Словообразовательная сложность и ошибки учащихся в экзаменационных эссе

Обложка

Цитировать

Полный текст

Аннотация

В статье рассматривается словообразовательная сложность учебных текстов, которая трактуется как система измерений, показывающих разнообразие приемов словообразования разного уровня, от простых до продвинутых, используемых учащимся. Анализируется взаимосвязь между сложностью и ошибками, которые учащиеся допускают в словообразовании. Исследование основано на материалах REALEC - корпуса английских экзаменационных эссе, написанных студентами университета с родным русским языком. Предлагается подход к измерению словообразовательной сложности, основанный на классификации суффиксов Бауэра и Нейшена (Bauer & Nation 1993), и анализируется соответствие между показателями индексов сложности и количеством ошибок словообразования, размеченных в текстах корпуса, с учетом типа экзаменационного задания. Постулируется гипотеза о том, что с увеличением сложности количество ошибок должно уменьшаться, и проводится статистический анализ параметров сложности и безошибочности. В работе показано, во-первых, что использование словообразовательных суффиксов более высокой сложности связано с количеством ошибок в текстах. Во-вторых, разные уровни иерархии сложности оказывают разнонаправленное влияние на точность: в частности, использование нерегулярных словообразовательных моделей положительно связано с количеством ошибок. В-третьих, следует учитывать тип экзаменационного задания, в том числе ожидаемые формально-регистровые особенности текста. Гипотеза была подтверждена для регулярных, но нечастотных суффиксальных моделей при их использовании в описаниях рисунков и графиков - текстах, следующих определенному формату и включающих элементы академического письма. Однако в случае аргументативных эссе выдвинутая гипотеза требует уточнения.

Об авторах

Ольга Николаевна Ляшевская

Национальный исследовательский университет «Высшая школа экономики»; Институт русского языка им. В. В. Виноградова РАН

Email: olesar@yandex.ru
ORCID iD: 0000-0001-8374-423X

профессор Школы лингвистики Национального исследовательского университета «Высшая школа экономики», старший научный сотрудник Института русского языка имени В. В. Виноградова РАН

Россия, 117218, Москва, Старая Басманная ул., 21/4, корпус А, комн. 519

Юлия Вячеславовна Пыжак

Национальный исследовательский университет «Высшая школа экономики»

Email: jeneavas41@yandex.ru
ORCID iD: 0000-0003-3439-9788

студентка факультета гуманитарных наук

Россия, 117218, Москва, Старая Басманная ул., 21/4, корпус А, комн. 519

Ольга Ильинична Виноградова

Национальный исследовательский университет «Высшая школа экономики»

Автор, ответственный за переписку.
Email: olgavinogr@gmail.com
ORCID iD: 0000-0001-5928-1482

доцент Школы лингвистики, научный сотрудник научно-учебной лаборатории учебных корпусов факультета гуманитарных наук

