ISSN 2686-9667. Bectauk poccuiickux yrauBepcureroB. Maremarnka

Towm 28, Ne 141 2023

SCIENTIFIC ARTICLES

© A. Ponosov, 2023
DOI 10.20310,/2686-9667-2023-28-141-51-59 (@) |

Existence and uniqueness of solutions
to stochastic fractional differential equations in multiple time scales

Arcady PONOSOV

Norwegian University of Life Sciences
Ne-1432 As 5003, Drgbakveien 31, Norway

Abstract. A novel class of nonlinear stochastic fractional differential equations with delay
and the Jumarie and Itd differentials is introduced in the paper. The aim of the study is
to prove existence and uniqueness of solutions to these equations. The main results of the
paper generalise some previous findings made for the non-delay and three-scale equations under
additional restrictions on the fractional order of the Jumarie differentials, which are removed
in our analysis. The techniques used in the paper are based on the properties of the singular
integral operators in specially designed spaces of stochastic processes, the representation of
delay equations as functional differential equations as well as Picard’s iterative method.

Keywords: Jumarie derivative, Brownian motion, multi-time scales
Mathematics Subject Classification: 60H20, 34A8, 34K50.

Acknowledgements: The author gratefully acknowledges the financial support from internal
funding scheme at Norwegian University of Life Sciences (project no. 1211130114), which
financed the international stay at Scuola Normale Superiore in Italy.

For citation: Ponosov A. Existence and uniqueness of solutions to stochastic fractional differen-
tial equations in multiple time scales. Vestnik rossiyskikh universitetov. Matematika = Russian
Universities Reports. Mathematics, 2023, vol. 28, no. 141, pp. 51-59. DOI 10.20310,/2686-9667-
2023-28-141-51-59.



52 A. Ponosov

HAYYHAA CTATbA

(© Ionocos A.B., 2023
DOI 10.20310/2686-9667-2023-28-141-51-59 @)y |
VIIK 519.216.2

CymiecTBoBaHME M €ANHCTBEHHOCTh PENIeHUt
CTOXaCTUYECKNX APOOHBIX nuddepeHnna bHbIX YpaBHEeHUIA
B HECKOJIbKMX BPEMEHHbIX IIKaJax
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Awnnoranusd. B cTtarbe BBOIUTCS HOBBIH KJACC HEJTMHEHHDBIX CTOXaCTUIECKUX TudDepeHinaib-
HBIX YpaBHEHUU IPOOHOrO mopsiika ¢ 3amas3apiBanneM n nuddepennuansamu 2Kiomapu u U6,
[esib uccenoBanus — J0Ka3aTh CYIECTBOBAHUE U €IMHCTBEHHOCTh PEIEHUT 9TUX yPABHEHU.
OcHOBHBIE pPe3yJIBTATHI CTATHU OOOOIIAIOT HEKOTODPBIE MPEJIBIYIIIE BBIBOJbI, CIAEJIAHHDBIE JJIst
ypaBHEHUiT 6e3 3ana3/[bIBAHUS ¢ TPEMsI BPEMEHHBIMU [TKAJAME U [IPH JIOTIOTHUTEIHHBIX OIPaHI-
YeHUsIX Ha JPOOHBIN OPSIoK auddeperiuaioB 2KomMapu, KOTOpble CHUMAKTCS B HAIIIEM aHA-
Jin3e. MeTojibl, HCI0JIb30BaHHBIE B CTATHE, OCHOBAHBI HA CBOMCTBAX CUHI'YJISPHBIX MHTEIPAJIbHBIX
OTIEPATOPOB B CIENUAJTBHO CKOHCTPYUPOBAHHBIX IIPOCTPAHCTBAX CJIYUYARHBIX IIPOIECCOB, MPEJI-
CTaBJICHUN YPAaBHEHUN C 3ar1a3/IblBAHAEM B BUe (DYHKIIMOHAIBHO-TUMOMEPEHITNATBHBIX YDABHE-
HU, a Tak»Ke Ha uTeparnuoHHoM Merone lukapa.

