Том 24, № 128

© Grosheva L.I., 2019 DOI 10.20310/2686-9667-2019-24-128-368-375 УДК 517.98

Decomposition of boundary representations on the Lobachevsky plane associated with linear bundles

Larisa I. GROSHEVA

Derzhavin Tambov State University 33 Internatsionalnaya St., Tambov 392000, Russian Federation

Разложение граничных представлений на плоскости Лобачевского в сечениях линейных расслоений

Лариса Игоревна ГРОШЕВА

ФГБОУ ВО «Тамбовский государственный университет им. Г.Р. Державина» 392000, Российская Федерация, г. Тамбов, ул. Интернациональная, 33

Abstract. Earlier we described canonical (labelled by $\lambda \in \mathbb{C}$) and accompanying boundary representations of the group $G = \mathrm{SU}(1,1)$ on the Lobachevsky plane D in sections of linear bundles and decomposed canonical representations into irreducible ones. Now we decompose representations acting on distributions concentrated at the boundary of D. In the generic case $2\lambda \notin \mathbb{N}$ they are diagonalizable, in the exceptional case Jordan blocks appear.

Keywords: Lobachevsky plane; canonical representations; distributions; boundary representations; Poisson transforms

For citation: Grosheva L.I. Razlozhenie granichnyh predstavlenij na ploskosti Lobachevskogo v secheniyah linejnyh rassloenij [Decomposition of boundary representations on the Lobachevsky plane associated with linear bundles]. Vestnik rossiyskikh universitetov. Matematika – Russian Universities Reports. Mathematics, 2019, vol. 24, no. 128, pp. 368–375. DOI 10.20310/2686-9667-2019-24-128-368-375.

Аннотация. Ранее мы описали канонические и граничные представления группы G = SU(1, 1) на плоскости Лобачевского в сечениях линейных расслоений (они нумеруются комплексными числами λ) и разложили канонические представления на неприводимые. Сейчас мы разлагаем представления, действующие в обобщенных функциях, сосредоточенных на границе. В общем случае $2\lambda \notin \mathbb{N}$ они диагонализуемы, в исключительном случае появляются жордановы клетки.

Ключевые слова: плоскость Лобачевского; канонические представления; обобщенные функции; граничные представления; преобразования Пуассона

Для цитирования: Грошева Л.И. Разложение граничных представлений на плоскости Лобачевского в сечениях линейных расслоений // Вестник российских университетов. Математика. 2019. Т. 24. № 128. С. 368–375. DOI 10.20310/2686-9667-2019-24-128-368-375. (In Engl., Abstr. in Russian)

In our work [3] we described canonical and boundary representations of the group G = SU(1, 1) on the Lobachevsky plane D in sections of linear bundles on D. Then in [4] we decomposed *canonical* representations into irreducible ones. Now we continue [4] and decompose *boundary* representations. We lean on works [1,2].

1. The Lobachevsky plane

The Lobachevsky plane is the unit disk $D : z\overline{z} < 1$ on the complex plane with the linear-fractional action of G:

$$z \mapsto z \cdot g = \frac{az + \overline{b}}{bz + \overline{a}}, \quad g = \left(\begin{array}{cc} a & b \\ \overline{b} & \overline{a} \end{array}\right), \quad a\overline{a} - b\overline{b} = 1.$$

The boundary S of D is the circle $z\overline{z} = 1$, it consists of points $s = \exp i\alpha$, the measure ds on S is $d\alpha$. Let \overline{D} be the closure of $D: \overline{D} = D \cup S$. Let

$$p = 1 - z\overline{z},$$

so that $D = \{p > 0\}$ and $S = \{p = 0\}$. The stabilizer of the point z = 0 is the maximal compact subgroup K = U(1) consisting of diagonal matrices:

$$k = \left(\begin{array}{cc} a & 0\\ 0 & \overline{a} \end{array}\right) , \quad a\overline{a} = 1,$$

so that D = G/K. The Euclidean measure dxdy on D is (1/2) dp ds, a G-invariant measure $d\mu(z)$ on D is

$$d\mu(z) = p^{-2} dx dy.$$

If M is a manifold, then $\mathcal{D}(M)$ denotes the space of compactly supported infinitely differentiable \mathbb{C} -valued functions on M, with a usual topology, and $\mathcal{D}'(M)$ denotes the space of distributions on M – of antilinear continuous functionals on $\mathcal{D}(M)$.

