA MUKpOC(hepaMu OKCHIa
JKeje3a IOCIe OKOHYAHMS CPOKa CIy’XObl MaTepHaloB OOECIEUUBAET €r0 YCKOPEHHOE DPAa3IOoKEeHHe 0N JeHCTBUEM
OCHOBHBIX KOMIIOHEHTOB aTMOC()EPHOr0 BO3ICUCTBHS: CBETa, TeMIleparypbl M BIaxHOCTH. [lpm Moaudukanmum
MHUKpoc(hepaMu KOMIUIEKC MEXaHWYECKMX M TEXHOJOTMYECKHX CBOMCTB MOJIMATWIIEHA OCTAJICS Ha HMPUEMIIEMOM YPOBHE,
YTO TI03BOJISIET HCIIOJIB30BATh Pa3pabOTaHHBIM Marepuas Ui MPOM3BOJACTBA YHNAKOBOYHBIX, CEIbCKOXO3SIHCTBEHHBIX
1 NaHaTHBHIX IUICHOK, KOTOPBIE IT0CIe OKOHYAaHUS CPOKa CITy>KObI OyAyT pasiaraTthCsi B €CTECTBEHHBIX yCIOBHSIX.

KaioueBble ci10Ba: KOMNO3WTHI; MUKpPOC(EPHI; KIMMATHIECKOE CTapeHHe; PEeHTTeHO()a30BbII aHanmm3; WHQpakpacHas
CHEKTPOCKOIHS; TEPMOTPABUMETPUIECKUH aHAIN3.

Jna matupoBanmsa: Metlenkin DA, Kiselev NV, Khaidarov BB, Suvorov DS, Boychenko EA, Ovchinnikov VA,
Abushakhmanova ZR, Kolesnikov EA, Burmistrov IN. Influence of hollow iron oxide microspheres on polyethylene climate

aging. Journal of Advanced Materials and Technologies. 2024;9(2):100-109. DOI: 10.17277/jamt.2024.02.pp.100-109

1. Introduction

Over the past few decades, the demand for
plastics has increased significantly due to their low
cost, excellent durability and processability.
According to The Economist, between 1950 and
2015 about 8.3 billion tonnes of different types of
plastics was produced worldwide. Currently, only
9% of plastic materials are recycled and
approximately 12 % are incinerated, while 79 % are
thrown away as garbage into the environment [1].
This fact creates problems of plastic waste
accumulation, which causes enormous damage to
various ecosystems. Plastic accumulation is caused
by its inability to decompose in natural conditions
due to the presence of antioxidants and stabilizers in
its composition [2].

The use of degradable materials can be a
solution to reduce the accumulation of waste in the
environment. These materials can be divided into two
groups: those that are inherently biodegradable,
whose chemical structure allows direct action by
biological enzymes (such as amylase and cellulase),
and those that become biodegradable after one or
more physical and/or chemical processes, such as
hydrolysis, photolysis or pyrolysis [2]. The latter
group includes polymeric materials containing
prooxidants/degradants known as oxobiodegradable
polymers. These materials require oxidative
degradation under UV light and heat to reduce their
molar mass and form groups that are more easily
assimilated by microorganisms [3].

The development of materials that are able to
decompose under the influence of environmental
factors with the assistance of oxo-additives at the end
of their lifetime is one of the promising industrial
approaches to the problem of polymer waste
accumulation in the environment. As usual, transition
metal compounds: Fe, Mn, Co added in stearates
form or other organic complexes are used as oxo-
additives whose function is to assist the degradation
of the material [4, 5]. Inclusion of polar groups and
reduction of molecular weight in polymer chains
promotes interaction with microorganisms in the
environment, turning them into biodegradable
materials [3, 4].

The paper by Francisco J. Arraez and colleagues
[5] considered the oxidation process of impact
resistant polystyrene with the addition of 1.5 and
3 wt. % oxidizable raw material d2w as a pro-
oxidant. The active components of this additive are
Fe and Mn stearates (metal content (56.71 £0.41)
and (6500 +200) ppm respectively). The authors
showed that compositions with 1.5 % oxo-additive
exhibited faster degradation than samples with 3 %
oxo-additive at temperatures of 50 and 55 °C.
A complete loss of mechanical properties of the pro-
oxidant samples was noted and the changes were
faster with increasing temperature.

The paper [3] investigated the effect of the pro-
oxidant additive PDQ-H containing manganese at a
concentration of 0.8 wt. % on the accelerated
degradation of linear low density polyethylene
(LLDPE) and low density polyethylene (LDPE).
It was found that for both accelerated degradation and
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environmental degradation a complete loss of
mechanical properties was obtained. Also, by FTIR
spectroscopy it was found that due to the
simultaneous presence of different degradation
products containing carbonyl groups, the carbonyl
band becomes wider with increasing degradation
time, indicating a significant break in the polymer
chains.

The analysis of the literature data shows that
acommon problem of using oxo-additives is the
partial degradation during processing because of
elevated temperatures [6, 7]. Thermal stability of
samples with oxo additives, which in most studies /
papers [8-10] was evaluated by TGA, naturally
decreased due to oxodegradation processes leading to
the formation of low molecular weight impurities.
In this regard, the search for new materials that can
perform the role of oxo-additives is an important
scientific direction.

Not only the nature of the active metal and its
compound, but also the dispersity and distribution of
the additive as well as its morphology and specific
surface area influence the effectiveness of oxo-
degrading additives. In this case, hollow and porous
oxide and metal microspheres are considered as
a functional additive to various polymeric materials,
characterized by a high specific surface area,
processability and ease of creating composites with
a uniform distribution in a wide range of
concentrations and imparting a variety of functional
properties [5, 11-16]. The introduction of
microspheres based on metals and their compositions
used as oxo-additives can provide a similar effect and
reduce the period of natural decomposition of
polymer composites.

In this regard, the purpose of this article is to
investigate the effect of hollow iron oxide
microspheres on the accelerated climatic aging
processes and the basic mechanical properties of PE.

2. Materials and Methods

2.1. Sample production technology

LDPE in granules (LB7500N LP408294, LG
Chem, South Korea) was used as a tested polymer
matrix material.

Hollow iron oxide microspheres were obtained
by ultrasonic spray pyrolysis at 900 °C. Fe(NO3)s-

9H,0 (chemical grade, RusChem, Moscow, Russia)
was used to prepare a 20 % aqueous solution of iron
nitrate. The solution was prepared and filtered using
a paper filter, and then poured into the tank of
a domestic ultrasonic atomizer. The flow rate of the

dispersed solution through the steel tube reactor was
maintained using an air compressor. A continuous
supply of aerosol was carried out until the precursor
in the tank was finished. After completion of the
process and cooling down the plant elements, a dark
red powder was extracted from the filter.

The resulting powder was divided into two equal
parts for further removal of unreacted salt residues.
The first part was placed in a muffle furnace for
further afterburning of salts and recrystallization of
microspheres. The second part of the powder was
washed with distilled water; an ultrasonic
homogenizer was used to better dissolve the iron
nitrate in water. The resulting stable suspension was
separated by centrifugation. Additionally, the powder
was washed with acetone and air dried.

The compositions were prepared by rolling on
the laboratory rollers UBL-6175-BL  (PRC).
The compositions of the tested samples are presented
in Table 1.

The duration of mixing the composition was
15 min at roller temperatures of 150 and 140 °C and
the gap between the rolls of 0.5-1.0 mm. Having
mixed the composition, it was cooled and crushed on
a rotary knife mill “Vibrotehnik™ (Russia). Then the
sample of the composition was dried in a drying
cabinet for 30 min at =90 °C and pressed on a hand
press RPA-12 at 180 °C and 150 MPa to obtain
homogeneous films of thickness 1.2 mm. The
samples of LDPE composites containing 1.25, 2.5,
5.0 wt. % of heat-treated and initial iron microspheres
were prepared.

2.2. Analytic methods

The structure of microspheres and composite
was studied by scanning electron microscope (SEM)
Tescan Vega 3, TESCAN, Brno, Czech Republic
with EDX analyzer.

In this paper, the X-ray phase analysis (XRD)
was performed on an ARL X'TRA diffractometer
(Thermo Scientific, Switzerland) using CuKa
radiation (ACuKo =0.15412 nm) in the 20 angle
range (5-60 degrees). Bregg-Brentano measurement

Table 1. LDPE-based composites modified
with iron oxide microspheres

Microsphere Microsphere content, wt. %
type

Initial 1.25 2.5 5.0

Heat-treated 1.25 2.5 5.0
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Table 2. Physical and mechanical properties of composites

Tested materials Microsphere Relative elongation at  Yield strength oy, Modulus
content, wt. % the point Fyax (€max), %o MPa of elasticity £, MPa

Initial LDPE 0.00 576 8.00 128

LDPE filled with heat-treated 123 294 >90 189

orh e With Aeat-treate 2.50 267 5.86 200
microspheres Fe,O3

5.00 140 5.84 162

LDPE filled with initial 1.25 255 5.90 167

Jrh e With Tiita 2.50 376 5.90 139
microspheres Fe;O3

5.00 411 6.00 168

geometry, step scanning mode (0.02 degree step)
at 1.2 was used. XRD based on CuKa radiation and
Bregg-Brentano geometry is the most popular of the
X-ray phase spectroscopy methods.

The accelerated weathering test was performed
via three-factor climatic chamber ATLAS UV-Test
(USA) according to ASTM D5208 (cycle B).
The single 12-hours test cycle consisted of 4-hour
condensation at 50 °C, and then irradiation with UV
light for 8 hours at 70 °C. The wavelength of UV
lamp was 340 nm and the irradiance was 1.35 W-m
with humidity of 90-100 %. The total time of
weathering was 168 hours (14 cycles).

The IR spectra of the compositions and the
initial LDPE before and after exposure in an
environmental chamber were recorded using a Bruker
Lumos FT-IR microscope macromodule in the
spectral range of 4000—600 cm .

The thermogravimetric analysis (TGA) was
carried out using a synchronous thermal analysis
device (TGA/DSC3+, Mettler Toledo, Greifensee,
Switzerland) in the temperature range of (+25—+800) °C
at a heating rate of 10 deg-mjn_1 in air (100.0 mL-mjn_l).
For measurements, a 150 pL aluminum oxide
crucible was used; the sample weight was 4-6 mg.
The results were processed using the Star SW Lab

Mettler software version 16.10 (Greifensee,
Switzerland).
The processes of glass transition, cold

crystallization, and melting of LDPE and composites
were studied by a differential scanning calorimeter
DSC 214 Polyma (NETZSCH-Geratebau GmBH,
Selb, Germany) according to ISO 11357-3:2018.
The heating of the samples was carried out in the
temperature range of 20-200 °C at a scanning speed
of 10 °C-min"'. The weight of the samples was
(8 +£0.5) mg. A temperature scale and an enthalpy of
melting were calibrated against indium, zinc, and
stannic standard samples.

The analysis of physical and mechanical
properties of the compositions was carried out using a

universal testing machine DVT (Devotrans, Turkey).
For the tests on the pneumatic punching press
GT-7016-AR (Gotech testing Machines Inc., Taiwan)
the samples of compositions with size 100x10 mm
were cut out. A total of 21 samples were prepared:
3 samples for each composition (n = 7). The results of
relative elongation, yield strength and modulus of
elasticity were obtained automatically from
geometrical parameters of samples in Devotrans CKS
v2.1.4 software system by a series of at least
5 measurements (samples) as shown in Table 2.

3. Results and Discussion

The phase composition and structure of
microspheres powder was investigated with the X-ray
diffraction technique (Fig. 1).

The diffractogram of microspheres without
annealing does not contain sharp peaks (Fig. 1 —
curve a), which indicates that the material of the
microspheres is amorphous. The diffractogram of
annealed microspheres shows high crystallinity of the
material (Fig. 1 — curve b). The interpretation of the
XRD data showed the presence of one phase —

hematite Fe,Os.

[000-33-0664] Fe203 (hematite)

Heat-treated

Intensity (arbitrary units)
>

initial
o - e e
0 20 40 60

80 20 (degrees)

Fig. 1. Diffractograms of heat-treated
and initial microspheres
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(b)

NUST MISIS

Fig. 2. Structure of Fe,O3 microspheres (a)
and LDPE-based composite (b) containing 5.0 wt. % Fe;O3 microspheres (brittle fracture)

The obtained microspheres had a hollow
structure and an average size from 1 to 4 microns
(Fig. 2a). In the composite, the spheres were well
blended with the binder and, when examining the
brittle chip surface (Fig. 2b), they cannot be
practically detected on the surface. The analysis of
the SEM data also did not reveal the presence of
aggregates of microspheres. Individual particles are
statistically distributed throughout the composite.

The introduction of functional fillers often leads
to a decrease in the complex of mechanical
properties, so the study of strength properties of the
investigated composites was carried out (Table 2).
According to the Table 2 it was found that the
introduction of microspheres in the whole
investigated range of concentrations (from 1.25 to

16 T T T T

5 wt. %) does not significantly affect the strength
characteristics of polyethylene. Considering the
preservation of standard values of physical and
mechanical properties when introducing
microspheres into the composition of LDPE, as well
as their small size and lack of aggregates, the
obtained compositions can be used in the production
of consumer goods, for example, packaging films,
bags.

The main negative influence of traditionally
used oxo additives is the reduction of properties and
degradation at elevated temperatures during the
processing of composites and manufacturing of
products from them. Thus, the influence of
microsphere-based additives on the heat resistance of
polyethylene was investigated (Fig. 3).

14 4

12 1

10

Weight, mg

I v ] f T 1
0 100 200 300 400

I - 1 L T 1 ]
600 700 800 900 Ts, °C

Fig. 3. TGA/DSC curves initial LDPE and LDPE filled with heat-treated microspheres Fe;O3
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The comparison of mass loss and DSC curves of
the investigated samples with the curve of the
original LDPE is shown in Fig. 3. The onset
temperatures of degradation of microsphere-filled
composites, both according to the data of thermal
effects and heat fluxes do not differ much from the
pure polymer. The main degradation stages occur at
temperatures (more than 350 °C), which are much
higher than the processing temperature (180-210 °C).
Thus, it can be concluded that there is no significant
degradation during processing.

