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Abstract. Earlier we described canonical (labelled by A € C) and accompanying boundary
representations of the group G = SU (1, 1) on the Lobachevsky plane D in sections of linear
bundles and decomposed canonical representations into irreducible ones. Now we decompose
representations acting on distributions concentrated at the boundary of D . In the generic
case 2\ ¢ N they are diagonalizable, in the exceptional case Jordan blocks appear.
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G =SU (1,1) na mnockoctu JIo6aeBCKOro B CeYeHNsIX JIMHEHHBIX paccioeHnii (0Hn Hymepy-
I0TCsl KOMILJIEKCHBIME YHCJIAMH A ) U Pa3JIOXKUIN KAHOHUYECKUE [IPEJCTABJICHUS Ha HEllpH-
Bogumblie. Ceifgac MbI pa3jiaraeM IpeICTaBJICHUs, NeHCTBYIOMME B 0DOOIEHHBIX (DYHKITIIX,
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In our work [3] we described canonical and boundary representations of the group
G =SU(1,1) on the Lobachevsky plane D in sections of linear bundles on D . Then in [4]
we decomposed canonical representations into irreducible ones. Now we continue [4] and
decompose boundary representations. We lean on works [1,2].

1. The Lobachevsky plane

The Lobachevsky plane is the unit disk D : 2Z < 1 on the complex plane with the
linear-fractional action of G':

az+b a b I
Z’_)Z.g_bZ—Fa’g_(l_)E)’ aa — bb=1.

The boundary S of D is the circle 2z = 1, it consists of points s = expia, the measure
ds on S is do. Let D be the closure of D: D =DUS. Let

p=1-—2Z,

so that D = {p > 0} and S = {p = 0}. The stabilizer of the point z = 0 is the maximal
compact subgroup K = U (1) consisting of diagonal matrices:

a 0
= _:1
k (06)’ aa ,

so that D = G/K. The Euclidean measure dxdy on D is (1/2)dpds, a G-invariant
measure du(z) on D is
du(z) = p~*dxdy.
If M is a manifold, then D(M) denotes the space of compactly supported infinitely
differentiable C-valued functions on M, with a usual topology, and D'(M) denotes the
space of distributions on M — of antilinear continuous functionals on D(M).

We use the notation
N={0,1,2,...}.

Recall principal non-unitary series representations of G trivial on the center, see also [4].
Let o € C. The representation 7T, acts on the space D(S) by

(T>(9)¢)(s) = (s - g)|bs +al*.

The inner product from L*(S,ds):

(W, o)s = / (s) p(s) ds

is invariant with respect to the pair (7,,7 5_1).

If o ¢ Z, then T, is irreducible and equivalent to T_,_; (for o € Z there is a “partial
equivalence”). For ¢ = v € N the representation 7, has an invariant irreducible subspace
FE, spanned by expira, r=—v,—v+1,...,v.
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A basis of the Lie algebra g of G is

w= (% 00) (e 8 m= (0

We also use their linear combinations (they belong to the complexification of g):

. 0 1 . 0 0
L+:L2+ZL1:<O O), L_:LQ—ZL1:<1 O)

Denote by A, the twice Casimir element of the universal enveloping algebra Env(g) of g:
A, =L+ L+ L3

The representation T, of g assigns to Ly, L., L_ the following operators:

d
T5(Lo) = o

i - d
To(Ly) =e <0+@£) ;

T,(L_)=e"™ (a - i%) :
T,(Ay) = oo+ 1).

2. Canonical representations

Let D(D) be the space of restrictions to D of functions from D(C) with the induced
topology, and by D’(D) the space of distributions on C with supports in D. Consider the
inner product with respect to the Lebesgue measure on D':

(F. f)p = /D F() @ dady, = =z +iy. (2.1)

The space D(D) can be embedded into D’(D) by assigning to h € D(D) the functional

f=(h, fyp, [€DD).
We shall use denotation:

z“’m:|z]’“‘(|—2’) , peC, melkZ.
z

Let A € C. We define the canonical representation R, ,, of the group G associated with
a character of K as follows:

(Ram(9)f) (2) = f(z - g) (bz + @) 72742,

it acts on the space D(D).
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The inner product (2.1) is invariant with respect to the pair (R, R 5 5,,):

