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Abstract. The traditional numerical process to tackle a linear Fredholm integral equation on
a large interval is divided into two parts, the first is discretization, and the second is the use of
the iterative scheme to approach the solutions of the huge algebraic system. In this paper we
propose a new method based on constructing a generalization of the iterative scheme, which is
adapted to the system of linear bounded operators. Then we don’t discretize the whole system,
but only the diagonal part of the system. This system is built by transforming our integral
equation. As discretization we consider the product integration method and the Gauss—Seidel
iterative method as iterative scheme. We also prove the convergence of this new method. The
numerical tests developed show its effectiveness.
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Awnnsoranus. Tpa uImoHHOE YUCIEHHOE PellleHe JIMHETHOIO HHTEerpabHOrO ypapHeHus Ope-
rojibMa Ha OOJIBIITIOM HMHTEPBAJE JEJIUTCA Ha JBA STAIA: IIEPBBI — JINCKPETU3AINS, BTOPON —
HCITO/Tb30BAHNE UTEPAITMOHHON CXEMbI JIJIst IPUOJINYKEHNS K PENIEHUIO AIre0PanIecKOil CHCTEMbI
6oJIbIION paszMepHOCTH (IIOJIyYE€HHON Ha 1epBoM drare). B aToil craThe Mbl IIpejjiaraeM HOBbII
MeTOJI, OCHOBAHHBII HA IOCTPOEHUH 0OOOITEHNST NTEPAIMOHHOM CXeMBbI, KOTOpasI a/IallTUPOBaHA K
crucTeMe JJUHEHHBIX OI'PAaHNYEHHBIX OIIepATOPOB, IIPU 3TOM MBI He TUCKPETU3UPYEM BCIO CUCTEMY,
a TOJIBKO €€ JIMAaroHaJIbHYIO 9acTh. PaccMarpuBaeMast CUCTEMa CTPOUTCH Iy TEM IIPeo0Pa30BaAHNS
HCXOJIHOTO MHTErPAJIbHOIO YpaBHEHHUs. B KadecTBe MUCKPETH3AIMU Mbl PACCMATPUBAEM METOJ,
UHTEI'PUPOBAHUSA IIPOU3BEJIEHNs, & B KadeCTBE UTEPAIIMOHHOI CXEeMbl — HTEPAIMOHHBIN METO/I
laycca—3aiigesns. Mbl Tak:Ke aHAJIU3UPYEM CXOJIMMOCTH 3TOrO HOBOI'O MeToja. UnCJIeHHbIe Te-
CTBI MTOKA3BIBAIOT €10 3PHEKTUBHOCTD.
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Introduction

Numerical approximation of linear Fredholm integral equations leads to linear algebraic
systems. The size of the matrices obtained in the linear systems depends on the order of
convergence. So, we have to solve a huge system to get a small error. However, this system can
not be solved directly, so we use the Gauss—Seidel iterative scheme to approach its solutions.
For this iterative method, many variants have been developed [1-6].

In this paper we propose a new method. First we make our integral equation into a system
of the following form:

Ay = Thuy + Thoug + ...+ Tinun + fi,

)\UQ :T21U1+T22u2+...+T2NuN+f27 (O 1)

M= Tyrur + Tvous + ... +Tynuy + fn,

where {T};}, <ij<n is a family of bounded operators. Next we construct a generalization of the
Gauss—Seidel method adapted to (0.1), after that we discretize only the diagonal part of this
system to approach a solution of the initial equation.

In [7] and [8], a generalization of Jacobi’s method adapted to the same system (0.1) has been
constructed in order to approach a regular and a weakly singular Frehdolm integral equation,
respectively. The numerical study of those papers presents very good results. In this paper,
in a similar way, we construct a generalization of Gauss—Seidel method to approach a linear
Fredholm integral equation of the second kind with weakly singular kernel defined on a large
interval.