The study of DSC curves indicated that the
destruction of the composite includes 2 stages: active
combustion at temperatures of 330-480 °C, during
which about 92-95 % of the mass of samples is lost
and some amount of coke residue is formed, which is

— 77—
470 480 490 500 510 520

—_—
530 540 Ts, °C

destroyed at the second stage at 480-550 °C (Figs. 3
and 4a). Increasing the content of microspheres leads
to an increase in the proportion of coke residue even
without considering the mass fraction of filler
(Fig. 4b). Probably, microspheres play the role of
substrate for carbon settling during degradation, and
the higher the proportion of coke structures settled on
microspheres, the earlier on the temperature scale the
degradation process starts (Fig. 4a) and the higher the
heat flux (Fig. 4b).

Composites with different content of heat-treated
and initial microspheres were placed in a climatic
chamber where they were subjected to cyclic
exposure to UV irradiation, elevated temperature and
humidity. After this testing for 168 hr. the samples
were examined by FTIR spectroscopy (Fig. 5).

B coke fraction
I T(peak)
I HF (peak)

2,96%

118,8 mwW

w, %

1.25 25 5

Fig. 4. TGA/DSC curves of LDPE filled with heat-treated microspheres Fe,O3

06 Vas CH; 2914 cm™!

vg CH, 2846 cm™!

0.4

LDPE with Fe,O5 after exposure
LDPE without microspheres
after exposure

Initial LDPE with Fe,05
Initial LDPE without
microspheres

Absorbhance
=]
o

0.1

3 CH3 1376 cm!
5 CH, 718 cm™!

& CH, 729 cm™!

0
31003 2966.4 28304 2694.5 25585 2422 6 2286.6 21506 2014.7 1878.7 17428 1606.8 1470.8 13349 1198.9 1063.0 939.4 §26.1 712.8 5995
Wavenumber (em-1)

Fig. 5. FTIR spectra of initital LDPE and LDPE composite containing heat-treated Fe,O3 microspheres
in the range 3100-600 cm'
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The IR absorption peaks on the spectra of PE
compositions containing heat-treated and initial
microspheres correspond to the typical polyethylene
functional groups present in the obtained
compositions:

— 2914 cm' - asymmetric stretching vibrations
of CH, groups [17];

— 2846 cm ! - symmetric stretching vibrations

of CH, groups [17];
i

— 1462 cm = — bending vibrations of CHj
groups [18];
~ 1376 cm' - bending vibrations of CH,

groups [19];

- 729, 718 em ' — wagging bending vibrations
of CHj groups.

Absorption peaks characteristic of the C=0 bond
were not observed on the spectrum of the original PE
and the spectra of the composites before exposure.

After exposure in a climatic chamber for
168 hours, an increase in the intensity of the
absorption band at 1713 cm_l, corresponding to the
C=0 group, was observed in compositions with
added microspheres. In the case of heat-treated
microspheres, the observed effect was slightly higher
from compositions with initial microspheres, which
may be due to the higher catalytic activity of the heat-
treated form.

The band at 1713 cm’ belongs to stretching
vibrations of C=0, the change in the intensity of
which is traditionally associated with polymer
degradation processes [20—22]. In particular, Pablos
et al. [22] studied the effect of iron and calcium
stearates on the degradation of PE under natural and
artificial exposure using FTIR spectroscopy; it was

(a)

found that PE containing stearates had a significant
increase in the intensity of the carbonyl oxygen peak
after photoaging. The increase in carbonyl group
content leads to a decrease in the level of
hydrophobicity of the material surface and promotes
accessibility for further not only oxidative but also
microbial degradation [21]. Zapata et al. [23] studied
the effect of CaCO3 nanoparticles on the photoaging
of PENP. In the IR spectra of the photoaged

LDPE / CaCO3 composition, there is a strong peak at
1

1720 c¢cm °, which is associated with the valence
vibration of the C=0 carbonyl group. The intensity of
the carbonyl bands naturally increased with

increasing exposure time of the composition [24, 25].

The study of samples before and after
accelerated aging by the DSC method (Fig. 6)
la:o — befo

—— after

1,54

Crystallinity: 27,55% Crystallinity: 31,47%

DSC, mW-mg™'
S

e
(5.
1

0,0 T T T
50 75 100 125

T,°C
Fig. 6. DSC curves of LDPE composite containing
heat-treated Fe,O3 before and after accelerated aging.
The surface of the samples before and after aging was
examined by optical microscopy (Fig. 7)

(b)

Fig. 7. Surface micrographs of samples with 5 % Fe,Oj3 crystalline spheres (a) before climate chamber,
(b) after exposure in the climate chamber (arrows highlight numerous areas of surface erosion)
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showed that the degree of crystallinity slightly
increased after exposure in the climatic chamber as a
result of prolonged treatment at elevated temperature.
At the same time, the melting range shows a peak at
lower temperatures (76-85 °C), which may be
responsible for the melting of partially destructed
fragments of branched macromolecules with a lower
degree of order and reduced molecular weight. At the
same time, the main peak shifted slightly to higher
temperatures, which may be due to both measurement
error and the possible formation of cross-linked
structures that hinder primary melting.

The surface of the samples before and after
aging was examined by optical microscopy (Fig. 7).

Microphotographs (Fig. 6) show significant
surface erosion after exposure in the -climatic
chamber. This erosion is presumably related to the
oxidation of the polyethylene surface and the
occurrence of microcracks and spalling of the
oxidized material as a result of cyclic heating and
cooling.

Comparing the results with similar approaches, it
should be noted that introduction of various additives
into the composite composition affects mechanical
properties. The aging of polypropylene (PP)
composites reinforced with date palm nanofiber was
studied by Basheer A. Alshammari and colleagues
[26]. In this study [26] the authors showed similar
results: strain at break decreased in the modified
composites. The paper [27] analyzed the use of the
most common metal stearates as additives initiating
oxidative degradation of polyolefins. The study found
that calcium stearate is most susceptible to oxidative
degradation in contrast to zinc and magnesium
stearates. The effect of accelerated weathering on
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
and PHBV-based nanocomposites with rutile
titanium (IV) dioxide (PHBV/TiO,) was investigated

in paper [28]. In this case the addition of TiO,
enhanced the mechanical properties of the
nanocomposites, the nucleation effect retarded the
degradation process under photo and moisture
exposure, shifting the degradation process to longer
periods of time. Thus, addition of various modifiers
to polymer compositions is relevant, and the properties
of the developed composites may differ depending on
the sphere of application of such material.

4. Conclusion

The present study showed a promising
possibility of using nanostructured iron oxide
microspheres obtained by spray-pyrolysis of
ultrasonic aerosols as an additive accelerating
atmospheric aging of polyethylene.

After climatic tests of the original polyethylene
and polyethylene modified with microspheres,
a higher degree of surface oxidation was observed in
the case of the modified material.

The study of the influence of the crystalline
structure of iron oxide in the composition of the
synthesized filler on the rate of atmospheric aging of
polyethylene showed that the use of heat-treated
(crystalline) microspheres slightly more effectively
increased the intensity of the C=0O bond peak on the
IR spectra of the composite after aging in the climatic
chamber, compared to the X-ray amorphous (initial)
spheres.

Optical microscopy of the surface of
polyethylene samples before and after aging showed
strong surface erosion for polyethylene modified with
microspheres, which may contribute to the active
reproduction of microorganisms, provoking more
intensive biodegradation compared to the original
polymer.

The introduction of up to 5 wt. % of microspheres
into PE did not lead to a significant change in the
properties of the material, as shown by our studies, in
connection with which it can be assumed that the
developed material can find a wide application for the
manufacture of packaging, agricultural and landscape
films, which will decompose in natural conditions after
the end of the service life.
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Abstract: Lightweight photovoltaic modules are becoming increasingly popular in many technical applications. This study
proposes an approach to the production of a glass-filled prepreg encapsulant for solar cells lamination. Lamination of solar
cells strings can result in the creation of a transparent and mechanically strong protective composite material. Prototypes of
composite photovoltaic modules with high-efficiency HJT solar cells connected using electroconductive adhesive
technology were fabricated. The climatic resistance of the obtained samples was estimated. It was found that composite
modules pass successfully thermal cycling, UV exposure and hail tests. Damp heat test has revealed increased degradation.
Degradation caused by moisture penetration initiates corrosion processes in the layers of transparent conductive oxide ITO
or contact metallization mesh. The use of composite polymer material makes it possible to reduce the weight of
photovoltaic modules due to the use of sheet glass in their design while maintaining an acceptable level of their climatic
resistance.
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AnHoTtanmsi: JlerkoBecHble (OTODJIEKTPUYECKUE MOMIYJIM CTAHOBSTCS Bce Oojiee BOCTPEOOBaHHBIMH BO MHOTHX
TEXHUYECKUX NpHUMEHEeHusX. B pabore mnpemnokeH HOAXOA K HM3TOTOBJICHHIO CTEKJIOHAIIOJHEHHOI'O WHKAICYJISTHTa-
npenpera JUIs  JAMUHHPOBaHUS  (OTORNIEKTPHUECKHX MpeoOpaszoBarenieil. B mpomecce 1aMuHAanMuM MaTpHIbI
CKOMMYTHPOBAHHBIX (DOTOINEKTPUUECKUX IpeoOpa3zoBaTeneil oOpasyercst MpO3pauyHbli M yNapONpOYHBIN 3aIlUTHBINA
KOMITO3MLIMOHHBIA MaTepuan. IlpoBeleHa XapakTepHCTHKa CTPYKTYpbl M CBOWCTB KOMIIO3WIIMOHHOTO Martepuaa
C TIPUMEHEHHEM CHEKTPO(GOTOMETPHUH, HH(PAKPACHOW CHEKTPOCKONMH M TEPMUYECKOTO aHalu3a. VI3roTOBIEHBI
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MPOTOTUIBI  KOMITO3UTHBIX  (DOTOINIEKTPUUECKHX MOXYyJIeH C BBICOKOA(P(EKTUBHBIMU KPEMHHUEBBIMH SYEHKaMU
TeTePOCTPYKTYPHOTO THIA, CKOMMYTHPOBaHHBIMH C TIPUMEHEHHEM KieeBol TexHonoruu. [IpoBeneHa oreHka
KJIMMaTHIEeCKOW CTOWKOCTH TOJIyYEHHBIX O0pa3IoB. YCTaHOBIEHO, YTO MPOTOTUIBI KOMITO3UTHBIX (POTOIIEKTPUIECKUX
MOAYJEH XOpOIIO IMPOXOIAT HCHBITAHUS HA TEPMOLMKIUpoBaHuE, YD-BO3NEHCTBUE M IpaloCcTOMKOCTh. McnblTanus
KOMITO3UTHBIX MOJYJEH BBISIBHIM OTHOCHUTEIBHO BBICOKYIO JETPaJaliMi0 BO BPEMs BO3/ACHCTBUS BBICOKOW TeMIIEpaTyphl
IPU BBICOKOM BIAXHOCTH. Jlerpananusi, BbI3BaHHAs INPOHMKHOBEHHEM BIArd 4Yepe3 KOMIO3UIMOHHOE IOKPBITHE,
3alyCKaeT KOPPO3HMOHHBIE TPOIECCHl B CIOSAX MPO3pavyHoOro mposojsuiero oxkcuaa I[TO  uimu  KOHTaKTHOM
METaJUIN3alMOHHON ceTKH. [IpuMeHeHne KOMIO3UIIMOHHOTO NOJIMMEPHOTO MaTepualia IMOo3BOJIeT CYIECTBEHHO CHU3HUTH
BeC (hOTORIEKTPHUUECKUX MOJIYJIeH 3a CYET yXOJa OT NPUMEHEHHs! JIMCTOBOTO CTEKJIa B UX KOHCTPYKIHMHU IIPU COXPAHEHUU
MIPUEMIIEMOr0 YPOBHSI X KIIMMATU4ECKOI CTOMKOCTH.

KnroueBble cioBa: (HOTOINIEKTpHUYECKUH NpeoOpa3oBateb; (OTOIIEKTPUUECKUH MOAYJb; TIeTepPOCTPYKTYpHas
TEXHOJIOTHS; KPEMHUH; COJHEYHBIE OJJIEMEHTHI; IOJIMMEPHBbIE KOMIIO3MLMOHHBIE MaTepHalbl; CBETONPOINYCKaHUE;
TEPMOLUKINPOBAHHUE; TPATOCTONKOCTb.

Joist nurupoBanusi: Dmitriev [Yu, Kochergin AV, Yakovlev SA, Levitskii VS, Abramov AS, Terukov EI. Encapsulation
of solar cells in a transparent polymer composite material. Journal of Advanced Materials and Technologies. 2024;9(2):110-
121. DOI: 10.17277/jamt.2024.02.pp.110-121

1. Introduction structure this value is 24 kg-mﬁz. It is obvious that
Technical solutions in the development of avoiding the use of sheet glass in the design of PVMs

lightweight photovoltaic modules (PVMs) are in while ) maintgining an acgeptable level Of_ their
demand in connection with the spread of solar energy ~ Climatic resistance and impact strength is an
in the areas of its integration into architecture, ~!Mmportant practical task. At the scientific and technical
industrial and urban infrastructure, transport, mobile ~ center of the Hevel Group of Companies
devices, communications equipment, and products for ~ (LLC Scientific and Technical . Cen(er of K hi"'E ilm
non-civilian use. The reliability of a typical PVM is 1! echn‘ologies in Energy), semi-flexible lightweight
ensured by the use of front and rear protective glass ~ Datteries have' been developed th?t can be used to
in its design, which makes a critical contribution to solve a  wide range of 51m1'1ar problems.
its weight. The specific weight of a glass-to-glass Some examples of implemented projects are shown

PVM structure is 15-16 kg-m 2, while in a glass-free 11 Fig- 1.

