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I'pynnoel u nmosis Iloitn B HEKOTOPBIX AeiiCTBUTEIbHBIX
OMKBaJPATUIHBIX YNCJIOBBIX MOJIAX

Caupg 9JIb MAJIPAPHA
QaKyIbTET €CTECTBEHHBIX HAYK M TEXHOJIOTHIA
Yausepcurer Mynasa Mcmania

Mapoxkko, r. dp-Pammans, I1.41. 509 Byramamun

Annoranus. [Iycrs K — unciiopoe none, a O — ero kobiio nessix ucedt. [yers [, (K) —
npouseejieHne Beex mpocThix uiaeasioB O ¢ abcostorHOM HOpMOit ¢. ['pymma [oitn uncioBoro
nosist K — 3TO moArpymnma rpymisl KJaaccoB K, MOpoXKIeHHasT Kiaccamu | | q(K ). K saBngercs
noseM [loiiu Torga u TOIbKO TOrA, KOrma uaeaisl | | q(K ) ABJSIOTCS [VIABHBIMU. B 9T0i1 cTaThe
MBI caenyeM Hamed padore [S. EL Madrari, “On the Pélya fields of some real biquadratic fields”
Matematicki Vesnik, online 05.09.2024], B KoTOpO#i MBI H3y9ayu TPYIIIbL 1 1105151 110 B 9aCTHBIX
cayvasx. 3mech Mbl gaauM rpynmsl [oiin K = Q(\/&l, \/Eg) Takwue, 910 di = Im; u do = Imo
SIBJIAIOTCA CBOOOJHBIMU OT KBaJparoB HejbiMu uuciaamu ¢ | > 1 u HOI(mq,mq) = 1, a
[POCTOE YHUCIO 2 He IMOJHOCTHIO pasperBieHo B K/Q. A 3areM MBI OXapaKTepusyeMm MOJIsI
[Toiin meiicTBUTENBHBIX OMKBAAPATHIHBIX TOJTel K.

Kuarouessbie caoBa: moss [loiin, rpymnmst [loiitn, meficTrBuTesbabIE OMKBAIPATUTHBIE TIOJIS, TIEP-
Basi KOTOMOJIOTUYIECKAst TPYTIIa eIMHUIL, [[€TOUNCIEHHBIE MHOTOWIEHbI

Jnsa nutuposauusi: 9av Madpapu C. I'pynmsr u moss [loiin B HEKOTOPBIX JefiCTBUTETBHBIX O1-
KBAJPATUIHBIX YUCJOBBIX 10J1AX // BecrHuk poccuiickux yuusepcureroB. Maremaruka. 2025.
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Introduction

Let K be a number field and Ok be its ring of integers. Let Int(Ox) = {R € K[X] |
R(Ok) C Ok} be the ring of integer-valued polynomials on Ok. According to Pélya in [1], a
basis (gn)nen of Int(Ok) is said to be a regular basis if the deg (g,) = n for each polynomial
gn- In 1919, G. Pdlya was interested whether the O -module Int(Of) has a regular basis.
Ostrowski [2| showed that the O -module Int(Of) admits a regular basis if and only if
the ideals [] (K) are principal, where [] (K) is the product of all prime ideals of O with
absolute norm ¢. In 1982, Zantema in [3] gave the name of Pélya field to any field K such that
the O -module Int(Ok) has a regular basis. In 1997, Cahen and Chabert in [4] introduced
the notion of Pélya group which is the group generated by the classes of ] (K).

Let K = Q(\/El, \/c_lg) such that d; = Im; and dy = Imy are square-free integers with
[ >1 and ged(my, my) = 1. The studies about the Pélya fields in the real biquadratic fields
started in 1982 by Zantema [3]. In 2011, A. Leriche in [5] gave some Pdlya fields of K by
using the capitulation. Otheres (see [6], [7], and [§]) determined some particular cases of Pélya
groups and Pdlya fields of K.

In this paper, we are going to determine H'(Gg, Fx) which is the first cohomology group
of units of K = Q(\/al, \/C_ZQ) such that d; =Im; and dy = lmy are square-free integers with
[ > 1 and ged(my,me) = 1 and the prime 2 is not totally ramified in K/Q. And then, we
give the Polya groups of K. Lastly, we give the Pdlya fields of the real biquadratic fields K.
This paper continues the study of [9].

1. Notations

In this work, we adopt the following notations:

[>1 and my; > 1 and my > 1 are square-free integers.

di =Imy and dy = Ilms and d3 = mi;ms are square-free integers.
K = Q(+/d1,+/dy) : areal biquadratic number field.

Ok : the ring of integers of K.

ki = Q(v/d;) : the quadratic subfields of K for i =1,2,3.

€ = 1; + y;v/d; : the fundamental unit of Q(v/d;), for i = 1,2,3.
N(n;) = Ni(n;) = Normy, o(n;) where n; € k;, for 1 =1,2,3.
Ek : the unit group of K over Q.

Ggk : the Galois group of K over Q.

e, : the ramification index of a prime number p in K/Q.

dy : the discriminant of K over Q.

t : the number of the prime divisors of d.

2. Preliminaries

Definition 2.1. Let [[, (L) be the product of all prime ideals of Op with norm
q > 2. The Pélya group Po(L) of a number field L is the subgroup of the class group of L
generated by the classes of the ideals [] (L).

In the real biquadratic number fields K, the prime 2 is the only prime can be totally
ramified in K/Q. When e; the ramification index of the prime 2 in K/Q is 4 = [K : Q],
in other words 2 is totally ramified in K/Q so we have (d;,dy) = (2,3) or (3,2) (mod 4),
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therefore Ne; #% Nes = Neg = 1, Ney # Neg = Neg = 1, or Neg = Negs = Neg = 1. When
ey # 4, 1. e., the prime 2 is not totally ramified in K/Q. So, we have either e; = 1, when
the prime 2 is not ramified in K/Q or e; = 2, when the prime 2 is ramified in K/Q. Thus,
we have the following possibilities (dy,ds) = (1,1),(1,2),(2,1),(1,3),(3,1),(3,3) (mod 4). Let
kj = @(\/d_j), j = 1,2 note that when d; = 1,2 (mod 4), then Ne; = £1, for j =1,2 and
when there exists a prime number =3 (mod 4) dividing d; then Ne; = +1, for j =1,2.