Let X = C([0,7]) be the Banach space of continuous functions equipped with the norm

Vo € X |lollx = max |z(t)],
where [0,7] is a large interval of R, i.e. 7 >> 0. Let T : X — X be the integral operator
defined by

Vee X Tx(t) = / g(|s —t))x(s)ds, te0,7],
0
where g : (0,7] = R is a weakly singular function in the following sense:

(H) the function ¢ is continuous and decreasing on (0, 7], summable on [0,7], g(s) > 0 for
all s € (0,7], limg oy g(s) = +o0.

Then T : X — X is a bounded operator [9], and the norm of T is given by

T T/2
1Tl poir, = sup |72l = max / ol]s — t])ds = 2 / g(s)ds,
0 0

]l x =1 Ostsr
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where BL (X) is the Banach space of all bounded operators from X to itself. Let A € C* be
such that

T/2
Al =2u/ g(s)ds, p>1,
0

then \ is in the resolvent set of 7'. By Neumann’s theorem, we obtain that (Al — 7)™ exists,
and
1
) < :
s AL =171 5L

|(AM =T
where [ is the identity operator on X . Then the integral equation

u(t) = /07g<|s — #)uls)ds + (1), te[0,7], 0.2)

has a unique solution u € X for every f € X . Equation (0.2) is of great interest to
mathematicians [9-11]. Our goal is to research this equation.

The paper is organized as follows. In Section 2, we introduce some notation and preliminary
results. In Section 3, by using the previous results, we show how to formulate system (0.1).
In Section 4, we treat our method of generalization of the Gauss—Seidel method in collocation
with the product integration method. Finally, we give numerical results developed and compare
our method with the conventional Gauss—Seidel method.

1. Notions and preliminary results
For N > 2, we define a subdivision of the interval [0, 7] by:

T . .
N
Let {(Xj, ”H]> }j—1’ N > 2, be a family of Banach spaces, where X; = C ([t;,t;41]) is

associated with the_following norm:

VreX, |, = max et
JSUSL

For 1 <i,j < N, we specify the Banach space B;; = BL (Xj;,X;) of all bounded operators
from X; to X, with the operator norm

VS eBy; ISl = sup S|, -
T j:1

N

Let X N = H X, be the product Banach space equipped with the norm
j=1

VZ = (a1, ) € K 2115, = ma [

Let IEN = BL()N( N) be the Banach space of all bounded operators from X ~ to itself
associated with the operator norm

vSeBy S| = sup |[Sz|g,.

lzll g, =
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Let {Tij}1<z‘j<N be a family of operators defined by:

T+ Clltptyn)) = Clltin) = Tual) = [ glls = tha(o)ds, t€ f bl

J
It is clear that Tj; € B;; forall 1 <4, < N, and

tjt1
Il = max [ glls = thds

tE[ti,tH,l] tj
Forall 1 <i < N, ||[Tyllu < |\, then (A; —T};) is a bijection on X, its inverse is a bounded
linear operator (see [11]), and

1

(AL — Tii)_l”ii <
Al = Tl

where [; is the identity operator on X;.

Lemma 1.1. For all 1 <14,7 < N, we have:

4

H/2
2/ g(s)ds, of 1=,
0

tj+1 _ti+1 . . .
1Tl = [' o(s)ds, if i<j

j—tit1

ti—t;
/ g(s)ds, if 1> 7.
t

. i—lj41

P roof. Consider the following function G : [0,7] — R that will play an important role
in the proof:

Case 1: i=j. Let y(t) : [t;,t;v1] — R be defined by

y(t) = /tt”lg(js—mds:/t_tg<t—s)ds+/ttm o(s — t)ds = G(t — ) + Cltier —1).

i

The function y(t) is symmetric with respect to —tﬁ;i“ , and
y'(t) =gt —t;) — g(tiy1 — ).