We use the notation

$$\mathbb{N} = \{0, 1, 2, \ldots\}.$$

Recall principal non-unitary series representations of G trivial on the center, see also [4]. Let $\sigma \in \mathbb{C}$. The representation T_{σ} acts on the space $\mathcal{D}(S)$ by

$$(T_{\sigma}(g)\varphi)(s) = \varphi(s \cdot g)|bs + \overline{a}|^{2\sigma}$$

The inner product from $L^2(S, ds)$:

$$\langle \psi, \varphi \rangle_S = \int_S \psi(s) \,\overline{\varphi(s)} \, ds$$

is invariant with respect to the pair $(T_{\sigma}, T_{-\overline{\sigma}-1})$.

If $\sigma \notin \mathbb{Z}$, then T_{σ} is irreducible and equivalent to $T_{-\sigma-1}$ (for $\sigma \in \mathbb{Z}$ there is a "partial equivalence"). For $\sigma = v \in \mathbb{N}$ the representation T_v has an invariant irreducible subspace E_v spanned by $\exp ir\alpha$, $r = -v, -v + 1, \dots, v$.

A basis of the Lie algebra \mathfrak{g} of G is

$$L_0 = \begin{pmatrix} i/2 & 0 \\ 0 & -i/2 \end{pmatrix}, \quad L_1 = \begin{pmatrix} 0 & -i/2 \\ i/2 & 0 \end{pmatrix}, \quad L_2 = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}.$$

We also use their linear combinations (they belong to the complexification of \mathfrak{g}):

$$L_{+} = L_{2} + iL_{1} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad L_{-} = L_{2} - iL_{1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Denote by $\Delta_{\mathfrak{g}}$ the twice Casimir element of the universal enveloping algebra $\operatorname{Env}(\mathfrak{g})$ of \mathfrak{g} :

$$\Delta_{\mathfrak{g}} = -L_0^2 + L_1^2 + L_2^2.$$

The representation T_{σ} of \mathfrak{g} assigns to L_0 , L_+ , L_- the following operators:

$$T_{\sigma}(L_0) = \frac{d}{d\alpha},$$

$$T_{\sigma}(L_+) = e^{i\alpha} \left(\sigma + i\frac{d}{d\alpha}\right),$$

$$T_{\sigma}(L_-) = e^{-i\alpha} \left(\sigma - i\frac{d}{d\alpha}\right),$$

$$T_{\sigma}(\Delta_{\mathfrak{g}}) = \sigma(\sigma + 1).$$

2. Canonical representations

Let $\mathcal{D}(\overline{D})$ be the space of restrictions to \overline{D} of functions from $\mathcal{D}(\mathbb{C})$ with the induced topology, and by $\mathcal{D}'(\overline{D})$ the space of distributions on \mathbb{C} with supports in \overline{D} . Consider the inner product with respect to the Lebesgue measure on D:

$$\langle F, f \rangle_D = \int_D F(z)\overline{f(z)}dxdy, \quad z = x + iy.$$
 (2.1)

The space $\mathcal{D}(\overline{D})$ can be embedded into $\mathcal{D}'(\overline{D})$ by assigning to $h \in \mathcal{D}(\overline{D})$ the functional $f \mapsto \langle h, f \rangle_D, f \in \mathcal{D}(\overline{D}).$

We shall use denotation:

$$z^{\mu,m} = |z|^{\mu} \left(\frac{z}{|z|}\right)^m, \quad \mu \in \mathbb{C}, \quad m \in \mathbb{Z}.$$

Let $\lambda \in \mathbb{C}$. We define the *canonical representation* $R_{\lambda,m}$ of the group G associated with a character of K as follows:

$$(R_{\lambda,m}(g)f)(z) = f(z \cdot g) (bz + \overline{a})^{-2\lambda - 4,2m},$$

it acts on the space $\mathcal{D}(\overline{D})$.

The inner product (2.1) is invariant with respect to the pair $(R_{\lambda,m}, R_{-\overline{\lambda}-2,m})$:

$$\langle R_{\lambda,m}(g)f, h \rangle_D = \langle f, R_{-\overline{\lambda}-2,m}(g^{-1})h \rangle_D, g \in G.$$
 (2.2)

The formula (2.2) allows to extend the representation $R_{\lambda,m}$ to the space $\mathcal{D}'(\overline{D})$ of distributions on \overline{D} .