Let K = @(\/81, \/32) such that d; = Im; and dy = lmy are two square-free integers with
[ >1 and ged(my,ms) = 1. Let H'(Gg, Ex) be the first cohomology group of units of K.
Let ¢ = z; + y;1/d; be the fundamental unit of Q(y/d;), for i = 1,2,3. Recall that a; € Q
such that a; = N(e; +1) = 2(z; + 1) when Ne; =1 else a; = 1, for i = 1,2,3. Let H be
the subgroup of Q*/Q*? generated by the images of di,ds,ds,a1,a, and asz with d; = Imy,
dy = Imy, and ds = mymy. [a;] is the class of a; in Q*/Q*2, for i = 1,2,3 and [d;] is the
class of d; in Q*/Q*?, for 1 =1,2,3.

Theorem 2.1 (see [10]). H ~ H'(Gg, Ex), except for the next two cases in which H is
canonically isomorphic to a subgroup of index 2 of H'(Gk, Fr) :
1. the prime 2 is totally ramified in K/Q, and there exists integral z; € k;, 1 =1,2,3 such
that N1(z1) = Na(z9) = N3(z3) = +2,
2. all the quadratic subfields k; contain units of norm —1 and Ex = Ej, Ey, Ej,.

Remark 2.1. The theorem above was given by C. Bennett Setzer in [10]. It presents
the first cohomology group of units of the real biquadratic number fields K. For the proof of
the theorem above, the reader refers to see the proof in [10, Theorems 4,5,7]. Note that the
theorem above is mentioned by Zantema in [3, Section 4, p. 14,15], also it is mentioned in [6].

Now we give a well-known proposition in the notion of Pélya group and field (see |5,
Proposition 2.3]).

Proposition 2.1. The group Po(L) is trivial if and only if one of the following
assertions is satisfied:

1. the field L is a Pdlya field,
2. all the ideals T[,(L) are principal,
3. the Or -module Int(Op) has a regular basis.

Zantema gave the following proposition which connects the first cohomology group of units
of a number field L with the Pélya group of L in a Galois extension.

Proposition 22(see[3]). Let L/Q be a Galois extension and dy, be its discriminant.
Denote by e, the ramification index of a prime number p in L. Then, the following sequence
18 ezxact

1— Hl(GL, EL) — EBp‘dLZ/epZ — Po(L) — 1.

In particular, |H'(Gr, Ep)||Po(L)| = 1,4, €
Hence, we get the following result.

Corollary 2.1. L is a Pdlya field if and only if |H (G, Er)| = H ep-

pldr,
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Proposition 2.3 (see[l1]). Let K = Q(vdy,Vdy). Let ¢ be the fundamental unit
of Q(v/d;), i =1,2,3. Let Ex be the unit group of K over Q. So, we have the following
possibilities for a system of fundamental of units of Fi :

1. €€, €,

Vi, €, € with Ne; =1,
- V€, /€, €& such that Ne; = Nej =1,

L e

4. \J€€j, €5, €, such that Ne; = Nej =1,
5. \[€€j,\/€k,€; where Ne¢; = Nej = Ne =1,
6. /€€, €€k, \/ex€i where Ne; = Ne;j = Nep =1,

\/€i€€k, €5, €, where Ne; = Nej = Nep = 1,
E€i€k, €, € with Ne; = Ne; = Nep = —1, where {e;, ¢, e} = {€3, €1, €2}
Proposition 24 (see[11]). Let k = Q(v/d) such that Ne =1 and let A denote the

square-free part of the positive integer N(e +1). Then XA > 1, X divides the discriminant of
kE, X#d, and v )Xe € k.

o N

3. The Pdlya Groups of The Real Biquadratic Fields K = Q(y/lmq, vIms)

In this section, we are going to determine the Pélya groups of the fields K. Firstly, we need
to give the first cohomology group of units of K.

3.1. The structure of the first cohomology group of units of K = Q(vImy, Vims)
Proposition 3.1. Let K = @(\/31,\/32) such that dy = lm; and dy = lmsy are

square-free integers with | > 1 and gcd(my,me) = 1. Let €,€65 and e3 be the fundamental
unit of Q(v/dy), Q(vdy) and Q(v/ds) with ds = mymsy respectively, and let Ne; = Neg =
Nes = 1. Let A\, A\ and A3 be the square-free part of N(e; + 1), N(ea+1) and N(es+ 1)
respectively. Then, we have the following results:

1. (/&€& € K if and only if either [A\i o] = [lmy], [lms] or [mims], or Ay = Ay =1,

2. J&es € K for j =1 or 2 if and only if either [NjAs] = [Imy], [Ima] or [mimy], or

>\j = )\3 =1m;,
3. Jaees € K if and only if either [AXaAg] = [lma], [Ima] or [mims], or [AiXs] = [As].

Proof. Let k; = Q(\/d;) such that Ne; =1 for i =1,2,3 and let )\; be the square-free
part of the positive integer N(e¢; + 1) for ¢ = 1,2,3. Recall that [Im4], [lms] and [mima] is
the class of Imy,lms and mymsy in Q*/Q*? respectively. We start by the first equivalent.

1. (=), we use the contrapositive. We suppose that ([AjAa] # [Im4], [lms] and [myma]),
and (A # [ or Ay # ). We know that v/Ae; € k; and /Ayes € ky (see Proposition 2.4),
s0 VA1 hee162 € K and since ([AjAg] # [Imy], [Imso] and [myms]), and (\; # 1 or Xy # 1), so
Ve ¢ K. Reciprocally, we suppose either [A\j\o] = [Imq], [Ims] or [mims], or Ay = Ay =1,
and since we have /A€, € ki and A€y € ka. So, VAie1v/ aea € K and thus we get that
Ve € K.