Россия, 117218, Москва, Старая Басманная ул., 21/4, корпус А, комн. 519

Список литературы

  1. Abrahamsson, Niclas. 2013. U-shaped learning and overgeneralization. In Peter Robinson (ed.), The routledge encyclopedia of second language acquisition, 663-664. London: Routledge. https://doi.org/10.4324/9780203135945
  2. Baayen, R. Harald. 2009. Corpus linguistics in morphology: Morphological productivity. In Anke Lüdeling & Merja Kytö (eds.), Corpus linguistics: An international handbook, 899-919. Berlin, New York: De Gruyter Mouton. https://doi.org/10.1515/9783110213881.2.899
  3. Baerman, Matthew, Dunstan Brown & Greville G. Corbett (eds.). 2015. Understanding and Measuring Morphological Complexity. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198723769.001.0001
  4. Bardovi-Harlig, Kathleen & Theodora Bofman. 1989. Attainment of syntactic and morphological accuracy by advanced language learners. Studies in Second Language Acquisition 11(1). 17-34.
  5. Bauer, Laurie & Paul Nation 1993. Word families. International Journal of Lexicography 6(4). 253-279.
  6. Biber, Douglas. 1988. Variation Across Speech and Writing. Cambridge: Cambridge University Press.
  7. Brezina, Vaclav & Gabriele Pallotti. 2019. Morphological complexity in written L2 texts. Second Language Research 35(1). 99-119. https://doi.org/10.1177/0267658316643125
  8. Brezina, Vaclav, Pierre Weill-Tessier & Antony McEnery. 2020. #LancsBox v. 5.x. URL: http://corpora.lancs.ac.uk/lancsbox (accessed 25.05.2021).
  9. Brown, Dale, Tim Stoeckel, Stuart Mclean & Jeff Stewart. 2020. The most appropriate lexical unit for L2 vocabulary research and pedagogy: A brief review of the evidence. Applied Linguistics, amaa061. https://doi.org/10.1093/applin/amaa061
  10. Bulté, Bram & Alex Housen. 2012. Defining and operationalising L2 complexity. In Alex Housen, Folkert Kuiken & Ineke Vedder (eds.), Dimensions of L2 performance and proficiency: Complexity, accuracy and fluency in SLA, 21-46. Amsterdam: John Benjamins. https://doi.org/10.1075/lllt.32.02bul
  11. Bulté, Bram & Alex Housen. 2014. Conceptualizing and measuring short-term changes in L2 writing complexity. Journal of Second Language Writing 26. 42-65. https://doi.org/10.1016/j.jslw.2014.09.005
  12. Capel, Annette. 2010. A1-B2 vocabulary: Insights and issues arising from the English Profile Wordlists project. English Profile Journal 1(1). 2-7. https://doi.org/10.1017/S2041536210000048
  13. Crossley, Scott. 2020. Linguistic features in writing quality and development: An overview. Journal of Writing Research 11(3). 415-443. https://doi.org/10.17239/jowr-2020.11.03.01
  14. de la Torre García, Nuria, María Cecilia Ainciburu & Kris Buyse. 2021. Morphological complexity and rated writing proficiency: The case of verbal inflectional diversity in L2 Spanish. ITL - International Journal of Applied Linguistics 172(2). 290-318. https://doi.org/10.1075/itl.20009.del
  15. Dobson, Annette J. 1990. An Introduction to Generalized Linear Models. London: Chapman and Hall.
  16. Ehret, Katharina & Benedikt Szmrecsanyi. 2019. Compressing learner language: An information-theoretic measure of complexity in SLA production data. Second Language Research 35(1). 23-45. https://doi.org/10.1177/0267658316669559
  17. Hassanzadeh, Fatemeh & Iraj Kazemi. 2017. Regression modeling of one-inflated positive count data. Statistical Papers 58(3). 791-809. https://doi.org/10.1007/s00362-015-0726-7
  18. Hay, Jennifer & R. Harald Baayen. 2002. Parsing and productivity. In Geert E. Booij & Jaap Van Marle (eds.), Yearbook of morphology 2001, 203-235. Dordrecht: Kluwer Academic. https://doi.org/10.1007/978-94-017-3726-5_8.
  19. Hollander, Myles & Douglas A. Wolfe. 1973. Nonparametric Statistical Methods. New York: John Wiley & Sons.
  20. Horst, Marlise & Laura Collins. 2006. From faible to strong: How does their vocabulary grow? Canadian Modern Language Review 63(1). 83-106. https://doi.org/10.1353/cml.2006.0046
  21. Kimppa, Lilli , Yury Shtyrov, Suzanne C.A. Hut, Laura Hedlund, Miika Leminen & Alina Leminen. 2019. Acquisition of L2 morphology by adult language learners. Cortex 116. 74-90. https://doi.org/10.1016/j.cortex.2019.01.012
  22. Lahuerta, Ana Cristina. 2018. Study of accuracy and grammatical complexity in EFL writing. International Journal of English Studies 18(1). 71-89. https://doi.org/10.6018/ijes/2018/1/258971
  23. Laufer, Batia, Stuart Webb, Su Kyung Kim & Beverley Yohanan. 2021. How well do learners know derived words in a second language? The effect of proficiency, word frequency and type of affix. ITL - International Journal of Applied Linguistics 172(2). 229-258. https://doi.org/10.1075/itl.20020.lau
