Evaluation and scientific justification of polymer flooding application in the Uzen oilfield


Cite item

Full Text

Abstract

The Uzen field is at the late stage of development, with an average field water cut of over 90% due to a long-term non-shale waterflooding. At the same time, the current oil saturation of the reservoir is estimated as more than 50%, which may provide a promising future for the field. According to world practice, the application of chemical enhanced oil recovery (CEOR) methods can provide high oil recovery, and extend the cost-effective life of the field. Therefore, the application of chemical enhanced oil recovery is particularly relevant considering the current status of the Uzen field. The main method of CEOR is polymer flooding (PF), which has proven its high efficiency over 60 years of application in the industry. The objective of this study is to evaluate and justify the application of the polymer flooding technology to the conditions of the Uzen field. According to this objective, first of all, the world experience of polymer flooding was studied, including the latest large-scale projects in the fields of China, the USA, Canada, India, Oman and other countries. Criteria for the effective application of polymer flooding were developed and screening of the geological and physical characteristics (GPC) of all objects of the field was carried out. In addition, facies maps and the current state of development were analyzed to select a potential pilot test site. A review of the surface facilities, an analysis of the water supply sources and the characteristics of different polymers were carried out to develop a project for the pilot test of the technology. Preliminary hydrodynamic calculations show reduced water cut, increased oil production and an increase of 7% in oil recovery. Feasibility studies prove the profitability of the polymer flooding at oil prices above $55/bbl. This study is the basis for further implementation, adaptation and optimization of polymer flooding

Full Text

Restricted Access

About the authors

Bakyt A. Imanbayev

Branch of “KMG Engineering LLP” “KazNIPImunaygas”

Email: imanbayev_b@kaznipi.kz
директор филиала Aktau

Marat S. Sagyndikov

Branch of “KMG Engineering LLP” “KazNIPImunaygas”

Email: sagyndikov_m@kaznipi.kz
руководитель службы повышения нефтеотдачи пластов Aktau

Ruslan M. Kushekov

Branch of “KMG Engineering LLP” “KazNIPImunaygas”

Email: ruslan.kushekov@gmail.com
инженер службы повышения нефтеотдачи пластов, департамент по разработке месторождений Aktau

Maksat O. Tajibayev

Branch of “KMG Engineering LLP” “KazNIPImunaygas”

