Прогресс полимерных микросфер для регулирования профиля на нефтяных месторождениях


Цитировать

Полный текст

Аннотация

В течение последних десятилетий процессы длительного заводнения приводили к обводнению зрелых коллекторов, что является серьезной проблемой на нефтяных месторождениях. Разработка лучшей закупоривающей способности и экономически эффективных полимерных микросфер является ключевым аспектом для контроля избыточного производства воды. Исследования полимерных микросфер, применимых в гетерогенном резервуаре для закупорки высокопроницаемых каналов, значительно расширяются, о чем свидетельствуют многочисленные опубликованные научные статьи. В данном обзоре обсуждаются различные типы полимерных микросфер и эффективность вытеснения нефти. Также рассматриваются связанные с этим трудности и будущие перспективы полимерных микросфер. Данный обзор обеспечивает основу для разработки полимерных микросфер для будущего применения на нефтяных месторождениях и поможет исследователям в дальнейшей разработке полимерных микросфер для повышения нефтеотдачи зрелых коллекторов, которые будут соответствовать требованиям будущих нефтяных месторождений.

Полный текст

Доступ закрыт

Об авторах

Сая Шагымгереева

Казахстанско-Британский технический университет

Email: s_shagymgereeva@kbtu.kz
PhD докторант, факультет энергетики и нефтегазовой инженерии Алматы

Бауыржан Сарсенбекұлы

Казахстанско-Британский технический университет

Email: b.sarsenbekuly@kbtu.kz
PhD, сениор лектор факультета энергетики и нефтегазовой инженерии Алматы

Ванли Кан

China University of Petroleum (East China)

Email: kangwanli@cup.edu.cn
PhD, профессор Циндао

Хонбин Ян

China University of Petroleum (East China)