Kirouesnlie cioBa: IIPOU3BO/IHaA }I{IOI\/IapI/I7 6pOyHOBCKOG JBH2KEHUE, MYJIbTUBPDEMEHHDBIC IITKa-
JIbI

BuaarogapHocTu: ABTOpP BbIpaxkaeT 0JIaroJapHOCTb 3a (PMHAHCOBYIO IOIJIEPXKKY paboOThI B
paMKax BHyTpeHHel mporpaMMbl HOPBEKCKOIO yHUBEPCATETA E€CTECTBEHHBIX HAYK (IIPOEKT
Ne 1211130114), xoropasa dbuHaHCHPOBAJIA MEXKIYHAPOIHDLIH BU3UT B BBICIIYI0 HOPMAJBHYIO
mkosny B Mranun.

Hnst mutupoBanus: [lonocos A.B. CyiecTrBoBaHNe U eIMHCTBEHHOCTD PENIECHU CTOXaCTHYIe-
CKuX IpOOHBIX Aud depeHiualbHbIX ypaBHeHUH B HECKOJIbKUX BPeMEHHbIX ImKkasiax // Becrauk
poccniickux yuusepcureros. Maremaruka. 2023. T. 28. Ne 141. C. 51-59. DOI 10.20310/2686-
9667-2023-28-141-51-59. (In Engl., Abstr. in Russian)
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1. Introduction.

Processes operating in a multi-time scale modus arise in a number of fields including

finance, science and engineering. In [1] it was suggested to use the fractional Jumarie derivative

introduced in [2] v = (d(?;a (0 < a@ < 1) and the classical white noise g = w‘fi—? to model

the deterministic and the stochastic parts of the multi-time scale processes, respectively. In the

integral form this reads as

£(t) = £(0) = a /0 (t— 5)*'u(s)ds and g(t) — g(0) /0 w(s)dB(s).

Adopting this approach we study the following fractional stochastic delay differential equa-
tion in multiple time scales:

da(t) = 3 (8, (Hya) ) + gt (o) (0)dB; (1)) (1)
j=1
Here f;(t,v) and g¢;(t,v) are random functions and Hy;, Hs; are linear delay operators, (dt)®
are the fractional Jumarie differentials and dB;(t) are the Ito6 differentials generated by the
standard scalar Wiener processes (Brownian motions) B;. The initial condition for (1.1) is

2(s) = p(s) (s <0), (1.2)

where ¢(w, s) is some random function (not necessarily continuous).
A solution of the initial value problem (1.1), (1.2) is a stochastic process = satisfying (1.2)
for s <0 and the integral equation

m ¢ t
(t) —p(0) = (/ aj(t = 8)%7 fi(s, (Hyz)(s))ds +/ 9i(s, (szﬂf)(S))dBj(S)) :
j=1 /O 0
The main result of the paper is a generalization of the existence and uniqueness theorem from [1]
to the case of Eq. (1.1) and its operator counterpart.

2. Preliminaries

We keep fixed a stochastic basis (2, F, (F)ier, P) satisfying the standard conditions [3]
assuming, in addition, that F; = Fy for all ¢ < 0. All stochastic processes in this paper are
supposed to be progressively measurable w.r.t. this stochastic basis or parts of it [3].

The following notation is used throughout the paper:

R = (—00,), Ry =[0,00), R_ = (—00,0).

i is the Lebesgue measure defined on R or its subintervals.

E' is the expectation corresponding to the probability measure P.

B;(t) (te Ry, j=1,..,m) are the standard scalar Wiener processes.

The space L,(J,R') (1 < q < oo, J C R is a subinterval), contains all progressively

measurable [-dimensional stochastic processes x(t) (¢t € J ) such that [ E|x(t)|%dt < cc.
J

e The space M, (J, R') (1 < p < oo ) consists of all progressively measurable, [ -dimensional
stochastic processes z(t) (¢ € J) such that
sup Elz(t)P < oco.
ted
e The space k™ consists of all n-dimensional, F,-measurable random variables, and k = k!
is a commutative ring of all scalar Fj-measurable random variables.
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e The space k) = {{:{ € k", E|{|P < oo} (1 <p<oo) is a linear subspace of k.

The spaces Lq(J, R'), M,(J,R") and k] are supposed to be equipped with the natural norms.
Clearly also that for ¢ < p and finite intervals J we have M,(J, R") C L,(J, R'), also in
the topological sense (the topology of the larger space is weaker). We will also assume that
M,(J,R") € M,(J',R") if J C J by letting the processes on J to be 0 outside J.