Email: tajibayev_m@kaznipi.kz
директор департамента по разработке Aktau

References

  1. Research on energy efficiency, CO2 emissions, energy consumption, forecast. – Enerdata, 2021, https://www.enerdata.net/.
  2. Sheng J.J. Modern Chemical Enhanced Oil Recovery: Theory and Practice, first edition. – Amsterdam, Elsevier, 2011.
  3. Green D.W., Willhite G.P. Enhanced Oil Recovery (2nd ed.). – Society of Petroleum Engineers. Richardson, Texas, USA. 2018.
  4. Alvarado V., Manrique E. Enhanced Oil Recovery: Field Planning and Development Strategies (1st ed.). - Gulf Professional Publishing, 2010.
  5. Green D.W., Willhite G.P. Enhanced Oil Recovery (1st ed.). Society of Petroleum Engineers, Richardson, Texas, USA, 1977.
  6. Needham R.B., Doe P.H. Polymer Flooding Review. – Journal of Petroleum Technology, 1987, 39(12), р. 1503–1507. SPE-17140-PA. DOI: https://doi.org/10.2118/17140-pa.
  7. Manda A. Chemical flood enhanced oil recovery: a review. – International Journal of Oil, Gas and Coal Technology, 2015, 9(3), 241. DOI: https://doi.org/10.1504/ijogct.2015.069001.
  8. Abidin A., Puspasari T., Nugroho W. Polymers for Enhanced Oil Recovery Technology. – Procedia Chemistry, 2012, 4, 11–16. DOI: https://doi.org/10.1016/j.proche.2012.06.002.
  9. Sorbie K.S. Polymer-Improved Oil Recovery, 2013. DOI: https://doi.org/10.1007/978-94-011-3044-8.
  10. Firozjaii A.M., Moradi S. Sensitivity Analysis and Optimization of the Effective parameters on ASP Flooding Compared to Polymer Flooding Using CMG-STARS. – Journal of Petroleum & Environmental Biotechnology, 2018, 09(01). DOI: https://doi.org/10.4172/2157-7463.1000361
  11. Sheng J.J., Modern Chemical Enhanced Oil Recovery (1st ed.). – Gulf Professional Publishing, 20 October 2010.
  12. Katzbauer B. Properties and applications of xanthan gum. – Polymer Degradation and Stability, 1998, 59(1–3), р. 81–84. DOI: https://doi.org/10.1016/s0141-3910(97)00180-8.
  13. Rellegadla S., Prajapat G., Agrawal A. Polymers for enhanced oil recovery: fundamentals and selection criteria. – Applied Microbiology and Biotechnology, 2017,101(11), р. 4387–4402. DOI: https://doi.org/10.1007/s00253-017-8307-4.
  14. Saleh L.D., Wei M., Bai B. Data Analysis and Novel Screening Criteria for Polymer Flooding Based on a Comprehensive Database. – SPE-169093-MS, 2014. DOI: https://doi.org/10.2118/169093-ms.
  15. Lu N., Hou J., Liu Y., Guo L., Yuan F., Wei C., Liu Y. Optimization Chemical Flooding Methods to Enhance Oil Recovery of Strong Heterogeneity, High Temperature and High Salinity Reservoirs – Case Study of Shengli Oilfield. Day 1 Tue, October 17, 2017. SPE-186435-MS. DOI: https://doi.org/10.2118/186435-ms.
  16. Zhao Y., Leng J., Lin B., Wei M., Bai B. Experimental Study of Microgel Conformance-Control Treatment for a Polymer-Flooding Reservoir Containing Superpermeable Channels. – SPE Journal, 2021, 1–13. SPE-205486-PA. DOI: https://doi.org/10.2118/205486-pa.
  17. Sagyndikov M., Seright R., Kudaibergenov S., Ogay E. Field Demonstration of the Impact of Fractures on HPAM Injectivity, Propagation and Degradation. – SPE Journal, 2022. SPE-208611-PA.
  18. Delaplace P., Renard G., Delamaide E., Euzen T., Roggero F., Kopecny P. Reservoir Simulations of a Polymer Flood Pilot in the Pelican Lake Heavy Oil Field (Canada): Step Forward. SPE-166028-MS. 2013. DOI: https://doi.org/10.2118/166028-ms.
  19. Delamaide E., Zaitoun A., Renard G., Tabary R. Pelican Lake Field: First Successful Application of Polymer Flooding in a Heavy Oil Reservoir. – SPE-165234-MS, 2013. DOI: https://doi.org/10.2118/165234-ms.