Here are formulae for basic elements of g in variables p and α :

$$R_{\lambda,m}(L_0) = \frac{\partial}{\partial \alpha} - im,$$

$$R_{\lambda,m}(L_{\pm}) = e^{\pm i\alpha} \left\{ -rp \frac{\partial}{\partial p} \pm \frac{1}{2} (r + r^{-1}) i \frac{\partial}{\partial \alpha} - (\lambda + 2 \mp m) r \right\}.$$
 (2.3)

.

Let us also write the operator corresponding to $\Delta_{\mathfrak{g}}$:

$$R_{\lambda,m}(\Delta_{\mathfrak{g}}) = (p^3 - p^2)\frac{\partial^2}{\partial p^2} + \left[(2\lambda + 4)p - (2\lambda + 5)p^2\right]\frac{\partial}{\partial p} + imp \ \frac{\partial}{\partial \alpha} + \frac{1}{4} \cdot \frac{p^2}{1 - p} \ \frac{\partial^2}{\partial \alpha^2} +$$

+
$$[(\lambda + 2)(\lambda + 1) - ((\lambda + 2)^2 - m^2)p].$$
 (2.4)

In (2.4) one has to use the binomial expansions ($r = (1 - p)^{1/2}$):

$$r = \sum_{n=0}^{\infty} {\binom{1/2}{n}} (-1)^n p^n, \qquad (2.5)$$

$$r^{-1} = \sum_{n=0}^{\infty} {\binom{-1/2}{n}} (-1)^n p^n, \qquad (2.6)$$

$$\frac{1}{2}(r+r^{-1}) = \sum_{n=0}^{\infty} {\binom{1/2}{n}} (1-n)(-1)^n p^n.$$
(2.7)

Applying these formulae to distributions ζ , we have to keep in mind the following:

$$p^n \delta^{(k)}(p) = (-1)^n \frac{k!}{(k-n)!} \delta^{(k-n)}(p).$$

3. Boundary representations

Canonical representations $R_{\lambda,m}$ generate two boundary representations $L_{\lambda,m}$ and $M_{\lambda,m}$. For simplicity, in this paper we restrict ourselves to the first one. It acts on distributions in $\mathcal{D}'(D)$ concentrated at S.

Consider distributions of the following form:

$$\zeta = \varphi(s)\,\delta^{(k)}(p),$$

where $\varphi \in \mathcal{D}(S)$ and $\delta(p)$ is the Dirac delta function on the real line (being a continuous linear functional on $\mathcal{D}(\mathbb{R})$) and $\delta^{(k)}(p)$ its k-th derivative. The space of these distributions will be denoted by $\Delta_k(\overline{D})$. Define also

$$\Sigma_k(\overline{D}) = \Delta_0(\overline{D}) + \Delta_1(\overline{D}) + \dots + \Delta_k(\overline{D}),$$

so that a distribution ζ in $\Sigma_k(\overline{D})$ is a linear combination

$$\zeta = \varphi_0(s)\,\delta(p) + \varphi_1(s)\,\delta'(p) + \dots + \varphi_k(s)\,\delta^{(k)}(p).$$

We get a filtration:

$$\Delta_0(\overline{D}) = \Sigma_0(\overline{D}) \subset \Sigma_1(\overline{D}) \subset \Sigma_2(\overline{D}) \subset \dots$$

Let $\Sigma(\overline{D})$ denote the union of all $\Sigma_k(\overline{D})$.

The canonical representation $R_{\lambda,m}$ acting on $\mathcal{D}'(\overline{D})$, preserves the space $\Sigma(\overline{D})$ and the filtration (2.3). The boundary representation $L_{\lambda,m}$ is the restriction of $R_{\lambda,m}$ to $\Sigma(\overline{D})$.

4. Poisson transform

Let $\lambda, \sigma \in \mathbb{C}$ and $m \in \mathbb{Z}$. We define the Poisson transform associated with the canonical representation $R_{\lambda,m}$ as the map $P_{\lambda,\sigma}^{(m)} : \mathcal{D}(S) \to C^{\infty}(D)$ by the following formula

$$\left(P_{\lambda,\sigma}^{(m)}\varphi\right)(z) = p^{-\lambda-\sigma-2} \int_{S} (1-s\overline{z})^{2\sigma,-2m} s^{m} \varphi(s) \, ds.$$

The Poisson transform $P_{\lambda,\sigma}^{(m)}$ intertwines the representations $T_{-\sigma-1}$ and the canonical representation $R_{\lambda,m}$:

$$R_{\lambda,m}(g) P_{\lambda,\sigma}^{(m)} = P_{\lambda,\sigma}^{(m)} T_{-\sigma-1}(g) \quad (g \in G).$$