Fig. 1. Examples of completed projects for the integration of semi-flexible lightweight PVMs
in sea, air, and mobile deployable applications
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A common approach in the solar energy industry
is to produce semi-flexible, lightweight PVMs by
replacing the front glass with a protective transparent
sheet based on polyethylene terephthalate (PET) or
ethylene tetrafluoroethylene copolymer (ETFE).
Multilayer PET-based sheets, as well as fiberglass
laminates and honeycomb panels are used as the back
protective substrate. These structures use polymeric
encapsulating materials in a highly elastic state, the
same type as in industrial glass-to-glass PVMs or
glass-to-protective back sheet structures. Semi-
flexible lightweight PVMs based on heterojunction
silicon photovoltaic converters (HJT solar cells) have
a number of disadvantages: low shock and hail
resistance, destruction of busbar jumpers during
thermal cycling, the appearance of delamination and
increased corrosion of HJT solar cells when exposed
to high temperatures and high humidity [1-3].

The climatic and mechanical reliability of PVMs
of any design is largely determined by the materials
used and their mutual compatibility. The introduction
of fiberglass reinforcing materials into the
encapsulant can significantly improve the impact
resistance of glassless modules [4-7]. This is
achieved by immersing a matrix of connected solar
cells in a durable, lightweight and optically
transparent composite material. Composite PVMs can
be made by pouring curable epoxy compounds into
interconnected solar cells using Resin Transfer
Molding technology. However, a more effective
approach involves the production of a glass-filled
prepreg encapsulant, which can be used to laminate
PVMs in an industrial membrane vacuum laminator.
Prepreg contains a hot-melt binder, which, when
heated, takes the required shape and vulcanizes,
actually turning into a solid aggregate state.

The purpose of this study is to develop a method
for encapsulating solar cells into a transparent,
impact-resistant composite material and assess the
climatic resistance of the resulting samples. To solve
the problem, it was proposed to use a polymer
thermosetting material of epoxy-acrylic chemical
nature. The main feature of the material under
development is that it is based on a chemical cross-
linkable system capable of processing within
technological parameters close to those used in mass
production of PVMs (using polyolefin-based film
laminations). A separate objective of this study was
to compare PVMs made with the new composite
technology in terms of reliability with semi-flexible
lightweight PVMs of traditional design using front
and back protective sheets based on PET and
laminating polyolefin films of the POE type.

2. Materials and Methods
2.1. Initial components

The study used silicon heterostructure (n-type,
HIT technology) five-bar solar cells of M2+ format
(157.35x157.35 mm) produced by Hevel.
Metallization of the contact mesh was carried out by
screen printing using an electrically conductive
adhesive. The PV cells were connected to each other
on an industrial stringer at the production site of the
Hevel Company.

The commercial product, the thermosetting
powder composition FREOCRYL Powder Coating
PY1005BR999C, manufactured by Freilacke, was
used as a polymer binder. This composition was
chosen due to the fact that after curing it forms
a transparent coating and has a processing temperature
that is close to the temperature used in typical PVM
lamination  technology  (about  140-160 °C).
The powder composition is a polymer composition of
epoxy-acrylic nature; its exact composition is not
disclosed by the manufacturer, however, general
technological aspects of production are given in [8].
An important difference between the cured polymer
is its high glass transition temperature (more than
60 °C), which causes a high rigidity value (the cured
polymer is close to plexiglass in mechanical
characteristics). The latter circumstance favorably
distinguishes the proposed approach from the
common lamination technology wusing film
encapsulants, which have a very low glass transition
temperature (usually below —40°C) and are in
a highly elastic state under PVM operating
temperatures.

Commercial plain weave glass fabric with
a density of 80 g-m72 based on EC6-34tex fiber was
used as a reinforcing material. Photovoltaic rear
protective sheets based on fluorinated polyethylene
terephthalate and front ETFE films with corona
treatment with a thickness of 50-150 microns were
used.

2.2. Methodology for preparing composite PVMs

Composite PVM samples were prepared in two
steps (Table 1). The first stage is the production of
prepreg — a sheet material consisting of fiberglass
with a polymer binder fused to it. To make the
prepreg, the glass fabric was placed on a heating table
with a set temperature of about 100 °C, and then the
polymer powder was manually applied, distributing it
along the surface with a spatula, evenly pressing the
melting polymer into the glass fabric and cleaning off
the non-absorbable excess. Then the material was
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Table 1. Sequence of manufacturing PVM samples

Stage 1. Preparation of samples (prepregs)

Stage 2. Lamination of the module with prepregs

pressed (rolling with a hand roller for 5-15 seconds).
The prepreg prepared in this way contained a binder,
the content of which was determined by the
absorbency of the fiberglass fabric. The weight of the
powder in a fiberglass-based prepreg with a density
of 80 g-mﬁ2 was (632 +109) g-mfz. The resulting
prepreg had a thickness of (420 + 55) microns.

At the second stage — lamination of the module
blank — the prepreg was used as a laminate to bond
the solar cell matrix to the front ETFE sheet and the
rear PET protective sheet. The PVM samples were
prepared using a laboratory membrane vacuum
laminator at the following mode: temperature 160 °C,
evacuation time 5 min, pressure build-up time 1 min,
pressure 500 mbar, pressure application time 25 min.
During the lamination process, the workpiece was
positioned with its front side facing the heating plate
of the laminator. After lamination, the PVM was
cooled under load.

Reference semi-flexible lightweight PVMs of
traditional design were manufactured from
commercial 320 um PET front and back sheets and
520 g-m_2 polyolefin polyolefin films. The PVM
assembly was carried out on the same equipment
using a technological regime that ensured cross-
linking of POE laminates of at least 80 % (measured
gel content using the xylene dissolution method).

2.3. Analytical methods and test conditions

A Nicolet 8700 FT-IR spectrometer and an
Agilent Cary 5000 spectrophotometer were used to
analyze the structure and properties of the
encapsulating material.

The thermal properties of the materials were
studied by differential scanning calorimetry (DSC)
and thermogravimetric analysis (TGA) on a ZH-1000

synchronous analyzer (Shanghai Innuo Precision
Instruments Co., Ltd.). The measurements were
carried out in the temperature range from 30 to
200 °C, at a scanning speed of 10 °C:min"' in an air
atmosphere. Samples were weighed at 15-20 mg.

Climatic tests of the modules for reliability
included the following tests according to the
conditions of Russian Standard R 56980.2 (IEC
61215-2:2016) - 2020: damp heat test (section 4.10),
thermal cycling (section 4.8), test for exposure to
ultraviolet radiation with frontal exposure of the
sample (section 4.7).

The test for resistance to hail impacts was
carried out under standard conditions according to
Russian Standard R 56980.2 (IEC 61215-2:2016) —
2020 section 4.14: hail diameter 25 mm, speed
22 ms . During testing, two shots were fired - at the
center and at the edge of each sample.

Electro- and photoluminescence images of the
samples were obtained using LumiSolarCell and MBJ
Solutions illumination stands, respectively.

The current-voltage characteristic (short circuit
current Iy, open circuit potential V,., power at

maximum point Ppp, and FF duty cycle) was
measured using a specialized [-V tester under
standard conditions (1.5AM, 25 °C).

3. Results and Discussion

3.1 Characteristics of transparent
composite material

Figure 2 shows the infrared spectrum of
attenuated total internal reflection (ATR) of the
binder polymer before and after curing. Table 2
shows the attribution data for the absorption bands
observed in the spectrum [9—12]. Based on the data
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Fig. 2. ATR IR spectra of the binder polymer before (curve /) and after (curve 2) curing

Table 2. Characteristic bands of the ATR IR spectra of the binder and cured composites (according to Fig. 2)

Prepreg Cured polymer Attribution

700 700 Flexural deformation of CH groups of monosubstituted aromatic compounds
757 757 Bending vibration of the CH group of the epoxy ring
760 760 Bending vibration of CH groups of epoxy ring
790 - Stretching vibrations of Si—C bonds
Sg: - Epoxy ring vibrations (glycidyl methacrylate)
38(6) 22(6) Vibrations of Si—O—Si bonds
1030 - Vibrations of Si—C bonds
1074 1074 Stretching vibrations of C—O bonds of butyl acrylate and glycidyl methacrylate
1147 1147
1189 1189
1247 1247
1238 1238 Bending vibrations of Si—C bonds
1302 1302 Glycidyl methacrylate side chain methyl groups (presumably)
1387 1387 Bending vibrations of C—H bonds
1410 1431 Bending vibrations of groups of CH, groups
1431
1452 1452 Aromatic group vibrations
1493 1493
1600 1600
1462 1462 Vibrations of C—H bonds of methylene groups of glycidyl methacrylate
1695 1728 Stretching vibrations of carbonyl C=0, C—O, methacrylate groups of butyl and glycidyl
1728 methacrylate
2851 - Asymmetric and symmetric vibrations of CH; alkanes groups
2937
3060 3060 C-H vibrations of aromatic groups
3026 3026
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obtained, it can be concluded that the binder is a
copolymer containing acrylic comonomers (butyl
methacrylate, glycidyl methacrylate), styrene, and
grafted silane groups. The intensities of the bands at
845 and 906 cmﬁl, attributed to vibrations of the
epoxy ring [11], differ markedly between the prepreg
and the cured polymer. This suggests that curing
occurred through the reaction of the crosslinker with
the epoxy groups of glycidyl methacrylate. It was
found that after curing, the polymer material lost
solubility in boiling xylene, with the insoluble residue
reaching 95 %. The changes in bonds with Si noted in
Table 2 can presumably be attributed to changes in
silane additives that act as adhesion promoters.
A more detailed analysis of the comonomer
composition of the base polymer, the content of
functional additives, and the degree of conversion
using chromatographic and spectroscopic methods
will be presented in a separate study.

During the first heating cycle the DSC curve
(Fig. 3) reveals a glass transition transition in the
temperature range of 50-70 °C and a melting peak
around 118 °C. The crosslinking chemical reaction is
detected as a peak at 160 °C. Comparing the
thermogram data with IR spectroscopy data, we can
conclude that the transition corresponding to the glass
transition is associated with the softening of the
copolymer of glycidyl methacrylate with butyl
methacrylate [14], and the melting observed at
118 °C referred to dodecanedioic acid, which was
used as a cross-linker for this group of copolymers
[8]. During the second and further cycles of
cooling/heating of the sample, the noted melting
process is not observed, however, a glass transition
transition is detected in the region of 78 °C (Fig. 3,
inset).
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Fig. 3. DSC curve of a polymer binder
(1 — first pass, 2 — second pass); inset — DSC scanning
section of the cured composite to determine Tg
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Fig. 4. TGA composite curve

An important feature of this polymer material is
that it is based on a chemical cross-linkable system,
the thermal behavior of which is close to the behavior
of POE or EVA laminating films common in the solar
industry. Thanks to this, the composite laminate is
capable of processing within technological
parameters close to those used in PVM mass
production.

The cured composite material shows relatively
high thermal stability (Fig. 4). According to
thermogravimetry data, it was found that when heated
to a temperature of 102 °C, the material lost no more
than 0.1 % of its weight; a loss of 1.0 % of weight
was observed only when reaching 162 °C, 10 % — at
280 °C, 50 % — at 364 °C. The process of thermal
decomposition of the main polymer unit began at a
temperature of about 243 °C. After complete burnout
of organic residues, the weight of the remaining glass
fiber occupied about 10 % of the original weight of
the sample.

As can be seen from the light transmission
spectra (Fig. 5), the composite prepared by the
described method is characterized by a relatively high
level of light transmission — the average value in the
wave range 400900 nm was 89.6 %.

T, %
100

/f ——
80 f

60 ,!‘{ ------------------------------------

200 400 600 800 1000 1200
Wave length, nm

Fig. 5. Light transmittance
of glass fabric (/), binder (2) and cured composite (3)
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At a wavelength of 360 nm, transmission did not
exceed 0.5 %. It is obvious that the polymer binder
contains a substance that plays the role of a UV filter.
It is significant that the transmission spectrum of the
composite and the cured binder are identical, which
indicates a good match of the refractive indices of the
polymer and glass fabric.

3.2 Climatic testing
of composite photovoltaic modules

It is known that silicon HIT solar cells exhibit
increased degradation upon UV exposure [13].
UV-induced degradation of a heterostructural solar
cell consists of a decrease in the lifetime of charge
carriers, usually accompanied by a decrease in the V.
and FF parameters, which is associated with the
appearance of bulk defects in the a-Si:H structure and
the interface between c-Si and a-Si:H. In practice, it
is necessary to provide UV protection to HJT solar
cells by introducing a UV absorbent component into
the protective encapsulating layers. The behavior of
a PVM sample with a UV exposure of at least
60 kW-h-m corresponds to one year of operation in
a temperate climate [16]. As can be seen from the
results obtained (Fig. 6), the level of power
degradation (Pppp) of composite PVM samples after
a frontal exposure of 60 kWh-m > slightly exceeded
the degradation value of the reference sample
prepared by lamination using a commercial POE
polyolefin film containing a UV adsorber. Another
PVM reference sample laminated to POE film
without UV blocker showed noticeably higher (30 %)

A[SC
0.00 —
2050
h
3
Q -
2 -1.00
o]
5
S -150
Q
b
> 200
.8
)
2 250
<=
@)
-3.00
-3.50

power degradation. The main contribution to the
degradation of composite PVM under UV exposure
after exposure to 60 kWh-m 2 was associated with

a decrease in the [y, parameter. For a reference
sample laminated with a commercial POE film
without a UV blocker, significant degradation in the
Iy, Vo and FF parameters was observed.
It is noteworthy that for the reference sample
laminated to a commercial lamination film with a UV
blocker, degradation was more pronounced for the FF
parameter than for the /. parameter compared to the
data for the composite PVM. This circumstance may
be associated with different UV adsorbers used by
different manufacturers of protective materials [15].
As a UV adsorber, additives based on benzophenones
or benzotriazoles were used in combination with
antioxidants and HALS stabilizers, and provided
cutoff of the UV spectrum. The electroluminescence
(EL) image of the composite sample showed no
noticeable darkening (Fig. 7).