  20. Thakuria C., Al-Amri M.S., Al-Saqri K.A., Jaspers H.F., Al-Hashmi K.H., Zuhaimi K. Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman. – SPE-165262-MS, 2013. DOI: https://doi.org/10.2118/165262-ms.
  21. Guntupalli S., Kechichian J., Al-Yaarubi A., Al-Amri A., Al-Amri M., Al-Hinai G., Al-Shuaili K., Svec Y., al Habsi Y. A Successful ASP Sweep Evaluation in a Field Pilot. Day 2 Tue, March 27, 2018. – SPE-190462-MS, 2018. DOI: https://doi.org/10.2118/190462-ms.
  22. Choudhuri B., Thakuria C., Belushi A.A., Nurzaman Z., Hashmi K.A., Batycky R. Optimization of a Large Polymer Flood With Full-Field Streamline Simulation. – SPE Reservoir Evaluation & Engineering, 2015, 18(03), р. 318–328. SPE-169746-PA. DOI: https://doi.org/10.2118/169746-pa.
  23. Ning S., Barnes J., Edwards R., Schulpen W., Dandekar A., Zhang Y., Cercone D., Ciferno J. First Ever Polymer Flood Field Pilot to Enhance the Recovery of Heavy Oils on Alaska North Slope – Producer Responses and Operational Lessons Learned. Day 3 Wed, October 28, 2020. SPE-201279-MS. DOI: https://doi.org/10.2118/201279-ms.
  24. Zhao Y., Yin S., Seright R.S., Ning S., Zhang Y., Bai B. Performance of Low Salinity Polymer Flood in Enhancing Heavy Oil Recovery on the Alaska North Slope. – Proceedings of the 8th Unconventional Resources Technology Conference, 2020. DOI: https://doi.org/10.15530/urtec-2020-1082.
  25. Poulsen A., Shook G.M., Jackson A., Ruby N., Charvin K., Dwarakanath V., Thach S., Ellis M. Results of the UK Captain Field Interwell EOR Pilot. Day 3 Mon, April 16, 2018. SPE-190175-MS. DOI: https://doi.org/10.2118/190175-ms.
  26. Jones C., Ross M., Getliff J., Fuller M., Hiscox I., Mandracchia F. Captain Field Injector Performance, Historical Perspective and Recent Improvements. – SPE-174183-MS, 2015. DOI: https://doi.org/10.2118/174183-ms.
  27. Jackson A.C., Dean R.M., Lyon J., Dwarakanath V., Alexis D., Poulsen A., Espinosa D. Surfactant Stimulation Results in Captain Field to Improve Polymer Injectivity for EOR. – Day 4 Fri, September 06, 2019. SPE-195747-MS. DOI: https://doi.org/10.2118/195747-ms.
  28. Morel D., Vert M., Jouenne S., Gauchet R., Bouger Y. First Polymer Injection In Deep Offshore Field Angola: Recent Advances on Dalia/Camelia Field Case. – SPE-135735-MS, 2012. DOI: https://doi.org/10.2118/135735-ms.
  29. Wang D., Seright R.S., Shao Z., Wang J. Key Aspects of Project Design for Polymer Flooding. – SPE-109682-MS, 2008. DOI: https://doi.org/10.2118/109682-ms.
  30. Guo H., Li,Y., Li Y., Kong D., Li B., Wang F. Lessons Learned From ASP Flooding Tests in China. – Day 2 Tue, May 09, 2017. SPE-186036-MS. DOI: https://doi.org/10.2118/186036-ms.
  31. Kumar M.S., Pandey A., Jha M.K. Polymer Injectivity Test in Mangala Field - A Significant Step towards Field Wide Implementation. – SPE-155162-MS, 2012. DOI: https://doi.org/10.2118/155162-ms.
  32. Kumar P., Raj R., Koduru N., Kumar S., Pandey A. Field Implementation of Mangala Polymer Flood: Initial Challenges, Mitigation and Management. – Day 1 Mon, March 21, 2016. SPE-179820-MS. DOI: https://doi.org/10.2118/179820-ms.
  33. Danda, H., Yuanqia, C., Yuanbin, W., Qingfe, Z., Mingshen, F., Hui L. Field Applications of an Evaluation Model for Enhancing Recovery Efficiency to Polymer-flooding. – SPE-143408-MS, 2011. DOI: https://doi.org/10.2118/143408-ms.
  34. Lu N., Hou J., Liu Y., Guo L., Yuan F., Wei C., Liu Y. Optimization Chemical Flooding Methods to Enhance Oil Recovery of Strong Heterogeneity, High Temperature and High Salinity Reservoirs - Case Study of Shengli Oilfield. – Day 1 Tue, October 17, 2017. SPE-186435-MS. DOI: https://doi.org/10.2118/186435-ms.