The Poisson transform $P_{\lambda,\sigma}^{(m)}$ is meromorphic in σ , and has poles at the points

$$\sigma = \lambda - k, \quad \sigma = -\lambda - 1 + l \quad (k, l \in \mathbb{N}).$$
(4.1)

All poles are simple except in the case when the two sequences (4.1) have a non-empty intersection and the pole belongs to this intersection. This happens when $2\lambda + 1 \in \mathbb{N}$ and $0 \leq k, l \leq 2\lambda + 1, k + l = 2\lambda + 1$. In this case the pole μ is of the second order. Let us write down the principal part of the Laurent series of $P_{\lambda,\sigma}^{(m)}$ at the poles μ of the first order:

$$P_{\lambda,\sigma}^{(m)} = \frac{\widehat{P}_{\lambda,\mu}^{(m)}}{\sigma - \mu} + \cdots$$

The residue intertwines $T_{-\mu-1}$ with $R_{\lambda,m}$. Let us write it explicitly. We set

$$V_{\sigma,m,n}(p) = (1-p)^{(m+n)/2} F(\sigma + 1 + m, \sigma + 1 + n; 2\sigma + 2; p),$$

where F is the Gauss hypergeometric function. Expand V in powers of p:

$$V_{\sigma,m,n}(p) = \sum_{k=0}^{\infty} w_{\sigma,k}^{(m)}(n) p^k,$$

here $w_{\sigma,k}^{(m)}$ are polynomials in *n* of degree *k*. The coefficients of these polynomials are rational functions of σ with simple poles. We set

$$W_{\sigma,k}^{(m)} = w_{\sigma,k}^{(m)} \left(\frac{1}{i} \frac{d}{d\alpha}\right).$$

If a pole μ belongs only to one of the sequences (4.1), then it is simple. In particular,

$$\widehat{P}_{\lambda,\lambda-k}^{(m)} = (-1)^{k+m} \frac{1}{k!} a_{-m}(\lambda-k) \,\xi_{\lambda,k}^{(m)},$$

where

$$a_n(\sigma) = 2\pi \, (-1)^n \, \frac{\Gamma(-2\sigma - 1)}{\Gamma(-\sigma + n) \, \Gamma(-\sigma - n)}$$

and $\xi_{\lambda,k}^{(m)}$ is the following operator $\mathcal{D}(S) \to \Sigma_k(\overline{D})$:

$$\xi_{\lambda,k}^{(m)} \varphi = s^m \sum_{n=0}^k (-1)^n \frac{k!}{(k-n)!} \left(W_{\lambda-k,n}^{(m)} \varphi \right)(s) \, \delta^{(k-n)}(p).$$

The operator $\xi_{\lambda,k}^{(m)}$ is meromorphic in λ . For fixed k = 1, 2... it has k poles (simple) at the points $\lambda = k - 1, k - 3/2, k - 2, ..., (k - 1)/2$. It intertwines $T_{-\lambda-1+k}$ with $L_{\lambda,m}$ (restricted to $\Sigma_k(\overline{D})$).

Let us write three first operators:

$$\begin{split} \xi_{\lambda,0}^{(m)} \varphi &= s^m \varphi \cdot \delta(p), \\ \xi_{\lambda,1}^{(m)} \varphi &= s^m \Big\{ \varphi \cdot \delta(p) - \frac{1}{2\lambda} (\lambda^2 \varphi - m \cdot i\varphi') \cdot \delta'(p) \Big\}, \\ \xi_{\lambda,2}^{(m)} \varphi &= s^m \Big\{ \varphi \cdot \delta(p) - \frac{1}{\lambda - 1} \big((\lambda - 1)^2 \varphi - m \cdot i\varphi' \big) \cdot \delta'(p) \\ &+ \frac{1}{4(\lambda - 1)(2\lambda - 1)} \Big\{ \left[(\lambda - 1)^2 \lambda^2 + m^2 \right] \varphi \\ &- 2(\lambda - 1)(2\lambda - 1) m \cdot i\varphi' - \left[(\lambda - 1)^2 + 2m^2 \right] \varphi'' \Big\} \cdot \delta''(p) \Big\}. \end{split}$$

5. Decomposition of boundary representations

Theorem 5.1. The representation $L_{\lambda,m}$ is equivalent to a upper triangular matrix with diagonal $T_{-\lambda-1}, T_{-\lambda}, T_{-\lambda+1}, \ldots$

P r o o f. The formulae (2.3) and (2.5)–(2.7) show that operators $R_{\lambda,m}(L^{\pm})$ move subspaces $\Delta_k(\overline{D})$ to $\Sigma_k(\overline{D})$. Also these formulae show that the operator $R_{\lambda,m}(X)$ where $X \in \mathfrak{g}$ moves a distribution $s^m \varphi(s) \delta^{(k)}(p)$ in $\Delta_k(\overline{D})$ to the distribution $s^m(T_{-\lambda-1+k}(X)\varphi)(s) \delta^{(k)}(p) + \dots$ in $\Sigma_k(\overline{D})$.