3. Properties of some delay operators
Consider the delay operator
(Hz)(t) = x(h(t)), (3.1)
Theorem 3.1. Let J = [0,7] and 1 < q¢ < co. Assume that h(t) (t € J) is a Borel

function such that h(t) <t p-almost everywhere on J. Then the operator (3.1) is a linear
bounded operator from My (R_ U J, R") to M,(J, R").

P roof. Evidently, H is linear and maps progressively measurable processes defined on
R_ U J to the ones defined on J. In addition, sup E|xz(h(t))|? < sup E|z(t)|?, which proves
ted t<T

boundedness of H from M, (R_UJ,R") to M,(J, R"). O

Next, consider the distributed delay operator

t
(Hzx)(t) = / dsR(t, s)x(s). (3.2)

Theorem 3.2. Let J=1[0,T] and 1 < q < co. Assume that the values of R(t,s) (t € J,
—00 < s <t) are | X n-matrices and R satisfies the following conditions:

1. R is Borel measurable on its domain;

2. sup Var' _R(t,-) < .
ted

Then the operator (3.2) is a linear bounded operator from M,(R_ U J) to M,(J, R").

P r o o f. Using the componentwise description of the operator (3.2) we may assume, with-
out loss of generality, that | = n = 1, so that (Hx)(t) = ffmm(s)dsR(t,s). Evidently, the
operator H maps progressively measurable processes defined on R_ U J to the ones defined
on J. Putting Var' _[R(¢,)](s) = R(t,s) we get

t

sup E)| z(s)dsR(t, s)|?

o - (E /_; 2(s)|%dsR(t, s) X (/_; ds7_2(t,8)>q_1)
<sap ([ sworarn) ([ aren)

t t q—1
< sup El|z(s)|?sup (/ d,R(t, s)) X sup (/ d,R(t, s))
SER_UJ tE] — 00 te] —00

< sup Elz(t)|?sup ( / t dﬁ(t,s))qg (supVart OOR(t,~)> sup Elz(t)]*

teR_UJ teJ —00 teJ teR_UJ

which proves boundedness of H from M,(R_UJ) to M,(J, R"). O
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Remark 3.1. The delay operator (3.1) can be regarded as a particular case of the
delay operator (3.2) if one puts R(t,s) = diag[xn,...., xn] to be the n x n diagonal matrix
containing the indicator xj of the set {(¢,s): s < h(t)}. Moreover, if we define R(¢,s) to be
the (rn) x n-matrix of the form

R(t,s) = (diag[Xny, s Xty )s - AAE[Xnrs s X0r])

then we get the multiple delay operator x(t) — (z(hyi(t)), ..., z(h.(t)).

4. Main results

Let us first consider the following fractional functional differential equation:

dy(t) = Z ((E5 ) (0)(dt)* + (G5(y))(t)dB;(t)),  t € [0,T] (4.1)

Jj=1

equipped with the initial condition
The solution of Eq. (4.1) is understood in the following sense:

m

y(t) —y(0) =) (Oéj/o (t =) Fi(y)(s)ds +/0 Gj(y)(S)dBj(S)> , e[0T (43)

J=1

Definition 4.1. Let X,Y be two separable metric spaces and o : 2 x X — Y be
a random map. The operator z(-) — o(-,z(-)) is called the superposition operator generated
by o.

Definition 4.2.

e A continuous map V : X — Y, where X,Y are two separable metric spaces of functions
defined on an interval J C R is called Volterra if

ri(s) = w2(s) = (Va)(s) = (Vy)(s)

for all z1,29 € X, any t € J and almost all s <t,s € J

Amap V:Qx X =Y is called a random Volterra map if V(w,-) is Volterra for almost
all we Q and V(-,z) is F -measurable for all z € X.

The superposition operator generated by a random Volterra map is defined by z(-) —
V(- x().

A random Volterra map V : Q x X — Y, such that V'(-,x) is F;-measurable for all
t € J will be called non-anticipating.