  35. Gao C.H. Experiences of Polymer Flooding Projects at Shengli Oilfield. All Days. Published. – SPE-169652-MS, 2014. DOI: https://doi.org/10.2118/169652-ms.
  36. Delamaide E., Soe Let K.M., Bhoendie K., Jong-A-Pin S., Paidin W.R. Results of a Polymer Flooding Pilot in the Tambaredjo Heavy Oil Field, Suriname. – Day 1 Tue, June 07, 2016. SPE-180739-MS. DOI: https://doi.org/10.2118/180739-ms.
  37. Seright R.S. How Much Polymer Should Be Injected During a Polymer Flood? Review of Previous and Current Practices. – SPE Journal, 2016, 22(01), р. 1–18. SPE-179543-PA. DOI:https://doi.org/10.2118/179543-pa.
  38. Chang H.L. Polymer Flooding Technology – Yesterday, Today, and Tomorrow. – Journal of Petroleum Technology, 1978, 30(8), р. 1113–1128.
  39. Maerker J. Shear Degradation of Partially Hydrolyzed Polyacrylamide Solutions. – Society of Petroleum Engineers Journal, 1975,15(04), р. 311–322. SPE-5101-PA. DOI: https://doi.org/10.2118/5101-pa.
  40. Seright R. The Effects of Mechanical Degradation and Viscoelastic Behavior on Injectivity of Polyacrylamide Solutions. – Society of Petroleum Engineers Journal, 1983. 23(03), р. 475–485. SPE-9297-PA. DOI: https://doi.org/10.2118/9297-pa.
  41. Seright R.S., Seheult J.M., Talashek T. Injectivity Characteristics of EOR Polymers. – SPE Reservoir Evaluation & Engineering, 2009, 12(05), р. 783–792. SPE-115142-PA. DOI: https://doi.org/10.2118/115142-pa.
  42. Seright R.S., Campbell A.R., Mozley P.S., Han P. Stability of Partially Hydrolyzed Polyacrylamides at Elevated Temperatures in the Absence of Divalent Cations. – SPE Journal, 2010, 15(02), р. 341–348. SPE-121460-PA. DOI: https://doi.org/10.2118/121460-pa.
  43. Manichand R.N., Moe Soe Let K.P., Gil L., Quillien B., Seright, R.S. Effective Propagation of HPAM Solutions Through the Tambaredjo Reservoir During a Polymer Flood. SPE Production & Operations, 2013, 28(04), 358–368. SPE-164121-PA. DOI: https://doi.org/10.2118/164121-pa.
  44. Seright R.S., Skjevrak I. Effect of Dissolved Iron and Oxygen on Stability of Hydrolyzed Polyacrylamide Polymers. – SPE Journal, 2015, 20(03), р. 433–441. SPE-169030-PA. DOI: https://doi.org/10.2118/169030-pa.
  45. Jouenne, S., Chakibi, H., & Levitt, D. 2017. Polymer Stability After Successive Mechanical-Degradation Events. SPE Journal, 23(01), 18–33. SPE-186103-PA. https://doi.org/10.2118/186103-pa.
  46. Diab W.N., Al-Shalabi E.W. Recent Developments in Polymer Flooding for Carbonate Reservoirs under Harsh Conditions. – Day 3 Thu, October 31, 2019. SPE-29739-MS. DOI: https://doi.org/10.4043/29739-ms.
  47. Sorbie K.S. Polymer-Improved Oil Recovery. – 1991. DOI: https://doi.org/10.1007/978-94-011-3044-8.
  48. Standnes D.C., Skjevrak I. Literature review of implemented polymer field projects. – Journal of Petroleum Science and Engineering, 2014, 122, р. 761–775. DOI: https://doi.org/10.1016/j.petrol.2014.08.024.
  49. Carreau P.J. Rheological Equations from Molecular Network Theories. – Transactions of the Society of Rheology, 1972, 16(1), р. 99–127. DOI: https://doi.org/10.1122/1.549276.
  50. Yang S., Treiber L. Chemical Stability of Polyacrylamide Under Simulated Field Conditions. – SPE Annual Technical Conference and Exhibition, 1985. SPE-14232-MS. DOI: https://doi.org/10.2118/14232-ms.
  51. Sagyndikov M., Mukhambetov B., Orynbasar Y., Nurbulatov A., Aidarbayev S. Evaluation of Polymer Flooding Efficiency at Brownfield Development Stage of Giant Kalamkas Oilfield, Western Kazakhstan. – Day 2 Thu, November 01, 2018. SPE-192555-MS. DOI: https://doi.org/10.2118/192555-ms.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Imanbayev B.A., Sagyndikov M.S., Kushekov R.M., Tajibayev M.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».