<R)\,m(g)fa h>D = <f7 R—X—Q,m(g_l)h>Da g € G. (22>

The formula (2.2) allows to extend the representation Rj,, to the space D'(D) of
distributions on D.
Here are formulae for basic elements of g in variables p and « :

R)\,m(Lo) = % — im,
, 0 1 0
_ ,Fia ) _
Rym(Ly)=ce { Tpa (7“ +r” )zaa A+2F m)r} . (2.3)
Let us also write the operator corresponding to Ag:
02 01 O
Bam(Bg) = (0" = 1") 55 + (@A + p = @A+ 5)7] 5+
wimp 24 L i 9
P e oo 4 1—pda?
+ [A+2)A+1) — (A +2)2—=m?) p]. (2.4)

In (2.4) one has to use the binomial expansions (7 = (1 — p)*/?):

- :OO () v (25

n

1 OO (7)o 2.

n

L ! i (1/2) L—n)(=1)"p". (2.7)

Applying these formulae to distributions ¢, we have to keep in mind the following:

k!

= n)!5(’“‘”)(p).

P50 () = (~1)"

3. Boundary representations

Canonical representations R, ,, generate two boundary representations Ly ,, and M) ,,.
For simplicity, in this paper we restrict ourselves to the first one. It acts on distributions in
D'(D) concentrated at S.

Consider distributions of the following form:

¢ =p(s) 6P (p),
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where ¢ € D(S) and 6(p) is the Dirac delta function on the real line (being a continuous
linear functional on D(R)) and §*)(p) its k-th derivative. The space of these distributions
will be denoted by A(D). Define also

k(D) = Ao(D) + Ay(D) + -+ + A(D),
so that a distribution ¢ in (D) is a linear combination

¢ =0(s)0(p) + ¢1(8) ' (p) + -+ + @i(s) P (p).

We get a filtration:

Let ¥(D) denote the union of all ¥ (D).
The canonical representation Ry ,, acting on D'(D), preserves the space ¥ (D) and the

filtration (2.3). The boundary representation Ly ,, is the restriction of Ry, to X (D).

4. Poisson transform

Let A\, 0 € C and m € Z. We define the Poisson transform associated with the canonical
representation Ry, as the map PA(TZ) : D(S) — C*>(D) by the following formula

(P)ETZ) gp) (2) =p 72 /S (1 — 52)272™ 5™ (s) ds.

The Poisson transform P/\(TZ) intertwines the representations 7_,_; and the canonical

representation Ry, :
Rymul(g) P\ = P\ T, _1(g) (g € G).

The Poisson transform PA(?;) is meromorphic in ¢, and has poles at the points
o=A—k, o=-A—1+1 (k,l€eN). (4.1)

All poles are simple except in the case when the two sequences (4.1) have a non-empty
intersection and the pole belongs to this intersection. This happens when 2\ +1 € N and
0<k,I<2\+1, k+1=2X+1. In this case the pole pu is of the second order. Let us write

)

down the principal part of the Laurent series of Pf\’z at the poles p of the first order:

p(m)

P
(m) _ ~Aup
P)\J = U_ N
The residue intertwines 7_,_; with R, ,,. Let us write it explicitly. We set

Vomn(p) = (1 — p)(m+")/2 Flo+1+m,0+4+1+n;20+2;p),

where F' is the Gauss hypergeometric function. Expand V' in powers of p:
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here w((:,z) are polynomials in n of degree k. The coefficients of these polynomials are
rational functions of ¢ with simple poles. We set

m m (1 d
Wé,k) = wg,k) ( ) :

1 da

If a pole p belongs only to one of the sequences (4.1), then it is simple. In particular,

“~(m m 1
B = (1) £ @-m( - k) ey,

where

I'(—20 —1)

an(o') =27 (_ )n F(—O' + Tl) F(—o’ — TL)

and 5&77,? is the following operator D(S) — %1(D):

)\k @_sz

The operator 5/(\17;) is meromorphic in A. For fixed k = 1,2... it has k poles (simple)
at the points A =k — 1,k —3/2, k —2,...,(k —1)/2. It intertwines 7 _14p with L,
(restricted to L(D)).