Evidently, any Volterra map V' gives rise to a family of Volterramaps V*: X; = Y; (t € J),
where X; and Y, consist of the restrictions of the functions from X and Y, respectively, to
(—oo,t] N J. Tt is also easy to check that the superposition operators generated by random
Volterra maps are continuous in probability and if V' is non-anticipating, then the superposition
operator generated by V' preserves progressive measurability of stochastic processes.
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In the proofs below we use the following inequalities:
/2

E/}@mm@ < dE /ugww (te Ry, g>2), (4.4)

where f(¢) is an arbitrary scalar, progressive measurable stochastic process on R,, B(t) is
the standard scalar Brownian motion and ¢, is a certain constant, which is independent of f;

t q t
Je—sr | <t [gprds (te e q>a), (45)
0 0
1-1/q
where g: Ry — R is a Lebesgue measurable function and d, = qill
qo

Inequality (4.4) follows from the estimates proved in e.g. [4], while (4.5) is a direct con-
sequence of Holder’s inequality.

Theorem 4.1. Let J =1[0,T] and assume that

1. 0<ao; <1, p; >2, ajt<p;<p (1<j<m).

2. The superposition operators generated by the non-anticipating operators F;,G; (1< j<m)
map the space M,(J,R") into the spaces L, (J,R") and Ly(J, R"), respectively, and
satisfy the Lipschitz condition

1F5y1 = Fyualle,, rmy < Ll — v2llamymm),

(4.6)
Gy — Givellcarrmy < Ulyr — vollm .57
for some constant ¢ and the sub-linear growth condition
E5€llz,, (r.mm) < OlIEllkg s 11G3€ll 2o rmy < BIIE] kg (4.7)

for some constant b and any § € k.

Then the initial value problem (4.1), (4.2) has a unique (up to the natural equivalence of
indistinguishable processes) solution y(-,vo) € M,(J, R"™).
If the constants ¢ and b are independent of J, then the solution y(t,yo) is defined for all

teR,.

P r o o f. We prove this theorem for the equivalent integral equation (4.3). Notice that due
to the Volterra property of the operators F; and G; we have

Fiyn — Fiya|e,, ny < Ly = v2lm, OF
Ejy1r = Fyyalle,, (o.0.0m) < vy — 2l my0.0,87) (4.8)

Gy — G| cao.,5m) < Lllyr — vallam,qo.0,77)

for any ¢ € J. Now, the proof becomes a standard application of Picard’s iterations. Put

0=+ 3 (o [ €= BN+ [ G0 0iBE) ek ven
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and y© = y,. Using (4.6)—(4.8) and inequalities (4.4), (4.5) with ¢ = p; we obtain

t
EWHWU—yWﬂFSK/1N¢NQ—¢WWQF“ (teJ, veN) (49
0

and
ElyD() =y Q0] < Kotllyolliy (¢ € ). (4.10)
Iterating (4.9) and using (4.10) yield
Bl =y (0" <Ko= (te ] veN),

which ensures convergence of the sequence {y)} to some y in the space M,(J, R"). The
stochastic process y(t) satisfies then Eq. (4.3) due to continuity of the operators

F;: My(J,R") = L,,(J,R") and G, : M,(J,R") = Ls(J, R")

and boundedness of the linear operators

(T9)(t) = / (t— 5y Yy(s)ds and (Tyy)(t) = / y(s)dB(s)

acting from L, (J,R") to M,(J,R") and from Ly(J,R") to M,(J, R"), respectively (see
estimates (4.4), (4.5)).

Assume 1 (t) and y(t) to be two solutions of Eq. (4.3). Then we have, exactly as in (4.9),
that

t
Elnl) = <K [ Elns) - w)lds (1€ ),
0
and the property of uniqueness follows from Grénwall’s lemma. ]

To prove the existence and uniqueness theorem for (1.1) we represent it as Eq. 4.1. This is
a standard procedure in the deterministic theory of functional differential equations [5]. To this
end, we assume given two stochastic processes y € M,(J, R") and ¢ € M,(R_U{0}), put

[y (ted) [0 (telJ)
v ={ 4" Gen) e =10y Gen)

and define
Fi(y) = f;(, Hiyye + Hijo-), Gj(y) = g;(, Hyye + Hyjo), (4.11)

which yields Eq. (4.1).
The result below connects Eq. (1.1) and (4.1).