2. As above the first assertion we get the second.

3. Lastely, ( = ) assuming that [AAoA3] # [lmy], [lme] and [myms], and [AjXs] #
[A3]. Since VA1 € ki, VAaeo € ko, and Azez € k3, 50 Ve aeaze3 € K. As we have
(A1 A2As] # [Imq], [lms] and [mams], and [AAo] # [As], so /e1&ze3 ¢ K. Now we suppose
either [A\Ao)3] = [Imy], [Ims] or [mimy], or [Mo] = [A3]. As Ve € by and v Ages € ko
and then v/)se3 € ks, thus we get that Veee € K. O
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Example 3.1. In the field K = Q(v/7-5,v/7-11), we have d; = 7-5 = 35, dy =
7-11 =77 and d3 = 5-11 = 55. The fundamental units are €; = 6 + /35, ¢, = %(9 +77),
€3 = 89 + 12¢/55 such that Ne; = Ney = Nes = 1. So, a; = 2(z; +1) =2(6 +1) =27,
az =2(x2+1) =2(2+1) =11, a3 =2(89+1) =2-90 = 22-3%-5. And thus we have \; =2-7,
A2 = 11, and then X3 = 5. By Proposition 2.4, we get that +/2-7e; € ki = Q(/7-5),
V1les € ky = Q(v/7-11) and /Bey € ks = Q(v/5-11). So, y/1leay/Bes = V11 -5 /6265 € K,
as we have AA3 = 11-5 = d3, then /6363 € K.

Remark 3.1. Let k3 = Q(y/mims) and €3 be the fundamental unit of k3 with
Nes =1. Let A3 be the square-free part of the positive integer N(e3 + 1). Since A3 > 1,
A; divides the discriminant of k3, A3 # mima, and Asez € ks = Q(\/mima), so /&3 ¢ K.
Similarly, we find that /e; ¢ K and \/e; ¢ K.

Let K = Q(\/&l,\/ag). We know that when we have either Ne; # Ney = Neg = 1,
Nes # Ney = Neg = 1, or Neg = Neg = Neg = 1 so we can have ey = 4 or ey # 4.
In the lemma below, we give H'(Gg, Ex) the first cohomology group of units of K such
that ey # 4, i. e., the prime 2 is not totally ramified in K/Q. We mention here that when
Ne; = Neg = Nes = —1, Neg = Neg = —1 # Neg = 1, Ne; # Ne;j = Neg = —1, with
j#1=1,2, and Ne; = Neg # Neg = —1, we always have ey # 4.

Lemma 3.1. Let K = Q(\/El,\/ag) such that dy = lmy and dy = Ilmy are square-free
integers with | > 1 and ged(my,mse) = 1. Then
1. HY Gk, FEx) ~ (Z/2Z)*, when Ne; = Nes = Nes = —1 and \/ejez€3 € K.
2. HY (G, Ex) ~ (Z/27)3, when
(a) Ney = Neg = Nes = —1 and \J/ei6ze3 ¢ K,
(b) Ney; = Ne; = —1, Nez =1,
(¢) Nej # Nep = Nes = —1, for j#ke{1,2},
(d) Nepx = Nea =1, Nes =—1 and \Jeie; € K, or
(e) Nep# Nej = Nes =1 and \Jeje5 € K, j#k € {1,2} such that ex # 4,
(f) Nepx = Ne; = Neg =1 and /e, € K and \Jejes € K and /éxe5 € K such that
ey # 4.
3. HY Gk, Fx) ~ (Z)2Z)*, when
(a) Nep = Nea =1, Nes =—1 and \Je16; ¢ K,
(b) Nep # Nej = Nes =1 and \Jejes ¢ K, j#k € {1,2} such that e; #4 or

(C) N61 = N€2 = N€3 =1 and \/€E1€2 € K, \/€E2€3 € K, \/€1€3 € K, or /€1€2€3 € K
such that ey # 4.

4. HY(Gk,Ex) ~ (Z/2Z)°, when Ne; = Ne; = Nez = 1 and \Jejea ¢ K, (Jeze3 ¢ K,
Veres ¢ K, and /éjezez ¢ K such that ey # 4.

P roof. Recall that A, Ay and A3 be the square-free part of N(e;+1)=ay, N(ex+1)=as
and N(es + 1) = a3 respectively, such that Ne; = Ney = Neg = 1. Let [a1], [az], and
las] be the class of aj,a; and a3z in Q*/Q*? respectively, so [ai] = [A\i], [as] = [Xo], and
las] = [A3] where Ne; = Nes = Nez = 1. We know that H is the subgroup of Q*/Q*?
generated by the images of dy,ds,ds,a;,as and az with dy = Imy, dy =Imy and ds = mims.
In the following we study in Q*/Q*? whether [Im4], [Ims], [mims], [a1], [as], and [as] are
linearly independents. Note that [mims] belongs to the subgroup generated by [lm;] and
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[Ims] in Q*/Q*2, in other words [mimy] € ([lm4],[lms]). We refer the reader to see the proof
of the theorems A, B,C, and D in [6] since in the following we do the same process to give
ik (GK, EK)

When Ne; = Neg = Neg = —1, we get that [a;] = [as] = [as] = 1. And thus, [Im]
and [lmy] are linearly independents, i. e., ([lmy], [lmy]) ~ (Z/2Z)*. As the three fundamental
units with negative norm. Then, by Kubota [11], we have either Ex = (—1,¢€1,€,€3) or Ex =
(—1,€1, €, \/€162€3) is the group of units of K. Thus, we will distinguish the two following
cases.

e When /€165 € K, which means that we have Ex = (—1,€1, €, /€162€63). So, by
Theorem 2.1, we get that H'(Gg, Ex) ~ H ~ (Z/27)>.

e Otherwise, i. e., /616265 ¢ K, then Ex = (—1,€1,€,€3). On the other hand, we know
that Ey, = (—1,€¢1), Ep, = (—1,€) and then FEjy, = (—1,€3). Therefore, Ex = Ex, Ey, E,.
So, using the Theorem 2.1, we get that H'(Gy, Ex) ~ H X Z/27 ~ (Z/27)3.