Obviously, 3/(t) >0 if t; <t < %, and y/(t) <0 if # <t < ti11. Hence

ti+t; H/2
Tl = max y(t) = y<g> = 2/ g(s)ds.
0

ti<t<tit1 2

Case 2: i<j. Let y(t) : [ti;tir1] — R be defined by

0= [ o5 = )ds = Gty — )~ Glty 0.

J
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Then
y/(t> = g(t] — t) — g(tj+1 — t) >0 for all t <t <tig1.

Hence
ti+1—tit1
1Tl = max mw:=yawn=:/“ o(s)ds.
t

L <t<tigy ——

Case 3: i>j. Let y(t) : [t;, t;i1] — R be defined by

)= [ ot = s)ds = Gt = 1) = Gt ~ ;)

J

Then
Y(t)y=gt—1t;) —glt —t;41) <0 forall & <t <t
Hence
ti—t;
| — = y(t;) = ds.
Tl =, o v =it = [ glsjas

]

Theorem 1.1. For integers N > 2, 1 <1 < N, consider the positive parameters 7., 7;,
Bu(i, N) and B, given by:

> 1Tl > 1Tl
1<t _ 7>

Y= N Yi = N7
= A = T Al = HTz’_z'Hn'

N e T
Pul N) =2, + % B = max 37—

L

We have
Bu(i,N) <1 and p,<1.

P r o o f. Using the formulae obtained in Lemma 1.1, we get

N 1—1 N
,_;7&, 1T 135 ; Tl + '—2;1 T35
Bu(i,N) = = _ = It
IAl = [Tl i Al = [Tl i
i—1 fti—t; N tir1—tit1
)y g(s)ds + . g(s)ds
J=1Jt;i—tj1 J=i+1Jtj—ti4

IAl = [T |
t; T—tit1
s)ds +/ s)ds
/0 9(s) 0 9(5) _ yu (L)

T/2 H/2 T/2 H/2
2@/ g(s)ds — 2/ g(s)ds 2@/ g(s)ds — 2/ g(s)ds
0 0 0 0

Y

where . s
yu(t;) = / g(s)ds +/ g(s)ds =G(t;) + G(T —tip1), 1 <i<N.
0 0

The sequence yx(t;) is symmetric with respect to 7 or 7 — H , and

yu(t) = g(t:;) — g(7 — tiy1).
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It is obvious, that yj(t) >0 if 0 <t; < F — H, and yy(t) <0 if § <t; < 7. Hence

T . T/2 7/2 —H
max yy(t;) =yu(z — H) = yH(§) = /0 g(s)ds —|—/0 g(s)ds.

1<i<N 2

As N > 2 then H < 5, S0 we obtain

max yu(t;)

ﬂH(lyN) S /2 HJ2 )
2,u/o g(s)ds — 2/0 g(s)ds

T/2 T/2 —H
/ g(s)ds+/ g(s)ds
: T/2 : H/2
2,u/ g(s)ds — 2/ g(s)ds
0 0

Finally, since Sy (i, N) < 1, it is clear that £, < 1. ]

< 1.

1
S_
L

2. Formulation of system (0.1)

In this section, we see how to formulate system (0.1) according to our integral equation.
Let {u;}, ;. be a family of continuous functions such that

W € X, V€ [t 4] wy(t) = ult).

We have
Au<t>:/07g<|s—t|>< s + f(t) Z/ g5 — tuy(s)ds + (), ¢ € [0,7].

which is equivalent to the same system (0.1) described in the introduction:

AUq (t) =Thu (t) + T12U2(t) + ...+ TlNUN(t) —+ fl(t>, te [tl, tQ],
/\U,g(t) = T21U1 (t) + TQQU,Q(t) + ...+ TQNUN(t) + fg(t), te [tg, tg],

Nun () = Toatus () + Twatin(®) + - + Tunun() + fld), ¢ € [tnsbvsa]
where
fi € Xy, VL€ [ty tia] fi(t) = F(2).
This system is equivalent to the following linear equation:
AU = MrU + F,
where M7y : X N — X ~ is the operator matrix defined by