When testing for exposure to high temperature
and high humidity (temperature 85 °C, humidity
85 %), increased PVM power degradation was
detected, this exceeded 5 % when reaching 600 hours
of experiment (Fig. 8). Degradation was accompanied
by the appearance of darkening in EL images.
In this case, the greatest contribution to the
magnitude of power degradation was made by
a decrease in the FF fill factor. Photoluminescence
(PL) images of test samples with power degradation
of more than 10 % had a uniform color (in contrast to
the EL images of the corresponding solar cells).

APy AFF
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Fig. 6. The degradation value of the current-voltage characteristics (/sc, Voc, Pmpp and FF) for a composite PVM

after UV exposure of 60 kW-h-m (1), areference PVM with a POE laminating film without a UV blocker (2)
and a reference PVM with a laminating film with a UV blocker (3)
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(a) (b)

Fig. 7. Electroluminescence image of a composite PVM
sample before (a) and after (b) 60 kW-h-m ™
UV irradiation of the front side of the PVM

This allows us to conclude that the reduction in
power occurred due to corrosion of the current
collection system: in the layers of transparent

conductive oxide ITO or on the elements of the
contact mesh. Increasing the resistance of HJT solar
cells to high temperatures and high humidity was
a solvable problem and was achievable by using
methods for cleaning the solar cell surface from
composition  of

contaminants, modifying the

metallizing materials, and also forming additional
dielectric protective coatings [17, 18].

To carry out thermal cycling tests, PVMs with
dimensions of 2x3 solar cell were manufactured
(Fig. 9). The minimodules underwent 200 cycles of
transitions between —40 °C — +85°C with a final
power degradation of 0.3 %, which was noticeably
better than the results obtained when testing semi-
flexible lightweight PVMs of traditional design using
polyolefin encapsulating films [3]. Thus, the samples
demonstrated high resistance to temperature changes,
which was due to the fact that the rigid and glassy
composite was capable of forming a frame resistant
to thermomechanical effects, which increased the
durability of busbars in solar cell chains.

The results of the damp heat and thermal cycling
tests of PVMs of PET/POE/POE/PET design are
shown in Table 3. The comparison of the results of
these tests with the results obtained for composite
PVMs (Figs. 6-8) shows that the composite structure
is inferior traditional in moisture resistance, but
noticeably superior in thermal cycling. The lower
resistance of HJT solar cell composite encapsulation
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Fig. 8. Changing the values of the current-voltage characteristic parameters (¢ (1), Voc (2), Pmpp (3) and FF (4))
during damp heat test f a composite PVM, as well as EL and PL images of the corresponding samples
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to moisture penetration is associated with the higher  necessary to take into account the likely degradation
vapor transmission coefficient of acrylic polymers of the polymer base during hydrolysis with the
compared to polyolefin ones [19]. In addition, it is  release of corrosive by-products of the reaction.

Initial: ]
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0.4
0.2 Test, hours

2
200

Change in VAC parameters, %
&
[\
w

Fig. 9. Relative change in values /s (1), Voc (2), Pmpp (3) and FF (4) when testing composite PVMs
for thermal cycling and EL images of samples before and after testing (right)

Table 3. Results of damp heat and thermal cycling tests of PVMs
of PET/POE/POE/PET design (reference modules)

Test Results

Initial EL EL after testing Pppp degradation after test

Exposure to high
temperature and high
humidity 1000 hours -1,0%
Initial EL EL after testing Pmpp degradation after test
Thermal cycling = Y T —
200 cycles S i KIERD SHAN = —— — -10.5 %
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Table 4. Hail resistance test results (EL images)

After being hit by hail
Sample Initial Method of fixing PVM on a substrate
No gap from the rear Gap from the rear
PVM composite
construction

Solar cell lamination

in PET/POE/POE/PET
structure
For hail resistance tests (Table 4), two

conditions for attaching samples were considered:
1) PVM fixed on the back side with double-sided tape
to a rigid base, and 2) PVM fixed only at the edges in
the absence of tight contact of the central part of the
sample with the rigid base. It was found that if the
back side of the PVM is tightly fixed to a rigid
substrate, hail shots do not lead to any damage
(Table 4). In case of loose contact with the base,
damage remained in the central places of the module,
i.e. in places where there is slight bulging of the
module from the substrate. Thus, the effect of hail
resistance of the modules occurs in conditions when
the back side of the solar cell is completely supported
by a sufficiently rigid base, which eliminates critical
deflection of the fragile photovoltaic plate. The lack
of a rigid base only on the back side of the solar cell
is the main reason that semi-flexible lightweight
PVMs of traditional design are not able to pass the
hail test even when tightly fixed to a rigid base, since
the back side of the solar cell is located on a
viscoelastic, pliable base (polyolefin film) [2] . Thus,
traditionally designed semi-flexible lightweight
PVMs can be recommended more for deployable and
portable solar generation systems with reduced
impact requirements.

4. Conclusion

The study proposes to use a polymer
thermosetting material of epoxy-acrylic chemical
nature for the preparation of a composite laminating
material on a fiberglass substrate. The prospects for
using the resulting composite material for the

lamination of high-performance silicon HJT solar
cells and the production of lightweight impact-
resistant PVMs have been studied. The general
concept for the production of composite modules has
been defined and PVM prototypes have been
manufactured for reliability testing. Prototypes of
composite PVMs with five-bar adhesive solar cells
perform well in thermal cycling, UV exposure and
hail resistance tests. However, testing of prototype
composite modules revealed increased degradation
during the damp heat test, which is associated with
corrosion when water penetrates between the
composite material and the ITO layer or contact
mesh. The results obtained open up new prospects for
expanding the scope of practical applications of
heterostructure technology of silicon solar cells.
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Abstract: The paper presents the results of adsorption studies on the developed activated carbon material (AM), obtained
by two activation methods — with one (AM1) and two activators (AM2), respectively, as well as its compacted versions
(AMK) using polyvinyl alcohol (PVA), polyvinyl acetate (PVAC) and basalt fiber (BF) as binders, with regard to typical
pollutants of aquatic environments — organic dyes and heavy metals. The carbon materials sorption capacity was assessed
by the ability to remove dye molecules — “methylene blue” (MB) and “sunset yellow” (SY) using spectrophotometric
analysis, as well as by the ability to remove heavy metal salts — lead (Pb2+) using X-ray fluorescence spectrometry. As a
result of adsorption kinetic studies, the absorption capacity of the starting material, activated and compacted materials was
determined. The sorption capacity for lead for the materials carbonisate and AMK1 was 71 and 65 mg~g_1, respectively,
the optimal sorption time was 30 minutes; for the materials AM1, AM2, AMK1/PVA, AMK1/PVAC and AMKI1/BF 65,
66, 49, 45, 42 mgogf1 accordingly, the optimal sorption time was 15 min. For MB and SY dyes, the parameters were
1000 — 2010 mg~g71, 66 — 972 mg-gf1 and 15 min, respectively. To analyze the adsorption mechanisms using kinetic
relationships and sorption isotherms, empirical equations of pseudo-first and pseudo-second order, Elovich equation and
intraparticle diffusion model were used. The presented results show the possibility of using the developed activated carbon
material as an effective sorbent of organic and inorganic pollutants from aqueous solutions.
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HccaenoBanune aqcopoOMOHHBIX XapaAKTEPUCTHK
AKTMBHPOBAHHOIO YIJIEPOJIHOI0 MAaTEePHAJIA 0 OTHOLICHUIO
K TUIIOBBIM OPraHNYeCKHMM M HEOPraHN4YeCKUM 3arpsa3HUTeIsIM
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AnHotaumsi:  [IpencraBmeHsl  pe3ynpTaThl  MCCIENOBAHMN  aACOPOIMOHHONW  CIIOCOOHOCTH  pa3pabOTaHHOTO
AKTUBUPOBAHHOTO YIJIepoAHOro Matepuana (AM), MOIy4eHHOro ABYMs METOAAMU aKTUBAIMU — ¢ oqHUM (AM1) u nByma
akTBatopaMu (AM2) COOTBETCTBEHHO, a TaKKe €ro KOMIIAaKTHpOBaHHBIX BapuaHToB (AMK) c ucnosbzoBanueMm
B KavecTBe CBs3ytomux noiusuHuioBoro crmpra (IIBC), nonusuamnanerara (IIBA) u 6a3ansroBoro BosiokHa (BB) no
OTHOUIECHHIO K THITOBBIM 3arpsI3HUTEIISIM BOIHBIX CPEJ/l — OPraHWYeCKUM KPacUTENsIM U TsDKENNbIM MetaiuiaM. CopOunoHHast
CIOCOOHOCTH YITIEPOJHBIX MaTEPHAJIOB OLIEHUBAJIACH 110 CIIOCOOHOCTH YAAICHHS MOJIEKYJI KpacUTeNel — «METHICHOBOTO
cu"ero» (MC) u «KenToro «CoxHedHoro 3akaray (C3) ¢ MOMOIIBIO CIIEKTPO(POTOMETPHIECKOTO aHAIIN3a, a TAaK)Ke HOHOB
TSDKEJBIX METaJUIOB — CBHHIIA (Pb2+) C TTIOMOIIBIO PEHTTEHO(IIYOPECLICHTHOH CIEKTpOMETprH. B pe3ynpraTe mpoBeaeHHbIX
a/ICOPOIIMOHHBIX KUHETUYECKUX MCCIIEA0BAHUI yCTaHOBJICHA OTJIOTUTENIbHASL CTIOCOOHOCTD NCXOJHOTO, aKTHBUPOBAHHBIX
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1 KOMITaKTHPOBaHHBIX MaTepuanoB. CopOIMOHHas eMKOCTh 110 CBHHILY UIsi MarepuanoB kapOonusar 1 AMKI1 cocrasuia
71 m 65 MI/T COOTBETCTBEHHO, ONTHMalIbHOE Bpems copbumu — 30 muH; mus marepuaioB AM1, AM2, AMKI/TIBC,
AMKI/TIBA u AMKI1/BB — 65, 66, 49, 45, 42 Mr/r COOTBETCTBEHHO, ONTHMAaJIbHOE BpeMs copOommm — 15 MuH.
st kpacureneit MC n C3 mony4enst 3Hauenus: emxoct: 1000 — 2010 mr/r, 66 — 972 mr/r u 15 MHUH COOTBETCTBEHHO.
Jns aHanM3a MEXaHM3MOB MOIJIOIICHHS INPUMEHSINCh SMIMPUYECKUE YPABHEHHUS IICEBIO-IIEPBOTO U IICEBIO-BTOPOIO
nopsiaka, EmoBnya u BHyTpuuactumuHoH auddysun. IlpeacraBieHHble pe3ysbTaThl ITOKA3bIBAIOT BO3MOXKHOCTB
NPUMEHEHHs1 pa3pabdOoTaHHOrO0 aKTHMBHUPOBAHHOTO YIJIEPOJHOIO MaTepHana B KadecTBe J(PQPEeKTUBHOro copOeHTra
OPraHN4Y€CKUX U HEOPraHNMYCCKUX MOJUIFOTAHTOB M3 BOAHBLIX paCTBOPOB.

KnaioueBble ci10Ba: aKTHBHPOBAHHBIN YIJIEPOIHBI Marepual; KOMIIAaKTHPOBAaHHE; aJcOpOLUs; METUICHOBBIH CHHMH;
JKEIITBIH COJHEYHBIH 3aKaT; CBUHEL]; KHHETHKA.

s mmrupoBanmsi: Shubin IN, Ananyeva OA. Studies of adsorption characteristics of activated carbon material for
typical organic and inorganic pollutants. Journal of Advanced Materials and Technologies. 2024;9(2):122-131. DOI:

10.17277/jamt.2024.02.pp.122-131

1. Introduction

Nowadays, many regions of Russia, especially
the industrialized ones, are facing the problem of
environmental pollution, especially water pollution.
The development of industrial complexes,
technologies and materials is directly related to the
emergence of new chemical production facilities,
which, as a rule, produce large volumes of
wastewater that require proper and high quality
recycling or treatment. Failure to comply with
disposal requirements has serious consequences for
the environment and the ecological situation in
general. The most typical representatives of toxic
pollutants of water resources are various organic dyes
and heavy metals (e.g. methylene blue (MB) and
sunset yellow (SY) dyes or heavy metals — Pb2+).
They are widely used in a variety of industries and,
when present in wastewater, have a detrimental effect
on flora and fauna, including humans. Therefore,
water needs to be treated to remove these pollutants
and research in this direction is relevant [1-3].

One of the most popular methods of water
treatment is sorption, which is technologically
proven, economically justified and in many cases the
most effective [1, 3-5].

The most widely used modern adsorption
materials are activated carbons [6-9], silica gels and
zeolites [10—14]. These form the basis of industrial
sorption materials, but do not always fully meet the
ever-increasing demands on their efficiency [1, 7].

The solution to this problem — the creation of an
effective sorbent — is seen in the development and
research of promising activated carbon materials
(AMs), which combine a high specific surface area
and significant porosity with a predominance of
micro- and mesopores, the presence of sufficiently
large transport pores, ensuring rapid diffusion of
sorbent substances, chemical inertness and stability in
real application conditions. This is confirmed by a
number of publications on this subject [1, 6, 9, 15-16].