When Ne; = Nes = —1 and Neg = 1, then [a1] = [as] = 1. Now we have to check whether
[a3] belongs to the group generated by [lm;] and [lms]. By Proposition 2.4 we have A3 > 1 and
A3 # mimg = d3 and then A3 divides di,. Therefore, we get that [a3] = [A3] & ([Im], [Ima])
and thus H'(Gg, Ex) ~ H ~ (Z/27)>.

Assuming Ne¢; # Ne, = Nes = —1 such that j # k = 1,2. Then, [ay] = [as] = 1. As
above, the second assertion, we get that H'(Gy, Ex) ~ H ~ (Z/27Z)3.

When Ne; = Neg = 1 and Nes = —1, so [ag] = 1. Thence, we have to verify whether
[Im1], [Ims], [a1], and [ag] are linearly independents or not. As Ne; = Nes = 1. Then, we have
to distinguish the following cases.

e When /€163 € K (note that we have Ex = (=1, /€162, €2, €3) see Proposition 2.3). So,

according to Proposition 3.1, we have either ([a;] = [as] = [I]) or ([a1as] = [Im4], [Ims] or
[myms]). Note that, we have \; > 1, \; # Im;, and \; divides d;, for j = 1,2. So, we
get both [a1] = [A\1] and [as] = [Ao] are not in ([lmy], [lms]). Thus, we obtain that [a;] €

([lm1], [lms], [ax]) with j # k = 1,2. Then, by the Theorem 2.1, we get that H'(Gg, Fx) ~
H =~ (7)27.)%.

e Otherwise, i. e., \/eies ¢ K (note that here we have EFr = (—1,€1,¢€2,€3)), so we
have ([a1] # [I] or [ao] # [l]) and ([aras] # [lma],[lmo] and [myms]). Hence, [a;] ¢
([lmy], [Ilma), [ar]) for j #k=1,2. So, HY(Gk, Ex) ~ H ~ (Z/27)*.

Let Nep # Ne; = Neg =1, for j # k = 1,2 such that ey # 4. Then, [a;] =1 and thus
we have to see whether [lmy], [Imo], [a;], and [as] with j = 1,2 are linearly independents.
As above, the fourth case, we get that H'(Gk,Ex) ~ H ~ (Z/2Z)* when ,/€jés € K with
j = 1,2. Otherwise, we get that H'(Gg, Ex) ~ H ~ (Z/27)*.

Suppose Ne; = Nea = Neg = 1 such that ey # 4. Then, we have to check if [Im4], [Ims], [a1]
las] and [ag] are linearly independents. Therefore, we have to distinguish the following cases.

e When /616; € K. As above, (the fourth case) , we get that [a] € ([Im4], [Imo],[a;])
with j # k = 1,2. We know that [a3] = [As] & ([lma],[lma]). As we are in the case of
Vae € K, (i e, Ex = (—1, /a6, 6,¢€3) ) so (/63 ¢ K with j = 1,2. Hence, we get that
(laj]las] = [A\][As] # [Imy] and [mims]), and ([a;] # [m;] or [as] # [my]) for j =1,2. Asa
result, we have [a3] € ([lm4], [Ima), [a;]) and thus H' (G, Ex) ~ H ~ (Z/27)*.

e When /Gé; € K for j € {1,2}, as above, we get that H'(Gk, Ex) ~ H ~ (Z/27)*.

e When ,/eie3¢5 € K, (note that we have Ex = (—1,€1,€2, (/€1€263) see Proposition
2.3). So, we have either ([a1][as]as] = [M][A2][As] = [Imi], [Ima] or [mims]), or ([ai][az] =
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[M][A2] = [as] = [As]). We know that, [ai], [as][as] € ([Im4], [Ims]). Note that /ejes ¢ K and
€263 ¢ K (since Ex = (—1,€1, €, (/€162€3) ), s0 [ag] & ([lma], [Imo], [ag]) with k= 1,2, but
las] € {[Im1],[Ima],[a1], [a2]). So, HY Gk, Ex) ~ H ~ (Z/27)*.

o Otherwise, i. e., \Je16263 € K, Je162 ¢ K, \Jfe1e3 ¢ K, and /eze5 ¢ K in other words
Ex = (—1,e1,€9,€3). As a result, we get that [Im4], [lms], [a1], [a2] and [a3] are linearly
independents. So, H'(Gy, Ex) ~ H ~ (Z/27)°.

When Ne; = Ne; = Neg =1 and (/e16; € K and (/e1e3 € K and /e3e3 € K such that
es # 4 (here we have Ex = (—1, /€162, /€263, \/€1€3) see Proposition 2.3). Now we verify if
[Im1], [Ims], [a1], [as] and [as] are linearly independents. We know that when ,/e1€; € K, then
lax] € ([Ima], [Imy], [a;]) with j # k = 1,2 and when /€jé5 € K so [as] € ([Imi], [Imy], [a]),
j=1,2. Thus, H(Gk,Ex) ~ H ~ (Z/27)>. O

In the following we give some examples of H'(Gg, Ex) such that ey # 4.

Example 3.2. In this example we use the same field K = Q(\/7_5, \/W) of
the Example 3.1 (we recall that ey # 4). Since we have Ne; = Nes = Neg = 1, then
HYGg,Ex) ~ H ~ (Z/2Z)* or (Z/27)° (see the lemma above). As we have \; = 2 -7,
Ay = 11, and then A3 =5, and /ee3 € K (see the Example 3.1), then by the lemma above
we get that H'(Gy, Ex) ~ H ~ (Z/27)*.

Example 33 Let K =Q(3:-5-7,/3-5-11), where d; = 3-5-7 = 105, dy =
3:5-11 = 165, d3 = 7-11 = 77. Thus, we have & = 41 + 4105, e, = 1(13 + /165)
and then €3 = (9 + V/77) such that Ne; = Ne; = Neg = 1 and e, # 4. Hence, we have
4 =2 +1) =241 +1)=22-3-7, a3 =2(ws+1) =2(8 +1) =35, ag = a3+ 1) =
2(%+1) = 11. We have Ay =3-7, XAy = 3-5, and A3 = 11, thus we get that |/6e € K
(Aods =3-5-11 =dy). Then H'(Gx,Ex) = ([3-5-7),[3-5-11],[3 - 7], [3 - 5)) ~ (Z/2Z)*.