Email: hongbinyang@upc.edu.cn
PhD, ассоциированный профессор Циндао

Сарсенбек Койшабаевич Туртабаев

Международный казахско-турецкий университет имени Ходжи Ахмеда Ясави

Email: sarsenbek.turtabaev@ayu.edu.kz
докт. техн. наук, профессор г. Туркестан

Список литературы

  1. Alhuraishawy A.K., Bai B., Imqam A., Wei M., Fuel, 2018, 214, 332–350.
  2. Sharifpour E., Riazi M., Ayatollahi S., Ind. Eng. Chem. Res., 2015, 54, 11136–11146.
  3. Jia H., Pu W., Zhao J., Jin F., Ind. Eng. Chem. Res., 2010, 49, 9638–9654.
  4. Zhao G., Dai C., Zhao M., You Q., J. Appl. Polym. Sci., 2014, 131, 39946.
  5. Zhao G., Dai C., You Q., Zhao M., Zhao J., J. Sol-Gel Sci. Technol., 2013, 65, 393–398.
  6. Dai C., Zhao G., You Q., Zhao M., J. Appl. Polym. Sci., 2014, 131, 40154.
  7. Dai C., Zhao G., You Q., Zhao M., J. Appl. Polym. Sci., 2014, 131, 39462.
  8. Pu J., Zhou J., Chen Y., Bai B., Energy Fuels, 2017, 31, 13600–13609.
  9. Yang H., Kang W., Yu Y., Lu Y., Li Z., Wang M., Liu T., J. Appl. Polym. Sci., 2015, 132, 42278.
  10. Yang H., Kang W., Jian Z., Bin Z., Colloids Surf., 2015, 487, 240–246.
  11. Yao C., Lei G., Hou J., Xu X., Wang D., Steenhuis T.S., Ind. Eng. Chem. Res., 2015, 54, 10924–10934.
  12. Yang H., Kang W., Wu H., Yu Y., Zhu Z., Wang P., Zhang X., Sarsenbekuly B., RSC Adv., 2017, 7, 8117–8129.
  13. Seright R.S., SPE Prod. Facil., 1997, 12, 49–62.
  14. Lin M., Zhang G., Hua Z., Zhao Q., Sun F., Colloids Surf., 2015, 477, 49–54.
  15. Yang H., Kang W., Yin X., Tang X., Song S., Lashari Z. A., Bai B., Sarsenbekuly B., Powder Technol., 2017, 313, 188–199.
  16. Wan T., Huang R., Zhao Q., Xiong L., Luo L., Tan X., Cai G., J. Appl. Polym. Sci., 2013, 130, 697–701.
  17. Liu C., Liao X., Chang M., Zhang Y., Mu C., Li T., Qin R., Fu R., Bie X., Zheng J., SPE 158293 presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8–10 October 2012.
  18. Yao C., Lei G., Li L., Gao X., Energy Fuels, 2012, 26, 5092– 5101.
  19. Suleimanov B.A., Ismailov F.S., Veliyev E.F., J. Pet. Sci. Eng., 2011, 78, 421–447.
  20. Saghafi H.R., J. Pet. Sci. Eng., 2018, 166, 977–999.
  21. Niu L., Lu X., Xiong C., Tang X., Wu X., Jia X., Zhang S., Pet. Explor. Dev., 2013, 40, 698–789.
  22. Yang H., Kang W., Yu Y., Yin X., Wang P., Zhang X., Powder Technol., 2017, 315, 478–485.
  23. Ma Q., Zhang Z., Miao J., Guan Y., Xiao M., Guan Y., Chemistry & Bioengineering, 2010, 27, 80–81.
  24. Zhao S., Pu W., Wei B., Xu X., Fuel, 2019, 235, 234–259.
  25. Dai C., Liu Y., Zou C., You Q., Yang S., Zhao M., Zhao G., Wu Y., Sun Y., Fuel, 2017, 207, 111–127.
  26. Nanthakumar A., Pon R. T., Mazumder A., Yu S., Watson A., Bioconjugate Chem., 2000, 11, 284–288.
  27. Bosma G., Pathmamanoharan C., Hoog E. H., Kegel W. K., Blaaderen A., Lekkerkerker H. N., J. Colloid Interface Sci., 2002, 245, 291–300.
  28. Jardine R. S., Bartlett P., Colloids Surf., A, 2002, 211, 117– 132.
  29. Baggiani C., Anfossi L., Baravalle P., Giovannoli C., Giraudi G., Barolo C., Viscardi G., J. Sep. Sci., 2009, 32, 3298–3300.
  30. Bao X., Shi J., Nie X., Zhou B., Wang X., Zhang L., Liao H., Pang T., Bioorg. Med. Chem., 2014, 22, 4827–4835.
  31. Kang J., Yan J., Liu J., Qiu H., Yin X., Yang X., Wang E., Talanta, 2005, 66, 1015–1024.
  32. Wang C. C., Masil A., Fernandez N., Talanta, 2008, 75, 125–140.
  33. Liu Q.H., Liu J., Guo J.C., Yan X.L., Wang D.H., Chen L., Yan F.Y., Chen L.G., J. Mater. Chem., 2009, 19, 2018.
  34. Yang W.B., Xia M., Li A., Yang L., Zhang Q., React. Funct. Polym., 2007, 67, 608–616.
  35. Mart ́ınez V. M., Arbeloa F. L., Prieto J. B., Arbeloa I. L., J. Phys. Chem., B, 2005, 109, 7441–7446.
  36. Hua Z., Lin M., Guo J., Xu F., Li Z., Li M., J. Pet. Sci. Eng., 2013, 105, 71–75.
  37. Bai B., Zhou J., Yin M., Pet. Explor. Dev., 2015, 42, 527–533.