To obtain such carbon materials, different pre-
carbonized carbon sources, such as furfural,
hydroquinone, dextrin, urotropine, natural carbons,
carbon nanotubes, graphene or their combinations,
are activated by various gas- or liquid-phase reagents:
different acids or alkalis, steam, etc. [17-24].

In practice, the resulting activated highly porous
carbon materials can be used in the form of powders,
granules or fibers, which often places additional high
requirements on the possibility of their molding for
convenience of further use in finished products and
improvement of sorption properties. They should also
have a high specific surface area and large pore
volume, have a hierarchical porous structure, be
environmentally safe, economical and highly
selective, which makes them promising and in
demand materials for use in adsorption of organic and
inorganic pollutants from aqueous media, including
various heavy metals and dyes, i.e. these materials
should have a specific surface area of
500-3000 mz-g{1 and a porosity of more than
lem’g ' [1,6,8,9,25,26].

The influence of the technological parameters of
activation of the initial carbon raw material and the
modes of its subsequent compaction on the sorption
properties is studied in [27-31], where the authors
note their relationship, as well as the possibility of
using the results of laboratory studies in real
production conditions.

The relationship between adsorption and
structural properties of highly porous carbon
materials is assessed in [15, 32, 33], where the
importance of research in this direction is pointed out.

The analysis of the literature sources shows the
undoubted interest in the research of the adsorption
activity of sorbents on typical pollutants, which in
various works was in the following ranges: on MB
dye — 61-1190 mg-gf1 [34-39], on SY dye -
44-333 mg-gﬁ1 [40—43] and on lead — 40413 mg-g1
[41-46].
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Thus, taking into account the need and relevance
of this research direction - development and research
of effective sorbents — the aim of this work was to
study the sorption activity of the developed activated
carbon material in relation to organic dyes and heavy
metals.

2. Materials and Methods

2.1. Reagents and techniques for the preparation
of activated and compacted carbon materials

Based on preliminary studies, the authors of the
paper developed and studied an activated carbon
material obtained by two activation methods and its
compacted variants with different binders. The work
consisted of several stages.

In the first stage, samples of activated carbon
material were obtained using one activator —
potassium hydroxide (KOH) and two activators —
KOH + HyO. In general, this process was a high
temperature chemical activation of the initial
carbonisate with the activator(s) at a temperature of
400-7500 °C for two hours in an inert environment
[18]. At this stage, AM was obtained with a specific
surface area greater than 2700 mz'g71 and a pore
volume greater than 1.3 crn3-g7l [27].

The second stage of work involved obtaining
compacted samples using such binders as polyvinyl
alcohol (PVA), polyvinyl acetate (PVAC) and basalt
fiber (BF), the main technological and process
parameters for obtaining which are considered in
[29]. Moreover, at this stage, only carbon material
activated with one activator (AMK1) was used for
compacting. The binder content in different
compacted samples was as follows: basalt fibre
(LLC ‘Kamenny Vek’, Dubna, Russia) in the amount
of 5% (AMKI1/BF), polyvinyl alcohol (TC Spektr-
Chem, Moscow, Russia) — 20% (AMKI/PVA),
polyvinyl acetate (JSC ‘Pigment’, Tambov, Russia) —
20 % (AMK1/PVAC).

As a result, a number of samples were prepared
for the next (third) stage of the research, including:
initial carbonisate, carbon materials activated with
one AMI1 and two AM2 activators, and carbon
materials AMK1/PVA, AMK1/PVAC and AMK1/BF
compacted with different binders.

2.2. Adsorption studies

The third stage of the research consisted in
determining the adsorption activity of the previously
obtained samples on Pb2+, for which batch
experiments were carried out in a limited volume.
The sorbent weighing 0.01 g was placed in 30 mL of

Pb*>" solution with Cop=100 mg-Lf1 according to
Russian Standard 4453-74 at pH=6. Each tube
containing purified solutions and sorbent was shaken
continuously for 5, 15, 30 and 60 min on a Multi Bio
RS-24 programmable rotator (Biosan, Riga, Latvia).
The equilibrium concentration of lead ions was
determined by energy dispersive X-ray fluorescence
spectrometry (ARLQuant ThermoScientific
spectrometer, ThermoScientific, USA).

To study sorption to organic dyes, 30 mL of MB,
SY solution with an initial concentration of
1500 mg-L_1 at pH=6 was taken and 0.01 g of
sorbent was added. Tubes containing the tested
solution and sorbent suspension were placed in
a programmable multi-rotator Multi Bio RS-24
(Biosan, Riga, Latvia) and stirred continuously for 5,
15, 30 and 60 min. The optical density of the filtered
dye solution was then measured on a PE-5400VI
spectrophotometer (Ekroskhim Co., Ltd,
St. Petersburg, Russia) at a wavelength of A = 815 nm
for MB and A = 513 nm for SY.

The static sorption capacity of the sorbents, Q,,
mg/g, was calculated using the formula
(Co-C)V
0 =——, (1)

m

where Cp and C, are the initial and final
concentrations of the substances in solution, mg-Lﬁl;
V is the volume of the solution, L; m is the sorbent
weight, g.

3. Results and Discussion

Figure 1 shows the time dependence of lead ion
adsorption on the starting material (carbonisate) and
the activated materials AM1 and AM2.

.
Qb mg g
80
:
70
60
50
-s-Carbonisate
40 -
.
30 | AMI1
2 | +AM2
10 -
0 10 20 30 40 so £, min

Fig. 1. Kinetic dependence of adsorption of Pb™ ions
on carbonisate and the activated materials AM1, AM2
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As a result of kinetic studies, carbonisate was
found to have an adsorption capacity for the removal
of lead ions equal to 71 mg-gfl, with the optimal
sorption time being 30 min. The adsorption capacity
on lead for activated materials AM1 and AM2
is 65 and 66 mg-gﬁl, respectively, the optimal
sorption time is 15 min.

In order to describe the ongoing processes of
lead ion sorption, namely the mechanisms involved in
the transfer of sorbent to the surface and inside the
structure of sorbents, the equations of known kinetic
models (pseudo-first and pseudo-second order,
Elovich equation and intraparticle diffusion model)
[47] were applied to the obtained experimental data.
Table 1 and Figure 2 show the kinetic data for lead
and the results of the mathematical processing of the
kinetic data for carbonisate, AM1 and AM2
materials.

As a result of the experimental data processing,
it was found that the mechanism of the sorption
process in the removal of lead ions is well described
by the pseudo-first order equation and the pseudo-
second order equation. It can be noted that the
pseudo-second order model has the highest

determination coefficients R* for the removal of lead
ions (for AM2 R*=0.9977; for AM1 R* = 0.9994; for
carbonisate R2=0.9998). Based on this, it can be
assumed that diffusion limitation (internal and
external diffusion) and 'sorbate-sorbate' interaction
contribute to the rate of the sorption process.
It should also be noted that the Elovich model
for AMI1 material has a high -coefficient of
determination — R* = 0.9983.

Kinetic studies of the compacted carbon
materials — AMKI, AMKI/PVA, AMKI/BF,
AMKI1/PVAC — have also been carried out.

As a result of kinetic studies of sorption capacity
of compacted carbon materials (Fig. 3), it was found
that the initial AMKI1 has an adsorption capacity for
removal of lead ions equal to 65 mg-gﬁl, optimum
time of sorption 30 min. With the addition of
a binder, the highest sorption capacity is shown by
the AMKI/PVA compacted carbon sorbent —
49 mg-gfl, optimum sorption time 15 min. When
basalt fibre (AMKI1/BF) and polyvinyl acetate
(AMK1/PVAC) were used, the adsorption capacity
was 45 and 42 mg-g_l, respectively, optimum
sorption time 15 min.

Table 1. Parameters of lead ion sorption kinetics on carbonisate, AM1 and AM2 materials

Pseudo-first order

Pseudo-second order

t 1 1
ky —= +—1
log(Q, = 0;)=10g 0, - 4 0, k0> O
2.303 r T2 ¢
2 2
Qe ki R Qe ) R
Carbonisate ~ 43.511 0.0523 0.995 84.7458 0.00224 0.9998
AM1 16.319 0.0385 0.995 69.93007 0.0078 0.9994
AM2 28.138 0.0435 0.991 76.3359 0.00399 0.9977
Elovich equation Intraparticle diffusion model
1 1
9 ZEH(GB)JF;H’ 0, =kyt™ +C
o B R kia c R
Carbonisate 62.4998 0.0699 0.9841 6.1843 33.644 0.9041
AM1 80493.4 0.2025 0.9983 2.1906 52.052 0.9664
AM2 1552.34 0.1307 0.9853 3.4665 46.643 0.9953

* 0. — amount of adsorbed contaminant on the adsorbent surface at the moment of equilibrium, mg: gﬁl;

O — amount of adsorbed contaminant on the adsorbent surface at time ¢, mg~g71; k1 — pseudo-first order

adsorption rate constant, min'; ky — pseudo-second-order adsorption rate constant, g-(mgmin)_l; o — adsorption

constant, 1-(min-mg/g)71; B — surface coverage and chemisorption activation energy, g~mg71; kig — internal
diffusion coefficient, 1~(mg/g-min)71; C — boundary layer thickness, mg~g71.
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Fig. 2. Results of mathematical processing of the experimental kinetic dependencies using pseudo-first order models (a);
pseudo-second order models (b); Elovich equation (¢); intraparticle diffusion model (d)
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Fig. 3. Kinetic dependences of the adsorption
of lead ions on the compacted carbon sorbents
AMKI1, AMKI1/PVA, AMK1/BF, AMK1/PVA

The experimental data obtained for AMKI,
AMKI1/PVA, AMKI1/BF and AMKI1/PVAC samples
were also processed by the equations of known
kinetic models (Table 2, Fig. 4).

The pseudo-second-order model had the highest
determination coefficients R* for the removal of lead
ions (for AMKI R = 0.9948; for AMKI/PVA
R*=0.9988; for AMK1/BF R* = 1; for AMK1/PVAC
R = 0.9997). Accordingly, it can be concluded that
the reaction between adsorbate and sorbent functional
groups is strictly stoichiometric (one molecule
occupies one position on the sorbent), i.e. there is a
chemical interaction between Pb™ ions and sorbent
functional groups. For the kinetic data for the AM1
material, high coefficients of determination are also
observed for the Elovich (R2 =0.9936) and pseudo-
first order (R2 =0.9926) models.
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Table 2. Parameters of lead ion sorption kinetics

on the materials AMK1, AMK1/PVA, AMK1/BF, AMK1/PVAC

Pseudo-first order

Pseudo-second order

Qe k1 R 0. 2 R
AMK1 38.318 0.0495 0.9926 78.125 0.00259 0.9948
AMKI1/PVA 10.416 0.0299 0.9741 55.56 0.00964 0.9988
AMKI1/BF 9.667 0.038 0.9169 49.02 0.01378 1
AMKI1/PVAC 25.067 0.0504 0.9656 54.054 0.00475 0.9997
Elovich equation Intraparticle diffusion model
a B R kid c R
AMK1 178.749 0.0959 0.9936 4.6843 37.938 0.9866
AMKI1/PVA 139636 0.2716 09741 1.6489 41.861 0.9605
AMK1/BF 14111.3 0.2520 0.9238 1.6675 36.221 0.8022
AMKI1/PVAC 86.5644 0.1245 0.9725 3.4523 26.252 0.8829
log(0. — 01 o)
1.6 ' e AMKI R*=0.997
1.4 5 12 +AMKI/PVA R*=0.9988 =
! + AMK1 R2 =0.9926 ! = AMK1/BF Ri=1 :
1.2+ * AMKI/PVAI R =0.9656 | « AMK1/PVACR* = 0.9997
* AMKI1/BF  R*=0.9169 :
1.0+ * AMK1/PVACR® = 0.9741
0.8 .
0.8
0.6+ 4
0.6 // .
044 0.4 ;
0.2 *
0.2 . ;
0 0 10 20 30 40 50 60 t, min
(a) (b)
-1 -1
, Mg- , Mg-
Qumge ki R®=0.9936 Qnmeg
sAMKI1/PVA R*=0.9741 20
701 WAMKI/BF  R®=0.9238
* AMK1/PVAC R*=0.9725
60+ 60 1
50 50 A
40 1 40 = AMK1 . R*=0.9866
+ AMKI1/PVA ' p2 = (.9605
30 ] *AMKI/BF  R*=0.8022
1 30 * AMK1/PVAC R*>=(.8829
20 . : : : : . , 20 : .
10 1.5 20 25 30 35 40 In®) 1 4 5 6 7 8
() (d)

Fig. 4. Results of the mathematical processing of experimental kinetic dependencies using pseudo-first order models (a);
pseudo-second order (b); Elovich equation (¢); intraparticle diffusion (d)
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Summarising the studies on the determination of
the sorption activity of the developed activated
carbon material on typical organic [29, 30] and
inorganic  pollutants from aqueous solutions
(including its compacted variants) (Fig. 5), it can be
concluded that the developed material shows
comparable or higher adsorption capacities on typical
pollutants [34—46].

However, a number of peculiarities can be noted
in the course of this study. The activated material
obtained shows a rather low sorption activity towards
inorganic substances (lead), but in general it is
comparable with the results obtained by other authors
[42—46]. Moreover, the compacted samples showed
& slightly worse results, which is explained by the

w Iy (%2
o o o

Adsorption capacity, mg/g

N
o

Carbon material . . R ]
(@) presence of a binder, which is an inert ballast, as well

as the formation of a new structure of the material

2500 when it is compacted with another.

2010 Analysing the results obtained for dye MB
(a typical representative of cationic dyes), it can be
seen that the developed activated material, including
its compacted variants, shows higher activity in
comparison with analogues [34-39] and can be of
real practical interest for application in industrial
production.

The results for dye SY, an anionic type dye,
show a higher efficiency in comparison with the
studies of other authors [40, 41], but it can be noted
that the sorption activity of the compacted samples
also decreases several times with respect to the initial
ones.