  24. Laws, Jacqueline & Chris Ryder. 2014. Getting the measure of derivational morphology in adult speech a corpus analysis using MorphoQuantics. University of Reading Language Studies Working Papers 6. 3-17. http://morphoquantics.co.uk/Resources/Laws%20&%20Ryder%20(2014).pdf (accessed 25.06.2021)
  25. Leontjev, Dmitri. 2016. L2 English derivational knowledge: Which affixes are learners more likely to recognise? Studies in Second Language Learning and Teaching 6(2). 225-248. https://doi.org/10.14746/ssllt.2016.6.2.3
  26. Lyashevskaya, Olga, Irina Panteleev & Olga Vinogradova. 2021. Automated assessment of learner text complexity. Assessing Writing 49, article 100529. https://doi.org/10.1016/j.asw.2021.100529
  27. Lyashevskaya, Olga, Olga Vinogradova & Anna Scherbakova. (forthc.) Accuracy, syntactic complexity, and task type at play in examination writing: A corpus-based study. In Agnieszka Leńko-Szymańska & Sandra Götz (eds.), Complexity, accuracy, and fluency in learner corpus research.
  28. Marchand, Hans. 1969. The Categories and Types of Present-Day English Word-Formation. 2nd ed. Munich: C. H. Beck.
  29. Nation, Paul. 2021. Thoughts on word families. Studies in Second Language Acquisition 43(5). 969-972. https://doi.org/10.1017/S027226312100067X
  30. Norris, John & Lourdes Ortega. 2009. Measurement for understanding: An organic approach to investigating complexity, accuracy, and fluency in SLA. Applied Linguistics 30(4). 555-578. https://doi.org/10.1093/applin/amp044
  31. Plakans, Lia, Atta Gebril & Zeynep Bilki. 2019. Shaping a score: Complexity, accuracy, and fluency in integrated writing performances. Language Testing 36(2). 161-179. https://doi.org/10.1177/0265532216669537
  32. Plag, Ingo, Christiane Dalton-Puffer & Harald Baayen. 1999. Morphological productivity across speech and writing. English Language & Linguistics 3(2). 209-228.
  33. R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org (accessed 25.06.2021).
  34. Robinson, Peter. 2001. Task complexity, task difficulty, and task production: Exploring interactions in a componential framework. Applied Linguistics 22(1). 27-57. https://doi-org.proxylibrary.hse.ru/10.1093/applin/22.1.27
  35. Robinson, Peter. 2011. Second language task complexity, the Cognition Hypothesis, language learning, and performance. In Peter Robinson (ed.), Second language task complexity: Researching the Cognition Hypothesis of language learning and performance, 3-39. Amsterdam: John Benjamins. https://doi.org/10.1075/tblt.2.05ch1
  36. Skehan, Peter. 1998. A Cognitive Approach to Language Learning. Oxford: Oxford University Press.
  37. Skehan, Peter. 2009. Modelling second language performance: Integrating complexity, accuracy, fluency, and lexis. Applied Linguistics 30(4). 510-532. https://doi.org/10.1093/applin/amp047
  38. Stein, Gabriele. 2007. A Dictionary of English Affixes: Their Function and Meaning. Munich: Lincom Europa.
  39. Tywoniw, Rurik & Scott Crossley. 2020. Morphological complexity of L2 discourse. In Eric Friginal & Jack A. Hardy (eds.), The Routledge handbook of corpus approaches to discourse analysis, 269-297. London: Routledge. https://doi.org/10.4324/9780429259982-17
  40. van der Slik, Frans, Roeland van Hout & Job Schepens. 2019. The role of morphological complexity in predicting the learnability of an additional language: The case of La (additional language) Dutch. Second Language Research 35(1). 47-70. https://doi.org/10.1177/0267658317691322
  41. Vasylets, Olena, Roger Gilabert & Rosa M. Manchón. 2017. The effects of mode and task complexity on second language production. Language Learning 67(2). 394-430 https://doi.org/10.1111/lang.1222
  42. Vinogradova, Olga, Olga Lyashevskaya & Irina Panteleeva. 2017. Multi-level student essay feedback in a learner corpus. In Computational Linguistics and Intellectual Technologies. Proceedings of the International Conference Dialogue 2017. 373-387. Moscow.
  43. Yee, Thomas W. 2015. Vector Generalized Linear and Additive Models. Springer. https://doi.org/10.1007/978-1-4939-2818-7
  44. Yoon, Hyung-Jo. 2017. Linguistic complexity in L2 writing revisited: Issues of topic, proficiency, and construct multidimensionality. System 66. 130-141. https://doi.org/10.1016/j.system.2017.03.007

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Ляшевская О.Н., Пыжак Ю.В., Виноградова О.И., 2022

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».