  38. Sang Q., Li Y., Yu L., Li Z., Dong M., Fuel, 2014, 136, 285–316.
  39. Tongwa P., Bai B., J. Pet. Sci. Eng., 2014, 124, 37–49.
  40. Guan S., Fan H., Duan J., Song C., J. Daqing Pet. Inst., 2007, 31, 108–112.
  41. Imqam A., Bai B., Fuel, 2015, 148, 168–179.
  42. Li J., Niu L., Lu X., J. Pet. Sci. Eng., 2019, 178, 1075–1193.
  43. Xie K., Lu X., Pan H., Han D., Hu G., Zhang J., Zhang B., Cao B., SPE Prod. Oper., 2018, 33, 482–606.
  44. Raffa P., Broekhuis A., Picchioni A. F., J. Appl. Polym. Sci., 2016, 113.
  45. Goudarzi A., Zhang H., Varavei A., Taksaudom P., Hu Y., Delshad M., Bai B., Sepehrnoori K., Fuel, 2015, 140, 511–513.
  46. Durán-Valencia C., Bai B., Reyes H., Fajardo-López R., Barragán-Aroche F., López-Ramírez S., Polym. J., 2014, 46, 280–294.
  47. Almohsin A., Bai B., Imqam A.H., Wei M., Kang W., Delshad M., Sepehrnoori K., presented at SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 12–16 April 2014.
  48. Hua Z., Lin M., Dong Z., Li M., Zhang G., Yang J., J. Colloid Interface Sci., 2014, 424, 67–74.
  49. Yao C., Wang D., Wang J., Hou J., Lei G., Steenhuis T. S., Ind. Eng. Chem. Res., 2017, 56, 8157–8165.
  50. Yang H., Kang W., Liu S., Bai B., Zhao J., Zhang B., J. Dispersion Sci. Technol., 2015, 36, 1678–1685.
  51. Yang J., Xie X., Zhang J., Zheng X., Wei Z., Pet. Explor. Dev., 2014, 41, 795–797.
  52. Lashari Z.A., Yang H., Zhu Z., Tang X., Cao C., Iqbal M.W., Kang W., J. Mol. Liq., 2018, 263, 88–128.
  53. Abdulbaki M., Huh C., Sepehrnoori K., Delshad M., Varavei A., J. Pet. Sci. Eng., 2014, 122, 689–755.
  54. Al-Ibadi A., Civan F., SPE Prod. Oper., 2013, 28, 378–412.
  55. Yang H., Hu L., Chen C., Gao Y., Tang X., Yin X., Kang W., RSC Adv., 2018, 8, 10478-10480.
  56. Kang W., Hu L., Zhang X., Yang R., Fan H., J. Geng, Pet. Sci., 2015, 12, 483-487
  57. Irvine R., Davidson J., Baker M., Devlin R., Park H., presented at SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11–13 August 2015.
  58. Yang H., Hu L., Chen C., Gao Y., Tang X., Yin X., Kang W., RSC Adv., 2018, 8, 10480–10487.
  59. Zhu D., Hou J., Chen Y., Zhao S., Bai B., Energy Fuels, 2018, 32, 3452–3781.
  60. Li M., J. Huaqiao Univ., 2007, 28, 109–110.
  61. Li J., Liu Y., Na Z., Zeng Z., Jiang H., Dispers J., Sci. Technol., 2014, 35, 111–145.
  62. Zhou Y., Jiang H., Wang C., Li B., J. Dispers. Sci. Technol., 2014, 35, 1011–1013.
  63. Yang H., Hu L., Chen C., Gao Y., Tang X., Yin X., Kang W., RSC Adv., 2018, 8, 10478-10485.
  64. Lin M., Zhang G., Hua Z., Zhao Q., Sun F., Colloids Surf. A Physicochem. Eng., 2015, 477, 35–44.
  65. Kang W., Hu L., Zhang X., Yang R., Fan H., Geng J., Pet. Sci., 2015, 12, 485-490
  66. Yan L., Peng C., Ye Z., Chem. Res. Appl., 2012, 24, 996-1001.
  67. Yu Z., Li Y., Sha O., Su Z., Zhou W., J. Appl. Polym. Sci. 2016, 131.
  68. Xie K., Cao B. X., Lu W., Jiang Y., Zhang Q., Li K., Song J., Wang W., Liu J., Pet. Sci. Eng., 2019, 177, 534–565.
  69. Xie K., Cao W., Lu X., Song K., Liu Y., Zhang Y., Liu J., Wang J., Na W., J. Dispers. Sci. Technol., 2019, 1–10.
  70. Xie K., Lu X., Li Q., Jiang W., Yu Q., SPE J., 2016, 21, 001–007.
  71. Li J., Niu L., Lu X., Energy Sci. Eng., 2019, 7, 2022–2038.
  72. Pye D.J., J. Pet. Technol., 1964, 16, 908–913.
  73. Al Adasani A., Bai B., J. Pet. Sci. Eng., 2011, 79, 10–23.
  74. Al-Mjeni R., Arora A., Cherukupalli S., Wunnik P.K., Edwards J.N.M.V., Felber J., Gurpinar B.J., Hirasaki O., Miller G.J., Jackson C.A., Oilfield Rev., 2010, 22, 18–34.
  75. Manrique E.J., Thomas C.P., Ravikiran R., Izadi Kamouei M., Lantz M., Romero J.L., Alvarado V., presented at SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 24–28 April 2010.
  76. Zhao H. Z., Wu Z.L., Zheng X.Y., Lin M.Q., Li M.Y., Fine Chem., 2015, 62–64.