Thus, the results of the studies on organic dyes

®) MB and SY may indicate a significant influence of
972 the adsorption capacity of the binder used, which can
1000 be traced for all the samples studied. At the same
900 459 time, it should be noted that at this stage of the
800 research, the preferred binder is PVA. Further studies
700 are needed to determine the mechanisms of influence

600 of the technology of obtaining the materials.
444
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4. Conclusion

The paper presents the results of studies of the
adsorption activity of the developed carbon material
and its compacted variants using different binders.
The adsorption capacity of the original, activated and
compacted materials was determined. The sorption
capacity for lead for carbonisate and AMK1 materials
was 71 and 65 mg-gﬁl, respectively, the optimum
sorption time was 30 min; for AMI1, AM2,
AMKI1/PVA, AMK1/PVAC and AMK1/BF materials

Adsorption capacity, mg/g

Carbon material

(©)

Fig. 5. Comparative results of studies on the adsorption

1 . .
activity of activated carbon materials: 65, 66, 49, 45, 42 mg-g , respectively, the optimum
a — on the sorption of lead ions Pb*"; sorption time was 15 min. For organic dyes — MB and
b —MB molecules; ¢ — SY molecules SY, the capacity was 1000 — 2010 mg'g_l,
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66 — 972 mg-gfl, respectively, at a sorption time
of 15 min. The obtained experimental kinetic data
were described using known equations of kinetic
models (pseudo-first and pseudo-second order,
Elovich equation and intraparticle diffusion model).
According to the results of the studies, it is possible
to note a high sorption activity of the developed
carbon material for the extraction of cationic and
anionic dyes, as well as similar activity with respect
to Pb*" ions, which is comparable with analogues.
This may open up prospects for its use in solving
a number of environmental problems.
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Abstract: The increased attention of researchers to electrically conductive polymers, including polyaniline (PANI), is due
to the wide possibilities of its use in the production of supercapacitors, energy storage devices, anticorrosive coatings,
detectors, sensors, solar cells, antimicrobial materials, sorbents, and coatings that absorb electromagnetic radiation.
However, the instability of the PANI properties during operation limits the practical use of the polymer. In this regard, to
date, many attempts have been made to stabilize the characteristics and increase the service life of polyaniline. Thus, new
composite materials, which combine PANI and one or more other components, including carbon nanomaterials (carbon
nanotubes, graphene, graphene oxide, reduced graphene oxide, mesoporous carbon), montmorillonite, metals,
chalcogenides, conductive polymers,were developed. The purpose of this study is to summarize the information
accumulated to date on electrically conductive polyaniline and its composites with carbon nanomaterials (CNM), as well
as to demonstrate their potential and future prospects. The paper describes the structure and properties of the polymer.
Chemical and electrochemical approaches to the synthesis of PANI and composites based on it are considered, attention is
paid to the influence of synthesis conditions on the structure and properties of the final reaction products. A brief
description of the application of polyaniline and its composites with CNM is given.

Keywords: polyaniline; carbon nanotubes; functionalized carbon nanotubes; graphene; composite.
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AHHOTa[Il/lfl: IloBpIIEHHOE BHUMAHKE HCCHCHOBaTeHCﬁ K DJICKTPOIIPOBOAAIINM IMOJIUMEPaM, B TOM YUCJIC K IOJTMAHUIINHY
(ITAHH), o0ycnoBieHO MIHUPOKAMH BO3MOKHOCTSMH €ro IPHMEHEHHS TIPH IIPOU3BOJACTBE CYMEPKOHJCHCATOPOB,
HAKONUTENICH JHEePTrUU, AaHTUKOPPO3HOHHBIX TIOKPBITUH, IaTYMKOB, CEHCOPOB, 3JIEMEHTOB COJIHEYHBIX OaTapei,
AHTHUMUKPOOHBIX MATEpPUAJIOB, COPOCHTOB, ITOKPHITUH, IOTJOMIAONIUNX JJIEKTPOMArHUTHOEe wm3nydeHne. OmIHAKO
HecTaOmIbHOCTh cBOMCTB [IAHUW B Xone IKCIUTyaTallii OrpaHHYMBACT MPAKTUYECKOS MPUMEHEHHE TojuMepa. B cBs3u
C 3TUM K HAacCTOSIIEMY BPEMEHH INPEINPHHATO MHOXKECTBO IOIBITOK, MO3BOJISIONINX CTa0MIN3UPOBATh XapaKTEPHUCTHKH
Y YBEJIMYHUTH CPOK CIIyKObI nonuaHwinHa. Harpumep, pa3paboTaHbl HOBbIE KOMIIO3UIIMOHHBIE MaTEpPHaIbl, COUETAIOIINE
B cebe [TAHU m oquH niim HECKOJIBKO IPYTHX KOMITOHEHTOB, CpeN KOTOPBIX YIJIEpOIHbIC HAHOMATEpHabl (YTIepOaHbIe
HaHOTPYOKH, rpadeH, okcuI rpadeHa, BOCCTAHOBICHHBIM OKCHI rpadeHa, Me30TIOPUCTHIN yriepoa), MOHTMOPHIIIOHUT,
METaJUTBl, XaJbKOT€HUABI, NPOBOIAIINE MoNMMepsl. llemp wuccrmemoBanms — OOOOIIMTH CBEACHUS, HAKOIIJICHHBIC
K HACTOAIIEMY BPEMCHU 00 QJICKTPOIIPOBOAAIINEM IMOJTMAHUIIMHE W €T0 KOMIIO3UTAaX C YIrJIEPOAHBIMHA HaHOMaTCpHalaMHu
(YHM), mpogeMOHCTpHUPOBATh MX MOTCHIHANI U OyAyIIre NepCHeKTHBEI. J{aHBI OMMCaHMUs CTPOCHHS W CBOMCTB MOJIMMEpa.
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PaccMoTpeHbl XUMHYECKUE U 3JEKTpOXUMHUYECKHE 1moaxonabl K cuHTe3y IIAHM m KOoMIO3UTOB Ha €ro OCHOBE, YAEJIEHO
BHUMAaHUE BJIMSHUIO YCJIOBHHM CHHTE3a Ha CTPYKTYpPY M CBOMCTBAa KOHEYHBIX NPOJAYKTOB peakiuu. JlaHa KkpaTkas
XapaKTepUCTHKA 001acTel MpUMeHEeHHs MOJHAHUINHA U €ro KOMIIO3UTOB ¢ YHM.

KnroueBble cj0Ba: NONMAHWIMH, YIJIEpPONHbIE HAHOTPYOKH; (YHKIMOHAJIM3UPOBAaHHBIC YIJIEPOIHbIE HAHOTPYOKH;
rpadeH; KOMITIO3HT.

Jist muruposaunusi: Gutnik 1V, Dyachkova TP, Burakova EA, Tugolukov EN, Rukhov AV, Titov GA. Polyaniline and its
composites with carbon nanomaterials: preparation, properties, application. Journal of Advanced Materials and

Technologies. 2024;9(2):132-151. DOI: 10.17277/jamt.2024.02.pp.132-151

1. Introduction

Since the discovery of polyaniline (PANI),
which belongs to the class of electrically conductive
polymers, to the present time there has been an
increase in the number of studies related to this
material. This is primarily due to the unique
properties of PANI [1]. PANI belongs to the class of
conjugated polymers, so it can have conductivity
close to metallic. PANI is also distinguished by ease
of synthesis and doping with protic acids,
environmental stability and low cost [2—-4]. However,
changes in electrical conductivity during operation,
low cyclic stability, mechanical degradation, and
processing complexity significantly limit the practical
use of the polymer [5, 6]. It is known that
charge/discharge processes are accompanied by
swelling, shrinkage and destruction of the polymer
during doping/dedoping processes, which leads to a
decrease in cycle stability. In addition, PANI
degradation can occur at relatively high potentials.
The consequence of this is the low operating potential
of PANI electrodes.

To eliminate the above defects, researchers
usually combine polyaniline with other materials
(carbon nanotubes (CNTSs), graphene (G), graphene
oxide (GO), cellulose, montmorillonite, metal
oxides). As a result, new materials are obtained,
which are characterized by increased capacitive
characteristics and high chemical stability [7].
For example, a PANI composite with carbon
nanotubes, synthesized for use as an electrode
material for a supercapacitor, demonstrates a fairly
high specific capacitance of 1266 F-g~, exceeding
the capacitance of the original components [8].
It has also been shown that PANI/CNT hybrids
exhibit a synergistic effect [9].

On the one hand, the carbon dispersed carrier
increases the accessible surface of PANI, on the other
hand, it creates an electrically conductive frame,
which makes it possible, by increasing electronic and
ionic conductivity, to increase the electrical power
removed from the electrode. Also, this framework is
more rigid than PANI itself, which makes it possible
to stabilize the porous structure of the polymer with
multiple repetition of charge/discharge.

The possibility of stabilizing the PANI
properties by synthesizing composites based on it
gives rise to a large number of studies on this topic,
the results of which are reflected in both scientific
and review articles. However, in the latter, there is
mainly a generalization of the results obtained within
specific areas of practical application of composites
(for example, in supercapacitors, sorbents). With this
approach, the effectiveness of the synthesized
composites is demonstrated in only one area of
application. There is also no systematic information
on the dependence of the characteristics of
composites on their composition. In this regard, this
review summarizes the results accumulated to date in
the field of preparation and characterization of PANI
composites with carbon nanomaterials. Attention is
paid to the influence of the mass composition of
composites on their morphological and operational
characteristics. A brief description of promising areas
of application of these composites is presented.
The review also provides information on the
structure, properties and methods of producing PANI,
which can be used by researchers to select optimal
conditions for the synthesis of composites with given
parameters.

2. Chemical structure and properties
of PANI

PANI has the longest history of research among
electrically conductive polymers. This polymer was
discovered in the middle of the 19" century [10].
It was then known as “aniline black” (a term in those
days used for any product obtained by the oxidation
of aniline). The discovery of PANI can probably be
considered the experiments of Runge [11]. Later,
Fritsche and Leteby continued to study the oxidation
process of aniline and discovered a change in the
color of the resulting precipitate [12—-14]. The results
obtained by scientists in the century before last
served as a prerequisite for studying the process of
obtaining “black aniline”, as well as for studying its
redox and acid-base transformations.
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Fig. 1. Molecular structure of various redox forms
of linear aniline octamers, proposed
at the beginning of the 20" century
(a:x+y=4,n=1; leucoemeraldine: x =4,y =0;
protoemeraldine: x = 3,y = 1; emeraldine: x =2,y = 2;
nigranilin: x = 1, y = 3; pernigraniline: x =0,y = 4)
and black aniline (b: z = 3) [15]

The terms emeraldine and nigraniline were
coined for the various oxidized/reduced forms of
aniline black. At the beginning of the 20" century, the
concepts “leucoemeraldine”, “protoemeraldine” and
“pernigraniline” were introduced to designate linear
combinations of aniline octamers with varying degrees
of oxidation, i.e. with different numbers of N-phenyl-
benzoquinonediimine and  4-aminodiphenylamine
fragments in the main chain (Fig. 1a) [15].

The molecular weight of PANI in the form of
emeraldine is significantly higher than that of
octamers, indicating the existence of intermediate
oxidation states between leucoemeraldine and
emeraldine (x>y, y>1, Fig. 1a), which could be
designated as protoemeraldine, corresponding to
x/y~3, as well as between emeraldine and
pernigraniline (x<y, x>1, Fig. 1a), which
can be designated as nigraniline, as in the case
of x/y~ 1/3 [16].

In 1965, information that emeraldine has high
conductivity appeared [17]. At the end of the last
century, scientists discovered the possibility of
transitioning from one form of PANI to another.
For example, emeraldine can be converted from a
base to a salt. This process is accompanied by a color
change from blue to green (Fig. 2). Based on the
results of these studies, a paper was published where
it was reported that the transition of emeraldine to
this state is accompanied by a sharp increase in
conductivity by more than 10 orders of magnitude —

up to 1-5 S-cm [18].

Multiple studies conducted over the past decades
allow us to conclude that the emeraldine salt of PANI
(PANI-ES) contains localized/delocalized radical
cations (polarons) and dications (bipolarons) in
different proportions. Their content depends on the
synthesis conditions and isolation procedures [19]
(Fig. 2).

The transition of PANI in the form of
emeraldine base (PANI-EB) to PANI-ES is carried
out using doping, which can be done in two ways:
oxidation (p-doping, when the doping component
accepts electrons) or reduction (n-doping - the doping
component gives up electrons) neutral polymer with
a modifying additive [4].

Proton donors, usually acids (hydrochloric,
sulfuric, sulfonic acids, etc.) are used to dope PANI.
The electrical conductivity of doped PANI can be
influenced by a number of factors, including the
oxidation state of the polymer, the type of protic acid,
the degree of protonation, the moisture content
of the polymer, and the morphology of the polymer
chain [20].

3. Methods for obtaining PANI

Currently, there are several methods for
obtaining PANI. The most common one is the

oxidative polymerization of aniline. There are
chemical [21-24], electrochemical [25], and
enzymatic [26] polymerization.

During chemical synthesis in an acidic

environment, the aniline monomer or salt (aniline
hydrochloride or sulfate) is converted into
a conjugated polymer. Distinctive features of this
method are the high yield of the target reaction product
(about 90-95 % of the theoretically calculated one), as
well as the relatively high electrical conductivity
(1-5 S-cm™Y) of the synthesized material [4].

To date, significant experimental material has
been accumulated on the relationship between the
properties of PANI obtained by chemical
polymerization and synthesis conditions. Among the
synthesis parameters that most significantly influence
the properties of the final product are the nature of
the oxidizing agent, pH, concentration of reagents,
and polymerization temperature [27, 28].