3.2. The Pdlya groups of the real biquadratic fields K = Q(v/Imq, v/Ims)

Theorem 3.1. Let K = Q(\/El,\/EQ) such that dy = lmy and dy = lms are square-free
integers with | > 1 and ged(my,my) = 1. Let t be the number of the prime divisors of dp.
So,

1. Po(K) >~ (Z/2Z)" 2, when Ne; = Ney = Neg = —1 and /16265 € K.

2. Po(K) ~ (Z/27)"3, when

(a) Ney = Neg = Ne3 = —1 and \Jereze3 ¢ K,

(b) Ney = Ne; = —1, Nez =1,

(¢) Nej # Nep = Neg = —1, for j#k e {1,2},

(d) Ney = Neg =1, Nes =—1 and \Jeje; € K, or

(e) Nep # Nej = Nes =1 and \Jeje5 € K, j#k € {1,2} such that ey # 4,

(f) Nepx = Nea = Nez =1 and (/6163 € K, \Je163 € K, \Jeze5 € K such that ey # 4.

3. Po(K) ~ E;_4, when

(a) Nex = Nea =1, Nes =—1 and /€163 ¢ K,
(b) Nep # Nej = Nes =1 and \Jeje5 ¢ K, j#k € {1,2} such that e # 4, or
(c) Net = Neg = Nes = 1 and \Jei6; € K, (Jee3 € K, \Jejes € K \Jere65 € K
such that ey # 4.
4. Po(K) ~ (Z/2Z)""°, when Ne; = Ne; = Neg = 1 and \Jej&a ¢ K, (Jfexe3 ¢ K,
Vee ¢ K and (Jereze5 & K such that ey # 4.
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Proof Wehave K = Q(\/El, \/32) such that d; = Imy; and dy = lmy are square-free
integers with [ > 1 and gcd(mq,ms) = 1. K is a Galois extension of Q with [K : Q] =4 and
dg is the discriminant K. We recall that e, is the ramification index of a prime number p in
K/Q and thus e; =1 when the prime 2 is not ramified in K/Q and e; = 2 when the prime 2
is ramified in K/Q. According to Proposition 2.2, we have |H'(Gk, Ex)||Po(K)| = 1,4, €-

Thus, |Po(K)| = m, where ¢ is the number of prime numbers dividing dx. Thence,
we have Po(K) ~ (Z/27)""% where s is satisfying (Z/27Z)* ~ H'(Gk, Ex). By the Lemma
3.1, we have when Ne; = Nes = Nes = —1 and \/e16z65 € K, then H' (G, Ex) ~ (Z/27)*.
Therefore, we get that Po(K) ~ (Z/27)" 2.

Similarly, as above, we deduce the other results of the theorem. O

4. The Pdlya Fields of The Real Biquadratic Fields K = Q(\/Imy, /Ims)

In this section, we aim to determine the Pélya fields of the real biquadratic fields of K =
@(\/31,\/32) such that d; = Imy; and dy = lmy are square-free integers with [ > 1 and
gcd(my,mg) = 1. Let p, p1,p2,p3, p4 and then p’ be the prime integers congruent to 1 (mod 4)
and let ¢, q1,q2,q3,qs and then ¢’ be the prime integers congruent to 3 (mod 4).

Since we are going to characterize the Pélya fields of K = Q(\/El, \/32) such that d; = lmy
and dy = Imsy. So, we need the discriminant of K over @Q which determined in [12] and [13]
by: di = (Imimsg)?, when (di,dz) = (1,1) (mod 4). And when (d;,d;) = (1,2), (1,3) or
(3,3) (mod 4) with ¢ # j € {1,2}, dx = (4lmymsy)?. In the following theorem we give the
Pélya fields of K in the cases of Ne; = Nes = Neg = —1, Neg = Neg = —1 # Neg =1, and
Ne; # Nej = Nes = —1, with j # i = 1,2. Note that in those cases we have ey # 4 and the
primes dividing d; = Im; and dy = Imsy are not congruent to 3 (mod 4). So, in the theorem
below [ must be congruent to 1 (mod 4).

Theorem 4.1. Let K = Q(\/gl, \/32) such that dy = lmy and dy = lms are square-free
integers with 1 > 1 and gcd(my,ma) =1 and put j # k € {1,2}.
We assume Ne; = Nes = Neg = —1. Then, K is a Polya field if and only if one of the
following assertions is satisfied:
1. d;i=1Ip1 and dj = lpy, with | = p,
2. d; =1Ilpy and d;j =21, with | = p.
Now we assume that Ney = Ne; = —1, Nez = 1. So, K is a Pdlya field if and only if one
of the following assertions is satisfied:
1. di =Ip1 and d; = lpy where | = p,
2. d; = Ip1 and d;j =21 where | = p.
We suppose that Ne; # Ne; = Nes = —1. So, K is a Polya field if and only if one of the
following assertions is satisfied:
1. di=Ip1 and d; = lp,,
2. d; =Ilp1 and d; = 21,
3. dj =Ip; and d; = 2l,
where in the three items above we have | = p.

P roof. Weknow that, K isa Pdlya field if and only if Po(K) is trivial. By the Theorem
3.1, we have the following cases.

(i) When Ne; = Ney = Neg = —1 and /1663 € K, then Po(K) ~ (Z/2Z)""* where t
is the number of prime divisors of dg, and thus K is a Pdlya field if and only if ¢ = 2. Note
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that this case can not occur because ¢ must be > 3. On the other hand, when ,/e16z¢5 ¢ K,
so Po(K) ~ (Z/27)"73. So, K is a Pélya field if and only if ¢ = 3. Hence

e We suppose (d;,d;) = (m;,m;) = (1,1) (mod 4), then by Williams [12] we have dy =
(Imyms)?. Thence, K is a Pélya field if and only if d; = lp; and d; = Ip, with [ =p =1
(mod 4).

e Now we suppose (d;,d;) = (m;,m;) = (1,2) (mod 4), then dr = (4dlmyms)?. So, K is
a Pélya field if and only if d; = lpy, d; =2l with [ = p.