  77. Pu W., Zhao S., Wang S., Wei B., Yuan C., Li Y., Colloids Surf. A Physicochem. Eng. Asp., 2018, 540, 235–265.
  78. Yao C., Lei G., Cheng M., R. J. of Appl. Sci., 2013, 3634–3637.
  79. Okubo M., Iwasaki Y., Yamamoto Y., Colloid Polym. Sci., 1992, 270, 733–737.
  80. Yang H., Kang W., Yin X., Tang X., Song S., Lashari Z. A., Powder Technol., 2017, 313, 191–200.
  81. Yang H., Zhou B., Zhu T., Wang P., Zhang X., Wang T., Galkine S. V., J. Pet. Sci. Eng., 2021, 196, 107708.
  82. Thomas A., Gaillard N., Favero C., Oil Gas Sci. Technol. Rev. d’IFP Energ. Nouv., 2012, 67, 889–901.
  83. Gaillard N., B.; Giovannetti T., Leblanc, A., Thomas O., Braun C., presented at SPE Latin American and Caribbean Petroleum Engineering Conference, Quito, Ecuador, 18–20 November 2015; Society of Petroleum Engineers: Richardson, TX, USA, 2015.
  84. Seright R.S., Wavrik K.E., Zhang G., AlSofi A.M., SPE Reserv. Eval. Eng., 2020, 1–15.
  85. Jouenne S., J. Pet. Sci. Eng., 2020, 195, 107545.
  86. Jensen T., Kadhum M., Kozlowicz B., Sumner E., Malsam J., Muhammed F., Ravikiran R., presented at SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 14–18 April 2018; Society of Petroleum Engineers: Richardson, TX, USA, 2018.
  87. Yang H., Kang W., Yu Y., Lu Y., Li Z., Wang M., Liu T., 2015, J. Appl. Polym. Sci., 132(30), .42278
  88. Li J., Niu L., Wu W., Sun M., Polymers, 2020, 12, 885-893.
  89. Prasad D., Ernst B., Incera G., Leonhardt B., Reimann S., Mahler E., Zarfl M., presented at IOR 2017—19th European Symposium on Improved Oil Recovery, Stavanger, Norway, 24–27 April 2017.
  90. Fournier R., Tiehi J.E., Zaitoun A., presented at SPE EOR Conference at Oil and Gas West Asia, Muscat, Oman, 26–28 March 2018; Society of Petroleum Engineers: Kuala Lumpur, Malaysia, 2013.
  91. Bakhshi M., Ozeiri M., Sharif A., Aalaie J., Korean J. Chem. Eng., 2017, 34, 900–911.
  92. Viñarta S.C., Delgado O.D., Figueroa L.I., Fariña J.I., Carbohydr. Polym., 2013, 94, 493–502.
  93. Schmid J., Meyer V., Sieber V., Appl. Microbiol. Biotechnol., 2011, 91, 922–937.
  94. Liang K., Han P., Chen Q., Su X., Feng Y., ACS Omega, 2019, 4, 10610–10618.
  95. Tang X., Kang W., Zhou B., Gao Y., Cao C., Guo S., Yang H., Powder Tech., 2019, 205-215.
  96. Kim D., Krishnamoorti R., Ind. Eng. Chem. Res., 2015, 54, 3532–3787.
  97. Pu W., Zhao S., Wang S., Wei B., Yuan C., Li Y., Colloids Surf. A Physicochem. Eng. Asp., 2018, 540, 235–265.
  98. Zaitoun A., Kohler N., presented at SPE International Symposium on Oilfield Chemistry, San Antonio, TX, USA, 4–6 February 1987; Society of Petroleum Engineers: Richardson, TX, USA, 1987.
  99. Dubois M., Gilles K., Hamilton J., Rebers P., Smith F., Anal. Chem., 1956, 28, 350–356.
  100. Song H., Mohanty K.K., presented at SPE Improved Oil Recovery Conference, Tulsa, OK, USA, 31 August–4 September 2020; Society of Petroleum Engineers: Richardson, TX, USA, 2020.
  101. Graveling G.J., Ragnarsdottir K.V., Allen G.C., Eastman J., Brady P.V., Balsley S.D., Skuse D.R., Geochim. Cosmochim. Acta, 1997, 61, 3514–3523.
  102. Samoshina Y., Diaz A., Becker Y., Nylander T., Lindman B., Colloids Surf. A Physicochem. Eng. Asp., 2003, 231, 195–205.
  103. Al-Hajri S., Mahmood S.M., Akbari S., Abdulelah H., Yekeen N., Saraih N., J. Pet. Sci. Eng. 2020, 189, 106864.
  104. Tian Q., Wang L., Tang Y., Liu C., Ma C., Wang T., presented at SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June 2012.
  105. Yao C., Lei G., Cathles L.M., Steenhuis T.S., Environ. Sci. Technol., 2014, 48, 5449–5565.
  106. Zaitoun A., Makakou P., Blin N., Al-Maamari R.S., Al-Hashmi A.A.R., Abdel-Goad M., SPE J., 2012, 17, 325–329.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Шагымгереева С., Сарсенбекұлы Б., Кан В., Ян Х., Туртабаев С.К., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».