Proposition 4.1. Let J = [0,7] and assume that the k -linear operators H;; :
M,(R_U J,R") — L,(J,R") are bounded for all i = 1,2,5 = 1,...,m. Then the stochastic
process

y(t,0(0)) (teJ)
x(t) { (1) (te R) (4.12)
is the solution of the initial value problem (1.1), (1.2) on the interval J if and only if y is the
solution of the initial value problem (4.1), (4.2) on the same interval.
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Proof. Let y be a solution of the problem (4.1), (4.2). Then (4.12) can be rewritten
as z(t) = y.(t,p(0)) + ¢_(t) (t € R_UJ), and for all ¢t € J we obtain x(t) = y(t) and
Hiys+ + Hijo— = H;jz due to linearity of H,;. Hence z(t) satisfies Eq. (1.1). In addition,
x(t) = p(t) for t < 0.

Assume now that x is a solution of the problem (1.1), (1.2) and put y = z|;. Then
x(t) = y+(t) + p_(t) (t € R_UJ), so that H,jx = H,;;y. + H;;o_, which means that y(¢)
satisfies Eq. (4.1) if F} and G; are defined as in (4.11). By construction, y(0) = ¢(0), and
the result follows. O

Example 4.1. Therepresentation (4.1) of Eq. (1.1) with the distributed delay operators
H” given by

(Hyo)t) = [ ARyt 9)a(s)

where R;;(t,s) are n x [-matrix valued, Borel measurable functions defined on {(¢,s) : t € J,
— o0 < s <t}, reads as

t) = Z (fj(t, /0 dsRa;(t, s)y(s) +ur;(1)(dt)™ + g4(t, /0 dyRoj;(t, s)y(s) + u2j(t))dBj(t)),

where w;;(t)=(H;jp-)(t) = f(_oqo) dsRij(t, s)e(s) In particular, Eq. (1.1) with time-dependent
delays given by

(Hyz)(t) = z(hi;(1)),
where h;;(t) <t are Borel measurable functions (i = 1,2, j = 1,...,m ), has the following
representation:

= (fi(t, (Siu)(5) + ua;(£)(d)™ + g;(t, (Say)(s) + ua;(t))dB;(t))

Jj=1

where S;;, known as inner superposition operators (see e.g. [5]), are defined as

s ={ O Ee)

nd 0 (telJ)
p(hi(t) (teR-).

Now we are ready to prove the existence and uniqueness result for Eq. (1.1).

usy () = (Hygo)(t) = {

Theorem 4.2. Let J =1[0,T] and assume that
1. 0<a; <1, p;>2, a7 '<p;<p (1<j<m).

2. For all j = 1,...,m the random functions f;,g; : @ x Ry x Rl — R" are such that
fi(5,,v) and g;(-,-,v) are progressively measurable for any v € R' and fj(w,t,-) and
gj(w,t,-) are continuous for P & p-almost all (w,t), satisfy the Lipschitz condition

|fj<w>t7$1)_fj<w>t7x2)| Sawl_'r?‘v ‘gj(wvtaxl)_gj<w7t7x2>| §€’JZ1—I2‘ a. s.
for some constant ¢ and all x,,75 € R', t € J and the sub-linear growth condition

[fi(w,t,2)| < blzf, |g;(w,t,2)] < blz|.
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3. The k -linear operators H;; : M,(R_ U J, R") — L,(J,R') are bounded for all i = 1,2,
j=1..m.

Then for any ¢ € M,(R_U{0}, R") the initial value problem (1.1), (1.2) has a unique (up to
the natural equivalence of indistinguishable processes) solution x(-,¢) € M,(J, R").
If the constant € is independent of J, then the solution x(t,y) is defined for all t € R.

P roof The proofis based on Theorem 4.1. Define F; and G; using the formulas (4.11).
It is easy to see that the superposition operators generated by the non-anticipating operators
F;, G; (1 <j<m) map the space M,(J, R") into the space L,(J, R"), which contains both
L,,(J,R") and Ly(J, R"), because p > max{2,p; : j=1,...,m}. These operators satisfy the
Lipschitz condition (4.6) and the sub-linear growth condition (4.7) as well. Therefore, Eq. (4.1)
with Fj, G; so constructed has a unique solution y € M,(J) satisfying the initial condition
y(0) = ¢(0). Applying Proposition 4.1 completes the proof. ]

Remark 4.1. As M,([0,7],R") C L,([0,T], R"), the delay operators (3.1) and (3.2)
satisfy condition (3) of Theorem 4.2.
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