(ii) When Ne; = Neg = —1 and Neg = 1, then Po(K) ~ (Z/27Z)"3. Thus, K is a Pélya
field if and only if ¢ = 3. When (d;,d;) = (m;,m;) = (1,1) (mod 4), we get the item 1, and
when (d;,d;) = (m;,m;) = (1,2) (mod 4), we have the item 2.

(iii) When Ne; # Ne; = Nes = —1 with ¢ # j € {1,2}, then Po(K) ~ (Z/2Z)" 3.
Hence, K is a Pélya field if and only if ¢t = 3. When (d;,d;) = (m;, m;) = (1,1) (mod 4), we
get the item 1 and when (d;,d;) = (m;,m;) = (1,2) (mod 4), we obtain 2. And then when
(dj,d;) = (mj,m;) = (1,2) (mod 4), we have 3. O

In the following theorem, we give the Pélya fields of K in the case of Ne; = Neg # Neg =
—1. We mention here that ey # 4.

Theorem 4.2. Let K = Q(\/El, \/82) such that dy = lmy and dy = lms are square-free
integers with | > 1 and ged(my,ma) =1 and put j # k € {1,2}. Let Ne; = Neg # Neg = —1.

We suppose \/eie; € K. Then, K is a Pdlya field if and only if one of the following
assertions is satisfied:

1. d; =Ilp1, d; = lpy, where | = p,

2. d; =lp1, dj =2l, where | =p.

Otherwise, i. e., \/eres € K. Then, K s a Polya field if and only if one of the following
assertions is satisfied:

1. d; = lpips, dj = lps, where | = p,

2. d; = lpipa, d;j =21, where | = p,

3. d;y = lp1, dj = 2lpy, where | = p,

4. di =1Ipy, dj =lpy, where | =pp',

<

5. d; =lpy d; =2l where | =pp'.

P roof By the Theorem 3.1, we have the following cases.

(i) When Ne; = Ney # Nes = —1 and (/163 € K, then Po(K) ~ (Z/2Z)"~* where t is
the number of prime divisors of dx. So, K is a Pdlya field if and only if we have either the
item 1, or 2.

(i) When Ne; = Ney # Neg = —1 and (/€163 ¢ K. Then, Po(K) ~ E;_4. So, K is a
Pdélya field if and only if t = 4.

e When (d;,d;) = (1,1) (mod 4). So, K is a Pélya field if and only if d; = Ipip> d; = lps
such that [ = p. When [ = pp/, we get the item 4.

e Now when (d;,d;) = (1,2) (mod 4), we get the other items of the theorem. O

Let K = Q(\Vdy,Vdy) , di = Im; and dy = Imy such that Ne; # Ne; = Neg = 1, for
i # 7 € {1,2}. Note that in this case we can have either e; =4 (since we can have (d;,ds) =
(2,3),(3,2) (mod 4)) or ey # 4 (since we can have (dy,d2) = (1,1),(1,2),(2,1),(1,3),(3,1)
(mod 4) ) note that (dy,ds) # (3,3) (mod 4) since Ne; # Nej, with ¢ # j € {1,2}. In the
following theorem we give the Pélya fields of K where e; # 4. As we have N¢;# Nej= Neg= 1,
for i # 5 € {1,2} and [ dividing d; and ds, then the divisors of [ are =1 (mod 4).
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Theorem 4.3. Let K = Q(\/El,\/ag) such that dy = lmy and dy = Ims are square-free
integers with | > 1 and gcd(my,me) = 1. Let Ne; # Nej = Nes =1, for i # j € {1,2} such
that e # 4.

Assuming \/fe€je3 € K, j=1,2. So, K is a Pdlya field if and only if one of the following
assertions is satisfied:

1. di=lpy, d; = Ilpo,

2. di =lIp, dj =2l

3. dj =lpy, d; =2I,

where in the three items above we have [ = p.

Otherwise. Then, K 1is a Polya field if and only if one of the following assertions is satisfied:
d; = lpip2 and d; = lps,

d; =Ipy and dj = Ipaps or lqiqe,
d; = Ipip2 and d; = 2,

d; = lpy and d; = 2lp, or 2lg,
d; = lpips or lqiqz and d; = 2,
d; = lp1 and d; = 2lp,,

NS T o =

di = lpl cmd dj = lql,
where in the items above we have [ = p,

o

d; = lpy and d; = lp,,
9. di=1Ipy and d; = 2,

10. dj =lpy and d; = 21,

such that 1 = pp'.

Proof We know that, when N¢; # Nej = Neg = 1 such that ey # 4, for i # j €
{1,2}, then we have (d;,d;) = (1,1),(1,2),(2,1),(1,3) (mod 4). By Theorem 3.1, we have the
following cases.

(i) When Ne; # Nej = Neg = 1, and /g3 € K such that ey # 4 with @ # j € {1,2}.
Then, Po(K) ~ (Z/2Z)"73. So, K is a Pdlya field if and only if ¢ = 3. Therefore, when
(di,d;) = (1,1) (mod 4) we get the item 1 and when (d;,d;) = (1,2) (mod 4) we have the
item 2, lastly when (d;,d;) = (1,2) (mod 4) we obtain the item 3.

(ii) When Ne; # Nej = Nez = 1 and | /gje3 ¢ K such that ey # 4 with @ # j € {1,2}.
Then, Po(K) =~ (Z/27)"=*. Thence, K is a Pélya field if and only if ¢ = 4.

e When (d;,d;) = (1,1) (mod 4), then dx = (Imymsy)*. When [ = p, so K is a Pdlya
field if and only if either d;= lp1ps, dj= lps or the item 2. When [= pp’, we have the item 8.

e We suppose that (d;,d;) = (1,2) (mod 4). If { =p thus K is a Pélya field if and only
if we have either the item 3, or 4. When [ = pp/, we get the item 9.

e When (d;,d;) = (1,2) (mod 4). When [ = p, we have either the item 5, or 6. And when
[ = pp/, we obtain the item 10.