It is known that PANI can have different
morphologies (nanofibers, nanorods, nanotubes,
nanospheres, granules). It has been proven that it
depends on the nature of the oxidizing agent or the
presence of additives in the reaction mixture [29].
For example, by varying the synthesis conditions, it is
possible to obtain PANI with a granular structure [30],
and in a weakly acidic environment, PANI is obtained
in the form of nanotubular particles [31].
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Fig. 2. Oxidative doping of leucoemeraldine base and doping emeraldine base with protic acid; A is anion

Various PANI structures are characterized by
a set of morphological features (shape of structural
units, specific surface area, pore size), which
determine the accessibility of PANI macromolecules
to electrolyte ions, and the electronic and redox
properties determine the maximum possible power
and energy intensity of devices based on it [32-34].

The main methods for carrying out
electrochemical ~ synthesis are  galvanostatic
(at a constant current) [35-37], potentiostatic
(at a constant electrochemical potential) [38] and
potential cycling modes [39]. The yield, morphology,
electrochemical behavior, adhesion to the electrode,
optical properties and other characteristics of the
PANI film obtained by electrosynthesis are
determined by polymerization conditions, such as the
type and concentration of the electrolyte, the nature
of the electrode, and synthesis modes [35].

Most often, the electrochemical synthesis of
PANI is based on the anodic oxidation of aniline at
various electrodes. This is due to the possibility of
obtaining a purer polymer without oxidizing agent
impurities, as well as the possibility of controlling the
thickness of the film and observing the process of its
formation wusing various physical and chemical
methods (optical, electrochemical, etc.). Moreover,

the molecular weight of PANI synthesized by
electrochemical polymerization methods is usually
lower than that of chemical synthesis [40].

Compared to chemical polymerization,
electrochemical synthesis is faster and does not
require the use of oxidizing agents and additives.
The advantages of the method also include the ability
to regulate the conditions (potential and current)
of PANI deposition and the almost complete absence
of by-products. At the same time, the morphological
forms of PANI are not so diverse: nanofibers,
nanogranules, or thin films on the surface of the
substrate [41-43].

However, the electrochemical method is only
suitable for producing polymer in small quantities,
while the chemical method allows the production of
polymer in large volumes [44].

The processes of converting aniline into PANI
during chemical and electrochemical polymerization
are similar to each other and occur in several stages
(Table 1) [30].

As findings show, the duration of the
induction period depends on the synthesis conditions
and can increase with a decrease in the initial
temperature of aniline oxidation or shorten with
increasing acid concentrations [45].
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Table 1. Characteristics of the stages of aniline oxidative polymerization

Stage

Observed phenomena

Products formed

Rapid exothermic oxidation of
neutral aniline molecules

Induction period

Rapid polymerization of anilinium

cations formation of protons

Increase in temperature, decrease in pH

Temperature remains virtually unchanged,
pH decreases moderately

Rapid heat release is accompanied by the

Non-conducting oligomers

Aniline trimers

Oligomeric and
products

polymeric

The induction period also becomes shorter when
the reacting mixture contains an inert solid material
with a high surface area (carbon nanotubes, graphite)
[46]. This is explained by the phenomenon of
adsorption of oligomers and the formation of
nucleates on such substrates.

The decrease in pH during oxidative
polymerization is explained as follows: during the
formation of bonds between aniline molecules and
oligomers or polymers, hydrogen atoms are
eliminated in the form of protons and form sulfuric
acid with the persulfate reduction product [47-51].

The course of the reaction and the nature of the
final product (structure, physicochemical properties,
redox form) are influenced by factors such as the
acidity of the medium, the nature and concentration
of the oxidizing agent.

Aniline oxidation can be started in an acidic or
alkaline environment. In this case, some phases may
be absent depending on the initial pH of the reacting
mixture. If oxidation begins in an alkaline
environment, oligomers quickly form and the reaction
mass becomes brown.

Conductive forms of PANI are formed in an
acidic environment. In this case, practically no
exothermic formation of brown oligomers is
observed. A low concentration of neutral aniline
molecules slows down the formation of short
oligomers (mainly semidine dimers). The light blue
color visible at this stage is due to the formation of an
oxidized dimer. Semidines subsequently participate
in the formation of trimers (nucleates), which become
initiation centers for the growth of PANI chains.
As a result, the polymer is the main product of the
reaction; oligomers are present only in minor
quantities [52].

The nature of the oxidizing agent, especially its
redox potential, has a significant impact on the
morphology and properties of PANI [53]. Persulfates
(ammonium persulfate and potassium persulfate
[54-58] and iron chloride FeClz [59-62] are most
often used as oxidizing agents in the synthesis of

PANI. However, when using FeCls, polymerization
proceeds at a lower rate, since its redox potential
(0.77 V) is lower than that of ammonium persulfate
(2.0 V) [63]. However, ammonium persulfate also
has disadvantages: it is stoichiometrically consumed
in the reaction, which leads to the formation of acidic
by-products during the synthesis of the polymer [64].
For environmentally friendly synthesis of PANI,
the use of FeCls and ozone as a catalyst and oxidizer,
respectively, has been proposed [65]. The only
byproduct formed during the reaction under these
conditions is water.

When ammonium persulfate is used as an
oxidizing agent, the molar ratio “aniline: ammonium
persulfate” (r) has a different effect on the yield,
elemental composition, electrical conductivity and
degree of oxidation of the resulting product.
At r<1.15, the characteristics of PANI are
practically independent of the molar ratio.
At r > 1.15, overoxidation of PANI accompanied by
a decrease in the vyield of the polymer, its
conductivity, and a noticeable change in its
morphology [66] is observed. The optimal molar ratio
“aniline: ammonium persulfate” is 1:1.25 [4].
An increase in the concentration of ammonium
persulfate by two times compared to the
concentration of aniline leads to the rupture of
polymolecular chains, the formation of quinoid
compounds and overoxidized forms of PANI.
The use of ammonium persulfate in an amount less
than half that of aniline causes a decrease in the yield
of PANI to 40-50 %. A number of authors believe
[22, 67] that ammonium persulfate is involved in the
processes of both initiation and growth of chains.

A number of other compounds are also used as
oxidizing agents: manganese oxides [68-70],
potassium (VI) dichromate K2Cr207 [71], cerium
(IV) sulfate Ce(SOa4)2 [72], copper (II) chloride
CuClz [73], copper (II) nitrate Cu(NO3)2 [74],
potassium ferricyanide (Ks(Fe(CN)s) [75] and
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sodium vanadate (NaVO3) [76]. Compounds of noble
metals (Au (1), Pt (IV), Pd (II), Ag (1)) [77],
hydrogen peroxide [78, 79], potassium permanganate
[80, 81] are also used as oxidizing agents.

In the case of using oxidizing agents such as
cerium (IV) sulfate and potassium dichromate at
higher concentrations (r>1.15), a complexation
reaction probably occurs, which leads to the
production of products containing a large percentage
of the metal [66].

There is information about the use of a mixture
of oxidizing agents, including FeCls / H202 [82] and
KIO3/NaClO [83]. To accelerate the synthesis of
PANI, researchers resorted to the use of catalysts,
which are enzymes, for example, horseradish
peroxidase [84], enzymes of the oxidoreductase
class [85].

A number of researchers propose unconventional
methods for the synthesis of PANI: polymerization of
aniline under the influence of X-ray irradiation in the
presence of nitrate ions [86]; dispersion
polymerization in a weak magnetic field [87]; matrix
synthesis of PANI on a solid support [88]; oxidation
of aniline hydrochloride with ammonium persulfate
in non-aqueous media (acetone, methanol, toluene)
[89]; plasma polymerization of aniline [90],
photoinduced polymerization [91].

4. Preparation and properties
of PANI composites with carbon nanomaterials

4.1. PANI / CNT composites

Currently, to obtain nanocomposites of PANI
with carbon nanotubes, the method of oxidative
polymerization of aniline on the surface of CNTs
is most often used [93-99]. This is due to the fact that
this approach has a number of advantages over other
methods. Thus, the ability to change synthesis
conditions opens up prospects for obtaining materials
with specified characteristics (specific capacitance,
electrical conductivity, specific surface area) for a
specific field of practical application. It is also
possible to implement this method on an industrial
scale [92].

Studies of the morphological features of
composites have shown that in composites a layer of
polymer, the thickness and roughness of which is
determined by the mass fraction of each component,
uniformly covers the surface of the CNT [100].
It is noted that, in comparison with emeraldine,
PANI deposited on the surface of CNTs has an
increased content of quinonediimine fragments.

This is explained by stacking interactions between
PANI and carbon nanotubes [93].

There is information about the influence of the
composition of composites on their characteristics.
It has been shown that PANI/CNT composites have
higher electrical conductivity compared to the value
of this parameter for individual components (PANI
and carbon nanotubes) [49]. It has been
experimentally shown that the initial PANI has the
lowest electrical conductivity; with increasing CNT
content in the composite, an increase in electrical
conductivity is observed (Table 2). It is assumed that
the increase in electrical conductivity is due to the
presence of interaction between the amino groups of
PANI and CNTs, which facilitates charge transfer
between the polymer and carbon nanotubes [100].

Table 2. Electrical conductivity of PANI
and its composites with carbon nanotubes,
characterized by different mass contents of CNTs

Electrical
Composite conductivity, Source
Scm?
PANI/CNT (0.2 wt. %) 0.8-10°  [100]
PANI/CNT (10 wt. %) 6.6 - 107
PANI 1.0-102  [101]
PANI/MWCNT (0.5 wt. %) 29101
PANI/MWCNT (1 wt. %) 1.10
PANI 0.18 [102]
PANI/MWCNT (5 wt. %) 0.85
PANI/MWCNT (15 wt. %) 1.10
PANI 0.17 [103]
PANI/MWCNT (0.25 wt. %) 0.22
PANI/MWCNT (8 wt. %) 3.32
PANI 6.25 [104]
PANI/MWCNT (5 wt. %) 17.54
PANI/MWCNT (10 wt. %) 20.66
PANI/MWCNT (15 wt. %) 23.10
PANI/CNT (1: 1) 10.00 [105]
PANI/CNT (2: 1) 6.67
PANI/CNT (4 : 1) 1.72
PANI/CNT (8 : 1) 0.41
PANI 0.028 [106]
PANI/carboxylated CNT (1 wt. %) 0.126
PANI/carboxylated CNT (6 wt. %) 6.154
PANI/carboxylated CNT (7 wt. %) 3.349
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Other properties of composites with PANI also
depend on the CNT content. A change in the
dielectric properties of the material is observed with
increasing concentration of single-walled CNTSs
[107]. The relaxation process, analyzed using the
Kohlrausch-William-Watts (KWW) model, is found
to occur at lower nanofiller loadings, but gradually
decays as the number of SWCNTSs increases, yielding
relaxation spectra that gradually resemble those of
a pure conductor. In addition, the competing
processes between the effects of electrical percolation
and interfacial capacitance are found to be inherently
dependent on the carbon filler content.

In the literature, there are few results of studies
of the mechanical properties of PANI composites
with  carbon  nanotubes.  Materials  testing
demonstrated an increase in tensile stress by 150 %
and Young’s modulus by 110 % when 2 wt. % CNTs
were added to the polymer [108]. Huang J. et al.
report that the tensile strength of PANI/CNT film
composites increases significantly to 232.3 MPa,
which is more than twice the tensile strength of
carbon nanomaterial (67.2 MPa). The increased
tensile strength of the composites can be attributed to
the interfacial adhesion between the carbon nanotube
film and PANI, promoting more efficient stress
transfer [109].

One way or another, obtaining a CNT dispersion
is an important stage in the production of PANI/CNT
nanocomposite material by chemical polymerization.
As indicated in a number of studies, covalent
modification of CNTs with carboxyl [110] or sulfo
groups [94] allows both to ensure the dispersibility of
CNTs in water and to act as a matrix for the
polymerization of aniline due to interaction with the
monomer and the resulting PANI. In addition, after
introducing acid groups, nanotubes can act
as a modifying additive for PANI, which allows
polymerization to be carried out in water without
adding acid. However, it should be noted that
polymerization in the absence of an additional
modifying additive leads to the production
of a nanocomposite material with a low degree of
doping and, accordingly, low conductivity (about
1072 S-em™Y) [94].

Pre-functionalized CNTs have been used to
prepare  PANI composites in other studies.
Carboxylated multiwalled CNTs can be used as
a dispersed carrier in a composite material
demonstrating sensor sensitivity to ammonia [111].
Polyaniline was deposited onto the surface of
multiwalled CNTs (MWCNTSs) pre-oxidized in
a mixture of nitric and sulfuric acids, and it was
possible to obtain a composite with a specific surface

area of 13355 m2g!l and a specific capacity
of 867 F-g* [112]. Similarly prepared CNTs were
used to obtain ternary CNT/PANI/ZnO composites,
which have the ability to effectively absorb gamma
radiation [113].

However, CNT functionalization does not
always have a positive effect on the properties of
composites. There are results indicating that pre-
oxidation of CNTs contributes to a decrease in the
conductive properties of the material [80]. There is no
contradiction in these data, since most studies did not
take into account the content of functional groups in
CNTs. Dyachkova T.P. and colleagues were the first
to analyze the influence of the method and degree of
preliminary functionalization of carbon nanotubes on
the process of oxidative polymerization of aniline
[114]. A correlation has been established between the
maximum value on the temperature curve of this
reaction and the yield of its target product with the
depth of preliminary oxidation of CNTs. The nature
of the dependence of the electrically conductive
properties of composites and the value of their
specific surface area on the degree of preliminary
functionalization of CNTs with carboxyl groups is
shown. Composites based on carboxylated CNTs
with a degree of functionalization of 0.2 mmol-g~*
have the best electrical conductivity (3 S-cm™).
Materials with the maximum specific surface area
(more than 170 m2.g~t) were obtained using CNTs
oxidized with concentrated nitric acid as a substrate
for the deposition of PANI.