Let us write three first operators:

é‘ﬁ"é) = 5"y - 0(p),

& p=s {s@ 5@)-5(%@ m i) - 5’(p)},
& p=s {90-5(19)—%(0—1)290—%%0’)-5’(p)
1

-2 1) [T -1

—20 =)A= 1)m- i’ — [(A = 1)* 4 2m’] 90”} : (5”(p)}.

a1 (W) ()55 ).

+

5. Decomposition of boundary representations

Theorem 5.1. The representation Ly, ts equivalent to a upper triangular matriz with
diagonal T _y_1, T x, T xi1,....

Proof The formulaec (2.3) and (2.5)—(2.7) show that operators Ry,,(L*)
move subspaces Ap(D) to Yi(D). Also these formulae show that the operator Ry ,(X)
where X € g moves a distribution s™p(s) 0% (p) in Ax(D) to the distribution
ST 10:(X)0)(5) 0¥ (p) + ... in Zi(D). O

Let V)\(j,?) be the image of fgf,?. This space is contained in (D) and its projection to
Ay(D) is the whole Ag(D). It gives:
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Theorem 5.2. In the generic case 2\ ¢ N the boundary representation Ly, 1is diago-
nalizable which means that Y(D) decomposes into the direct sum of subspaces V/\(j,:), keN,
the restriction of Ly, to V/\(fkn) is equivalent to T x_11r (by &k ), so that Ly, is the
direct sum of the T__14x (k € N).

Now let A € (1/2)N. This number A is a pole (of the first order) of fgz) in 7 for keN
such that A+ 1 < k <2A+ 1. For example, if A =0, then k= 1;if A\ =1/2, then k =2;
if A\=1, then &k =2,3;if A =3/2, then k = 3,4. For these \ the spaces V/\(;?) are defined
for all £k € N such that £k < A+ 1 and 2\ + 1 < k, for the others these spaces are absent.
Let us write down the Laurent expansion of fin,z) at 7=\

(m) éﬁ”,? 2(m)
Gk =y tow -

For the indicated k we define the spaces XA/)\(ZL) and V)\(ZL) as the images of the operators
Ay;i) and fg\n;) respectively. The space ‘7)\(7,?) is isomorphic to VA(T) where [+ k = 2\ + 1,
namely there is a relation fﬂ)(gp) = fyff) (¢)) where 1 is obtained from ¢ by means of
some operator. Therefore the operator g\",;) intertwines 7_5_;4; with Ly ,,, notice that it
vanishes on Fj. The space V/\(’Z’) has the full projection to Ag(D).

On the pair XA/A(;?), VA(? the representation Ly, is the block

( T x_141 * )
0 Tk )

Since —A—1+4+1=—(—A—1+4k)—1, representations 7, _;,; and T_,_1, are isomorphic,
so that this block is a genuine Jordan block. Here is the matrix corresponding to the Casimir

operator R ,,,(Ag):
( pu(p+ 1) * )
0 plp+1) )7

where = —-XA—1+1 or 4 =—X—1+ k. Thus, me obtain the following theorem (we use
the notation [a] for the integral part of a number a).

Theorem 5.3. Let A € (1/2)N. Then the space (D) is the direct sum of the subspaces
V/\(j,?) with k> 2\ + 2 and k < X and subspaces V)\(?) with A+1 <k <2\ + 1.

The representation Ly, is equivalent to the direct sum of [N+ 1] Jordan blocks with the
diagonal (T_x_14+j,Tr—;), j=0,1,...,[)], acting on subspaces V)\(jln) +\O//\($), k+1=2\+1,
the representation Ty, for half-integer X, and the representations Thy1,Thya, . ...

Let us write E/(\",? and §§\”,Z) for some \, k.

Let A=0, k=1. Then

m Zm m, ./ 2(m m /!
& (p) = =593 (p), 58,1)(90)=8 ©d'(p).

2
Let A\=1, k=2. Then

& (0) = ims™ {#9(0) = 3 (¢ — im”)3(0) .

2 (0) = ™08 (p) + 1 (m? — 2img + (4m? — 1)) 6(p) }.
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Let A=1/2, k=2. Then
1

E(9) = o5 (4m® — 1)s™ (0 + 4¢") 8(p),

T 32

Em () = {0 () + 3 (¢ — 4im) 5 (p)

16

2

+ L (4 + imy’ + 16m>¢") 6(p)}.
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