e Lastly, when (d;,d;) = (1,3) (mod 4), we get the item 7. O

Consider K = Q(v/dy,V/dy), dy = Imy and dy = lmy such that Ne; = Ne; = Neg = 1.
Under the condition of the norm, we can have either ey # 4 or ey = 4. In the following
theorem we give the Pélya fields of K where Ne; = Ne; = Nez = 1 and /616, € K and
Vées € K and (Jejes € K (i e, Ex = (—1, /€162, /€263, \/€1€3) ) such that ey # 4. As we
have Ne; = Neg = Neg =1, so [ can be =1 (mod 4) or =3 (mod 4).
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Theorem 4.4. Let K = Q(\/El,\/ag) such that dy = Imy and dy = Imy are square-free
integers with 1 > 1 and ged(mi,my) = 1. Let Ne; = Ne; = Nez = 1 and \/e16; € K and
Vees € K and \/eres € K such that ey # 4. Then, K is a Polya field if and only if one of
the following assertions is satisfied:

1. d; = lp1, dj = lpy, where | = p,

2. d; =lq1, dj =lga, where | =g,

3. d;y = lp1, dj =2l, where | = p,

4. dj =lq, dy =2l, with | = q.

Proof As we have Ne; = Ne; = Nes = 1 and /ee; € K and /e3¢5 € K and
Veéies € K such that ey # 4, so by Theorem 3.1 we have Po(K) ~ (Z/2Z)'"*. Hence, K is
a Poélya field if and only if ¢ = 3. Therefore, when (d;,d;) = (1,1) (mod 4), we know that
dx = (Imimsy)? and thus we get the items 1, 2. And when (d;,d;) = (1,2) (mod 4), we have
dx = (4lmymsy)? and thus we get the items 3, 4. When (d;,d;) = (1,3) or (3,3) (mod 4),
i#j=1,2 s0 dg = (4lmimsy)? and since t = 3 we find that these cases can not occur. ]

Let K = @(\/81, \/32), dy = Im; and dy = lms. In the two following theorems, we give
the Pdlya fields of K such that Ne; = Nes = Neg = 1 and ey # 4. We recall that since
Ne; = Neg = Neg =1, so | can be =1 (mod 4) or =3 (mod 4).

Theorem 4.5. Let K = Q(\/El,\/EQ) such that dy = Imy and dy = Ims are square-free
integers with | > 1 and ged(my,mg) =1 and put j # k € {1,2}. Let Ne; = Neg = Neg =1

and \/e1e5 € K, \Jeze3 € K, Je1e3 € K or \[ejeses € K such that es # 4. Then, K is a
Polya field if and only if one of the following assertions is satisfied:

1. di = lpips or lgigx and d; = lps,
2. di = lpips or lqiqa and d; = 21,

co

d; = lpy and d; = 2lp, or 2lg,

~

di = lpl and dj = lql,

Ra

di = lql and dj = ZQQ,
where in the items above | = p,

S

d; = lpy and d; = lp,,
7. d; =Ipy and d; = 21,
where | = pp'.

8. di =lq1 and d; = lpgs,
9. di =lq and dj = lp,
10. d; = Ilp1q1 and d; = 2,
11. d; =gy and d; = 2lp or 2lq,,

12. d; = Ip1 and d; = lps,
such that | = q,

13. d; = lp1 and d; = lps,

14. d; =1Ipy and d; = 21,
where | = qq,

15. di =g and dj = lgo,

16. d; = lg and d; = 21,

where | = pq.
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P roof. According to the Theorem 3.1, we have when Ne; = Nes = Neg = 1 and (/e1e5 €
K, \Jee; € K, \Jere3 € K or \Jeezes € K such that ey # 4. Then, Po(K) ~ (Z/2Z)"*.
Hence, K is a Pdlya field if and only if ¢ = 4.

We suppose that (d;,d;) = (m;,m;) = (1,1) (mod 4), then we have dx = (Imymz)?. When
l = p, then K is a Pdlya field if and only if either d; = lp1p, or lqig> and d; = Ips. When
l=pp', then d; =1lpy, dj =Ipy. If I =q¢, so d; =1Ip1, dj =Ips.

When (d;,d;) = (1,1) (mod 4), (m;,m;) = (3,3) (mod 4). So, we get that d; = lgi,
d; = lpgs such that [ =¢q. When [ = pg, so we have d; = lq1, d; = lqgs.

Assuming (d;,d;) = (1,2) (mod 4), then dx = (4lmims)?.

e When [ =p and m; =2, then d; = lp1ps or lqiqa, d; = 2l. Now for m; = 2p,, 2¢2 so
d; = lp1, dj = 2lps, 2lq.

o We assume [ = pp/, so d; = Ilp;, d;j =2l. When [ = qq’, we get d; = Ip;, d; =2l. And
when [ = pg, we obtain d; = lq;, d; = 2l.

e When [ = ¢ and m; = 2, then d;, = Ip1q1, d; = 2l. For m; = 2p, 2q2, so d; = lq,
d; = 2lp, 2lgs.

We suppose that (d;,d;) = (1,3) (mod 4), then dy = (4lmymy)*. For [ = p, then d; =
Ipr dj =lqi. When [ =gq, so d; =1q d; =Ip:.

When (d;,d;) = (3,3) (mod 4), i # j € {1,2} then dy = (4lmyms)*. When [ = p, thus
di =g dj =lg. If | =¢q, so d; = lpy, d;j = lps. As we have ey # 4, then (d;,d;) not
congruent to (2,3) (mod 4) for i # j =1,2. O

Example 4.1. Let K = Q(/7-5,v/7-11). We have Ne; = Nes = Neg = 1, and
Vées € K and ey # 4 (se Example 3.1). We have | =7 =3 (mod 4) and 5 =1 (mod 4)
and 11 =3 (mod 4). So by the item 9 of the theorem above, we get that K is a Pdlya field.