Let $V_{\lambda,k}^{(m)}$ be the image of $\xi_{\lambda,k}^{(m)}$. This space is contained in $\Sigma_k(\overline{D})$ and its projection to $\Delta_k(\overline{D})$ is the whole $\Delta_k(\overline{D})$. It gives:

Theorem 5.2. In the generic case $2\lambda \notin \mathbb{N}$ the boundary representation $L_{\lambda,m}$ is diagonalizable which means that $\Sigma(\overline{D})$ decomposes into the direct sum of subspaces $V_{\lambda,k}^{(m)}$, $k \in \mathbb{N}$, the restriction of $L_{\lambda,m}$ to $V_{\lambda,k}^{(m)}$ is equivalent to $T_{-\lambda-1+k}$ (by $\xi_{\lambda,k}$), so that $L_{\lambda,m}$ is the direct sum of the $T_{-\lambda-1+k}$ ($k \in \mathbb{N}$).

Now let $\lambda \in (1/2)\mathbb{N}$. This number λ is a pole (of the first order) of $\xi_{\tau,k}^{(m)}$ in τ for $k \in \mathbb{N}$ such that $\lambda + 1 \leq k \leq 2\lambda + 1$. For example, if $\lambda = 0$, then k = 1; if $\lambda = 1/2$, then k = 2; if $\lambda = 1$, then k = 2,3; if $\lambda = 3/2$, then k = 3,4. For these λ the spaces $V_{\lambda,k}^{(m)}$ are defined for all $k \in \mathbb{N}$ such that $k < \lambda + 1$ and $2\lambda + 1 < k$, for the others these spaces are absent. Let us write down the Laurent expansion of $\xi_{\tau,k}^{(m)}$ at $\tau = \lambda$:

$$\xi_{\tau,k}^{(m)} = \frac{\widehat{\xi}_{\lambda,k}^{(m)}}{\tau - \lambda} + \mathring{\xi}_{\lambda,k}^{(m)} + \dots$$

For the indicated k we define the spaces $\widehat{V}_{\lambda,k}^{(m)}$ and $\mathring{V}_{\lambda,k}^{(m)}$ as the images of the operators $\widehat{\xi}_{\lambda,k}^{(m)}$ and $\mathring{\xi}_{\lambda,k}^{(m)}$ respectively. The space $\widehat{V}_{\lambda,k}^{(m)}$ is isomorphic to $V_{\lambda,l}^{(m)}$ where $l + k = 2\lambda + 1$, namely there is a relation $\mathring{\xi}_{\lambda,k}^{(m)}(\varphi) = \xi_{\lambda,l}^{(m)}(\psi)$ where ψ is obtained from φ by means of some operator. Therefore the operator $\widehat{\xi}_{\lambda,k}^{(m)}$ intertwines $T_{-\lambda-1+l}$ with $L_{\lambda,m}$, notice that it vanishes on E_l . The space $\mathring{V}_{\lambda,k}^{(m)}$ has the full projection to $\Delta_k(\overline{D})$.

On the pair $\widehat{V}_{\lambda,k}^{(m)}$, $\mathring{V}_{\lambda,k}^{(m)}$ the representation $L_{\lambda,m}$ is the block

$$\left(\begin{array}{cc} T_{-\lambda-1+l} & * \\ 0 & T_{-\lambda-1+k} \end{array}\right).$$

Since $-\lambda - 1 + l = -(-\lambda - 1 + k) - 1$, representations $T_{-\lambda - 1 + l}$ and $T_{-\lambda - 1 + k}$ are isomorphic, so that this block is a genuine Jordan block. Here is the matrix corresponding to the Casimir operator $R_{\lambda,m}(\Delta_g)$:

$$\left(\begin{array}{cc} \mu(\mu+1) & * \\ 0 & \mu(\mu+1) \end{array}\right)$$

where $\mu = -\lambda - 1 + l$ or $\mu = -\lambda - 1 + k$. Thus, me obtain the following theorem (we use the notation [a] for the integral part of a number a).