Based on the results of calculations obtained by
molecular dynamics methods, a mechanism for the
modification of carboxylated CNTs with PANI was
proposed [115]. It has been shown that phenazine
nucleates during the oxidative polymerization of
aniline are formed on the surface of nanotubes,
desorbed into the bulk of the reaction mixture, where
PANI macromolecules then grow.

4.2. PANI / graphene composites

Over the past decade, graphene, which consists
of a single layer of sp?hybridized carbon atoms
linked into a hexagonal two-dimensional crystal
lattice, has attracted enormous research attention as
a functional material. This is due to its high electrical
and thermal conductivity, high mechanical strength
and high specific surface area [116-123].
In particular, its structure and unigue electron
transport properties make graphene in combination
with a conducting polymer (for example, PANI)
a promising material for the manufacture of
electronic, electrochemical and optoelectronic
devices [124-126].
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Nanocomposites of PANI with graphene and its
derivatives can be obtained in various ways, for
example, chemical oxidative  polymerization
[127, 128], electrochemical oxidative polymerization
[129, 130], interfacial polymerization [131], by
mixing the starting components (polymer and
graphene material) [132, 133].

The efficiency and simplicity of the method of
chemical oxidative polymerization of aniline on the
surface of graphene has made it the most common
method for preparing PANI/G nanocomposites.
It is reported that when using this approach to
improve the electrochemical characteristics of
composites and reduce the proportion of PANI in the
volume of the reaction mixture, it is advisable to pre-
functionalize the surface of graphene materials either
with organic molecules or oxygen-containing
functional groups. Thus, additional centers for
polymer growth will be created on the surface of the
carbon material [134]. Synthesis conditions and the
percentage of polymer and carbon material in the
final product affect the morphology of PANI/G
composites. It has been reported that various
nanostructures have been obtained: nanospheres
[128], nanofibers [135, 136] or nanotubes [137].

The oxidative polymerization method can also
be used to coat other carbon nanostructures, for
example, mesoporous carbon, with PANI [138].

Methods  for  electrochemical  oxidative
polymerization of aniline in the presence of hafen are
divided into potentiostatic [139] and potentiodynamic
methods [134].

A distinctive feature of interfacial polymerization
is that the aniline monomer is dissolved in organic
solvents (for example, chloroform, benzene), and the
oxidizing agent is dissolved in an aqueous acid
solution. After transferring the prepared solutions into
the reactor, an organic solvent/water interface is
formed, at which the polymerization reaction
occurs [131]. As a result of this approach, the
PANI/G composite, which comes in the form of
a composite film that can be easily separated, is
formed at the interface [140].

It is also possible to obtain PANI-graphene
composites by mixing and sonicating a dispersion of
graphene material with previously prepared PANI
[132-134]. The disadvantage of this approach is the
instability of composites and their tendency to phase
separation [132]. This drawback was eliminated
by activating the graphene surface with the formation
of acid chloride groups that interact with PANI
[132-134].

4.3. Hybrid composites

In addition to binary PANI composites, the
preparation of materials combining PANI, CNTs,
graphene structures and other types of carbon
materials has also been reported. The use of such
combinations makes it possible to eliminate the
disadvantages of individual dispersed carriers and, in
some cases, achieve synergistic effects on various
properties.

Graphene/carbon  nanotubes/PANI  composite
can be used as a supercapacitor electrode material,
which has a high specific capacitance (1035 F-g™%)
and retains up to 94 % of the original capacity after
1000 charge/discharge cycles [141].

By combining a mixture of CNTs and graphene
oxide with ready-made PANI and subsequent
carbonization, a composite is obtained with the
specific surface 176 m>g* and the specific pore
volume 0.232 cm®.g ! [142].

Based on PANI-modified carbon nanotubes and
graphene, a mesoporous airgel with a specific surface
area of 289 m?.g~! was obtained in a high-pressure
autoclave in a supercritical isopropanol environment
[143]. In this system, CNTSs act as structure formers,
preventing the agglomeration of graphene sheets, and
PANI astices have a spherical shape. When using
reduced graphene oxide and oxidized CNTs to form
an airgel, it is possible to obtain a material with
a higher specific surface area of 315 m?.g~* [144].

Natural carbon materials are often used as one of
the components of hybrid composites. For example,
the authors of [145] obtained a stable porous sorbent
by combining PANI, multi-walled carbon nanotubes
and chitosan cryogel. To obtain a flexible composite
with a developed surface, porous wood was used, on
the surface of which a layer of electrically conductive
CNTs was deposited, after which the surface of the
material was coated with PANI in situ [146].
A flexible supercapacitor based on this composite has
a high specific capacity of 45.89 F-g™* at a current
of 0.2 A-gl; after 1000 charge-discharge cycles,
about 99% of the capacity is retained; in addition,
even when bent by 120°, 62.9 % of capacity is
retained. By introducing PANI into a conductive
network based on a hybrid material “nanocellulose —
multiwalled carbon nanotubes”, a film airgel
electrode with a specific capacitance of the order of

2176.3 mF-cm™2 was obtained [147].
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5. Application of PANI
and composites based on it

PANI and its composites are of great interest for
various fields of application due to the availability of
fairly simple methods for their preparation and the
possibility of synergistic effects when combining a
dopant and PANI. Recently, most attention has been
paid to the production of composites for use as
electrode materials for supercapacitors, sorbents, and
radiation-absorbing materials (Table 3).

As discussed above, PANI comes in
a variety of forms, each with its own properties and
applications. Leucoemeraldine, a fully reduced form
of PANI, has found applications in electrochromic
devices and lithium polymer batteries. Emeraldine
salt, which is highly electrically conductive, is used
in the sensor industry as an electromagnetic shielding
material, in electrochromic devices, and as an
electrode material in batteries. Some gas sensors are
made using emeraldine salt. Pernigraniline is used in
nonlinear optics [160, 161].

Composites based on PANI have high stable
electrical conductivity and capacitance (up to
4800 F-g' [162]) (Table 4). It has also been
established that the entire volume of material is
involved in storing the charge. This sets this polymer
apart from other conductive materials in which
charge storage occurs only on the surface. Therefore,
composites with PANI can be successfully used as
materials for chemical current sources and
supercapacitors. For these purposes, binary and three-
component composites are being developed that

combine PANI, carbon nanomaterials, and metal
oxides [163, 164].

The ability of PANI and composites based on it
to absorb radiation (due to a combination of magnetic
and dielectric properties) opens up prospects
for the creation of radio-absorbing [175, 176]
and electromagnetic interference shielding materials
[177,178].

PANI and materials containing it can prevent or
slow down the oxidation of metal by atmospheric
oxygen, which makes it possible to manufacture anti-
corrosion coatings [179-181].

The possibility of using PANI in tissue
engineering biosensing and targeted drug delivery has
been reported [182, 183]. In addition, PANI
is considered as a biocidal additive in the production
of coatings that protect against viruses [184].

Moreover, composites based on PANI-modified
carbon nanotubes can find wide application in
electrochemical sensors, solar energy converters, and
highly efficient sorbents for heavy metals, bacteria
and viruses.

Let us give a number of examples. PANI/CNT
composites are proposed to be used in sensors for
ammonia detection [185-187]. The detection
mechanism is regulated by deprotonation of the
emeraldine salt of PANI by NH3z molecules and
conversion to the emeraldine base of PANI, which
leads to an increase in electrical resistance. It has
been shown that temperature has a strong influence
on the performance of sensors. The introduction of
CNTs into the composite reduces this effect.

Table 3. Application areas of composites based on PANI and carbon nanomaterials

No. Composite Application Source
1 PANI/ MWCNT Electrode materials for supercapacitors [148]
2  PANI/G Electrode materials for supercapacitors [149]
3 PANI/GO/G Electrode materials for supercapacitors [150]
4  PANI/regenerated exhaust gas Electrode materials for supercapacitors [151]
5  PANI/porous carbon microspheres  Electrode materials for supercapacitors [152]
6 PANI/GO Sorbents [153]

PANI/CNT
7  PANI/GO/CNT Sorbents [154]
8  PANI/regenerated exhaust gas Sensors for temperature, relative humidity, pesticide detection [155]
PANI/carboxylated CNTs Biosensors [156]

10 PANI/ MWCNT/ STARCH Biosensors [157]
11  PANI/CNT/Gold nanoparticles Sensors for detecting zinc, lead and copper [158]
12 PANI/CNT Microwave absorbing materials [159]
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Table 4. Specific capacity and stability of PANI and its composites

Specific Current (A-g'?)

No. Composite capacitance, or scan rate Capacitance conservation  Source
Fg? (mV-s?)

1 PANI/CNT/MoS; 350 10 Ag™? 68 % after 2000 cycles [165]
2 PANI/GO/MoS; 815 10 mv-s? 93 % after 100 cycles [166]
3 PANI/GOI/TiOz 713 10 mv-s? 94 9% after 100 cycles
4 MWCNT 30 0.4Ag? - [167]
5 PANI 210 0.4 Agt -
6 PANI/MWCNT/TIiO; 270 0.4Ag? 67 % after 6000 cycles
7 PANI/MWCNT/Ni(OH) 1917 1.0Ag? 75 % after 1000 cycles [168]
8  PANI/polyndol (2:1) 682.4 05Ag? 78.6 % after 1000 cycles [169]
9 PANI/polyndole/MWCNT (3 wt. %) 895 05Ag? 97.8 % after 1000 cycles
10  PANI/CNT/graphene 415 3Ag? 96 % after 5000 cycles [170]
11 PANI/graphene 310 3 74 % after 5000 cycles
12 PANI/CNT 215 3 84 % after 5000 cycles
13 PANI/reduced GO/Fes04 486.5 1 52.1 % after 2000 cycles [171]
14  PANI/sulfonated graphene/NiO 1350 1 92.23 % after 5000 cycles [172]
15  PANI/GO/MWCNT 696 20 mV-st - [173]
16  PANI/GO/CoFe;04 781.27 1mvV.s?t 79.03 % after 5000 cycles [174]

PANI composites with reduced graphene oxide
have been used to fabricate a VOC sensor that
exhibits high sensitivity towards methanol gas [188].
To detect nitrite in tap and rain water, an electrode
modified with a reduced graphene oxide/MnFe2Oa/
PANI composite was developed [189].

Electrically conductive PANI/CNT composites
have found application in the creation of various
electrochemical enzyme sensors: sensors for the
detection of ascorbic acid [190], glucose [191],
phenolic compounds [192], pesticides [193], and
cholesterol [194]. A sensor based on PANI and
graphene oxide was developed to determine cortisol
in human saliva [195].

The possibility of using PANI/CNT composites
in solar cells was studied [196, 197]. It was shown
that the performance of solar cells increases as a
result of using a PANI/CNT composite. The increase
in conversion efficiency is explained by more
efficient charge transfer due to suppression of the
charge recombination process [198].

Composite adsorbents consisting of PANI and
carbon nanomaterials are increasingly considered as
promising materials for water purification due to their
ability to sorb wvarious types of pollutants
[199-201]. The prospects for using PANI as an
adsorbent are due to the presence of adsorption

centers, which are amine and imine groups that
interact with pollutants in agueous solutions [202].

It was shown that PANI/CNT composites can be
used for the sorption of copper and nickel ions from
water [203]. At the same time, deprotonation of
PANI has little effect on this process, and the
conversion of the modifying layer of PANI into the
leucobase form upon reduction with hydrazine
sharply increases the sorption capacity of the material
for copper ions. PANI/CNT and PANI/GNP
composites can be used for the sorption of various
pollutants and pathogenic microorganisms [204], and
the successful use of PANI/CNT composites for the
extraction of scandium ions from aqueous media has
been reported [205].

Hybrid composites based on mixtures of CNTs
and graphene materials embedded with PANI
demonstrate high sorption capacity with respect to
zinc ions (346 mg-g* at pH 6.5) [142] and lead
(350 mg-g 1) [143] and others heavy metals [144].

Some sources report quite unusual applications
of PANI-based composites. PANI-modified graphene
nanoplatelets were used as a reinforcing filler for a
composite based on highly oriented ultra-high
molecular  weight  polyethylene  (UHMWPE)
[206, 207]. It was found that PANI helps to reduce
the aggregation of GNP in the polymer matrix and
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increase the degree of its crystallinity. The new
lamellar crystal structure has high stretchability.
The highest tensile strength of 1330 MPa has
a composite containing 2 wt. % GNP/PANI filler,
and the highest value of Young’s modulus of 41 GPa
is observed at 1 % content of the modified filler.

6. Conclusion

In this review, we have shown the promise of
using PANI and its composites with carbon
nanomaterials in various industries due to their
unique electrical, physical, chemical, and optical
properties. Recent studies show that combining PANI
with various substances (carbon nanotubes, graphene,
graphene oxide, metal oxides) can improve the
performance characteristics of the polymer.

However, despite numerous studies and positive
results, many challenges still need to be overcome on
the path to commercialization of composites.
The analyzed studies are devoted to the development
of new materials of complex composition, the study
of their properties, and specific proposals for
practical use.

A generalization of scientific results shows that
the selection of the optimal composition of
composites remains relevant in order to find ways to
increase their electrical capacity and cyclic stability,
increase electrical conductivity and specific surface
area. For this purpose, materials are developed that
consist of three or more components. And obviously,
by varying their mass ratio, fundamentally different
materials can be obtained. It has been shown that the
properties of composites with PANI depend on the
presence of functional groups on the CNM surface.
Although such information is available in the
literature, it is scattered and requires additional study.

It is assumed that in the near future, composites
being developed with PANI may become the basis of
many technologies that provide a high-quality
standard of living (ecology, energy, safety), but for
this it is necessary to continue scientific research.
Thus, it is necessary to establish what effect
functional groups on the surface of carbon
nanomaterials have on  the  performance
characteristics of composites. To evaluate the
effectiveness of composites, it is necessary to test
them in practice, and for further commercialization it
is necessary to develop protocols/recommendations
that include a description of methods for obtaining
composites with a given structure and properties.
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