Theorem 4.6. Let K = Q(\/al, \/32) such that dy = Imy and dy = lms are square-free
integers with | > 1 and ged(my,mq) = 1 and put j # k € {1,2}. Assuming Ne; = Ney =

Nes =1 and \Je16s ¢ K, \Jeaes € K, \Je1e3 ¢ K and \/e1ésez ¢ K such that ey # 4. Then,
K is a Polya field if and only if one of the following assertions is satisfied:

1. d; = Ipipy or lqiqe and d; = Ip3ps,

2. di=lpip> or lqiqe and dj = lgsqa,

3. di = Ipipaps or lqigepr and d; = lpj,
4. d;i = Ipipaps or lgigopr and d; = 21,

5. di = lpips or lgigs and d; = 2lp,,

6. di =Ipips or lgigs and dj = 2lgs,

7. di = lps and dj = 2lp1ps, 2Ip1q1, 21q1e,
8. d;=Ipiq1 and d; = lgs,

9. di =lq1q2 and d; = lgs,

10. d; = lpips and d; = lq,

~
~

. dy =Ip1 and d; = lpsq,
where in the items above we have | = p,
12. d; = lp1q1 and dj = lpaqo,
13. d; =lq1 and d; = Ip1p2qe, 1q2q3q4,
14. di =Ipip2 and d; = lps,
15. di = lq1q2 and d; = lpx,
16. d; = lqipr and d; = lps,
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17. d; = lq and d; = Ipip2, lq1qo,
18. d; = Ip1p2qu, lqiqeqs and d; = 21,
19. dz = lplql and dj = 2lp2, 2ZQQ,

20. di =lq1 and dj = 2Ipip2, 2Ip1q2, 2lq2qs,
where | = q,
21. d; =lq: and d; = g,
22. d; = Ipy and d; = lq,
23. d; =1Ipy and dj = Ipaps, lq1q2,
24. d; = lpy and d; = 2lp,, 2lq;,
25. d; = lpip2, lqiqe and d; = 21,
where | = pp/,
26. d; =lIpy and d; = lpaps, lq1q2,
27. d; = lpy and d; = 2lp,, 2lq;,
28. d; = lpip2, lq1qe and d; = 21,
29. d; = lq1 and d; = g,
30. d; = Ilpy and d; = lq,
where | = qq,
31. di = Ip1qy and d; = lqo,
32. d; = lpy and dj = Ip,,
33. d; = lq1 and d; = lp,
34. d; = lprqy and dj = 21,
35. d; =lq1 and d; = 2lqq, 21lp;,
such that | = pq,
36. d; = lpy and d; = Ip,,
37 d; = lpy and d; = 21,
such that | = pp'p},
38. d; = lpy and d; = Ip,,
39. d; = lpy and d; = 21,
where | = qq¢'p,
40. di =lq1 and dj = lqo,
41. di =lq1 and d; = 21,
where | = pp'q or q4'q;.
Proof. According to the Theorem 3.1, we have Po(K) ~ (Z/27)"5. Thence, K is a
Pélya field if and only if ¢ = 5.
We suppose (d;,d;) = (m;,m;) = (1,1) (mod 4).
e When [ = p. Hence, we have either d; = Ipips, lqiq2, d; = Ipsps or d; = Ipips, lq1qo,
dj = lq3qs or d; = lp1paps, lq1qapr, dj = Ip}.
If | =pp/, then d; =Ip1, d; = lpsps, lq1go.
When [ = qq’, so d; = lp1, dj = lpops, lq1¢e.
If | =pp'p), therefore d; =Ip1, d; = lp..
Now for [ = q¢'p, thus d; = lpy, d; = Ilp,.
When (d;,d;) = (1,1) (mod 4), (m;,m;) = (3,3) (mod 4).
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e When [ = ¢, so we get either d; = Ip1q1, dj = lpage or d; = lq1, dj = Ipip2q2, 1g2q3a.
If [ = pg, then we have d; = Ipiqi, d; = lge. If | = pp'q or qq'q}, we get that d; = lqi,
d; = lga.

Assuming (d;,d;) = (1,2) (mod 4), then dx = (4lmyms)*.

e When [ = p and m; = 2. So, K is a Pdlya field if and only if d; = Ipipaps, lq1qepa,
d; = 2l. For m; = 2p,, 2q2 we get either d; = Ipips, lqigs, d; = 2lpy or d; = Ipips, lq1gs,
d; = 2lgs. For m; = 2p1ps, 2p1qi, 2q1q2, we obtain d; = lps, d; = 2lpips2, 2lp1q1, 2lq1qo.

e We assume [ = pp’, then we get that either d; = Ip1, d; = 2lps, 2lgy or d; = Ip1p2, g1,
d; = 2l.

e When [ = ¢q¢, then we get either d; = lpy, d; = 2lps, 2lqy or d; = Ipipa, lq1ge, dj = 2L

o If [ =pp'p), then d;, =Ip,, d; =2l

e When [ = ¢q¢'p, thence, d; = Ilp;, d; =2l.

When [ = ¢ and m; = 2, so d; = Ipip2qu, lq1qaqs, d; = 21. For m; = 2p,, 2q2, we
get that d; = Ipiqn and d; = 2Ips, 2lqa. For m; = 2pips, 2p1q1, 2q1q2 so d; = lg; and
dj = 2lp1p2, 2lp1q2, 21q2qs.

e We assume [ = pg, then we get that either d; = Ip1qi, d; = 2l or d; = lq1, d;j =
2lqs, 2lp;.

e When [ = gpp’ or ¢¢'¢}, so d; =lq:, d; =2l.

We suppose that (d;,d;) = (3,3) (mod 4), then dr = (4lmims)?.

e When [ = p, thence d; = lp1q1, d; =1g2. When [ =pp’, we get d; =lg1, d; = lg.

e For [ =¢q, so di = Ipips, dj =lps or d; = lqiqe, d; = Ip1. If | = q¢/, then we get
d; = lq1, dj = lgo.

e When [ = pg, we get that d; = Ip;, d; = Ips.

We assume that (d;,d;) = (1,3) (mod 4). So, dx = (4lmyms)*.

e We put [ = p, thus we have either d; = lqiq2, d;j = lgz or d; = lpip2, dj = lq1 or
d; =1lp1, dj =Ilpaq;. When [ =pp', we get d; =Ip1, dj =lg.

o Welet [ =g, so d;=Iqp1, d;j =Ipy or d; =lq1, dj =Ip1p2, l1qo. If | = qq, then we
get d; = lp1, d;j =lq.

e When [ =pq, then d;, =lq, d; = Ilp:. n
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