Theorem 5.3. Let $\lambda \in (1/2)\mathbb{N}$. Then the space $\Sigma(\overline{D})$ is the direct sum of the subspaces $V_{\lambda,k}^{(m)}$ with $k \ge 2\lambda + 2$ and $k \le \lambda$ and subspaces $\mathring{V}_{\lambda,k}^{(m)}$ with $\lambda + 1 \le k \le 2\lambda + 1$.

The representation $L_{\lambda,m}$ is equivalent to the direct sum of $[\lambda+1]$ Jordan blocks with the diagonal $(T_{-\lambda-1+j}, T_{\lambda-j})$, $j = 0, 1, \ldots, [\lambda]$, acting on subspaces $V_{\lambda,l}^{(m)} + \mathring{V}_{\lambda,k}^{(m)}$, $k+l = 2\lambda+1$, the representation $T_{1/2}$ for half-integer λ , and the representations $T_{\lambda+1}, T_{\lambda+2}, \ldots$

Let us write $\hat{\xi}_{\lambda,k}^{(m)}$ and $\dot{\xi}_{\lambda,k}^{(m)}$ for some λ , k. Let $\lambda = 0, \ k = 1$. Then

$$\widehat{\xi}_{0,1}^{(m)}(\varphi) = \frac{im}{2} s^m \varphi' \delta(p), \quad \mathring{\xi}_{0,1}^{(m)}(\varphi) = s^m \varphi \delta'(p).$$

Let $\lambda = 1$, k = 2. Then

$$\begin{aligned} \widehat{\xi}_{1,2}^{(m)}(\varphi) &= ims^m \Big\{ \varphi' \delta'(p) - \frac{1}{2} \left(\varphi' - im\varphi'' \right) \delta(p) \Big\}, \\ \mathring{\xi}_{1,2}^{(m)}(\varphi) &= s^m \Big\{ \varphi \delta''(p) + \frac{1}{4} \left(m^2 - 2im\varphi' + (4m^2 - 1)\varphi'' \right) \delta(p) \Big\}. \end{aligned}$$

Let $\lambda = 1/2$, k = 2. Then

$$\begin{split} \widehat{\xi}_{1/2,2}^{(m)}(\varphi) &= \frac{1}{32} (4m^2 - 1) s^m \left(\varphi + 4\varphi''\right) \delta(p), \\ \mathring{\xi}_{1/2,2}^{(m)}(\varphi) &= s^m \Big\{ \varphi \delta''(p) + \frac{1}{2} \left(\varphi - 4im\varphi'\right) \delta'(p) \\ &+ \frac{1}{16} \left(4\varphi + im\varphi' + 16m^2\varphi''\right) \delta(p) \Big\}. \end{split}$$

References

- V. F. Molchanov, L. I. Grosheva, "Canonical and boundary representations on the Lobachevsky plane", Acta Appl. Math., 73 (2002), 59–77.
- [2] L. I. Grosheva, "Canonical representations on sections of linear bundles on the Lobachevsky plane", Tambov University Reports. Series: Natural and Technical Sciences, 12:4 (2007), 436– 438 crossef.
- [3] L. I. Grosheva, "Canonical and boundary representations on the Lobachevsky plane associated with linear bundles", *Tambov University Reports. Series: Natural and Technical Sciences*, 22:6 (2017), 1218–1228 crossef.
- [4] L.I. Grosheva, "Decomposition of canonical representations on the Lobachevsky plane associated with linear bundles", Tambov University Reports. Series: Natural and Technical Sciences, 23:122 (2018), 113-124 crossef.

Information about the author

Larisa I. Grosheva, Candidate of Physics and Mathematics, Associate Professor of the Functional Analysis Department. Derzhavin Tambov State University, Tambov, the Russian Federation. E-mail: gligli@mail.ru ORCID: https://orcid.org/0000-0002-8466-3682

Received 13 August 2019 Reviewed 16 October 2019 Accepted for press 29 November 2019

Информация об авторе

Грошева Лариса Игоревна, кандидат физико-математических наук, доцент кафедры функционального анализа. Тамбовский государственный университет им. Г.Р. Державина, г. Тамбов, Российская Федерация. E-mail: gligli@mail.ru ORCID: https://orcid.org/0000-0002-8466-3682

Поступила в редакцию 13 августа 2019 г. Поступила после рецензирования 16 октября 2019 г. Принята к публикации 29 ноября 2019 г.