Ty Thy ... T
My = 21 L22 2N ’

Tyr Ino ... Inn
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F = (fi1,..., fv) is given in Xy and U = (u,...,upn) is to be found in the same space.
It is clear that My is a bounded operator. We have

N N tj+1
| Mr|| = max Z 17551, = max max ]/ g(ls —t|)ds
tj

1<i<N 4 1<i<SN = teftytit
Jj=1 Jj=1

= max/ g(|s —t))ds < |A|.

0<t<T Jo

We use Neumann’s theorem [12] to conclude that (A y — M)~ exists and

1

My —M) Y < ————
[ = M) < g

where [y is the identity operator on X ~ . This assures the existence and uniqueness of the
solution U = (uy,...,uy) of the system (0.1) for all F'= (f1,..., fy) in Xy.

3. Generalized Gauss—Seidel method

In this section, we construct a generalization of the Gauss—Seidel method suitable for our
system (0.1).

3.1. Definition of an iterative sequence and its convergence

Consider the following iterative scheme:

)\Uk:LTUk—F(MT—LT)Ukil—I—F, k> 1,
U° € Xy,

where L is the lower triangular matrix part of Mr defined by

Ty, Oip ... Oin
Tor Ty ... Ooyn

Ly =
For 1 <i,7 <N, O;; : X; — X, is the null operator, i.e. Vo € X;, O;;2 = 0x,. We can write
the precedent iterative scheme in a simple and clear formula: for 1 <7 < N,

i—1 N
Mub(t) = Tygul (t) + Y Tyub(t) + > Tyl 7' () + fi(t), t € [titin], k>1,
j=1 j=i+1

u? e X;,
with

0 N
S Tt = S Tyuk =
J=1

i=N+1

Our goal is to prove that U* — U for k — oo.
Theorem 3.1. We have

limy o0 [|U* — Ul g, = 0.
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Proof Forall 1<i<N,

i—1 N
/\U,Z = T’”Ul + ZE]’U]' + Z CT%juj + fia

j—i+1
(/\ - ZT;]UJ + Z ﬂju] + fw
Jj=i+1
U; = - Z - Z zz - u) 1fz-
Jj=i+1
In the same way, we get
i— N
uf = (ML — Ty) ™ ZTijU§ + (AL — T) ™! Z ﬂju;ﬂil + (AL — T) ' fs.
= j=i+1
Then
i—1 N
j=1 j=i+1
Therefore

N
g = wills < (ML = Ti) 1||MZ|| illigllef = wsll; + 1AL = T) ™l D Tl ™ = w5
j=i+1
N
Z 17551135 'Z—:‘,-l 17551135
< JI= J= uFl
= NIl N
< A lIUF = Ullg, + 70 = Ull%,-

Let i,, € N be such that

lJul — w;ll — ujl|;

X, = U =Ullz,,.

|| ’Lm

We obtain
IU* ~Ullg, <7, IU*=Ulg, +7, U = Ulg,,
1=, IU* = Ullg, <7, 10U = Ullg,,

Vi

IU* = Ullg, < 72— |jU*" = Ullg,,

Lim

|U* = Ullg, <BJUM =Ullg, -
Repeating this operation k£ times, we find that
IU* = Ullg, <BHU°=Ulg, -
Now we use the fact that £, < 1 to conclude the proof. O

To get an approximation of the solution w, we construct it, for the k-th iteration, using
the following formula:

Vt € [ti tiv1) u(t) =uf(t), 1<i<N,
and u(b) = uk (b).
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3.2. Product integration method

In practice, for 1 <4 < N, (A;; — T;;)~' can not be found exactly. For that, we need to
approximate it using product integration method [10]. It will be easy, because, for 1 <i < N,
[ti,tit1] is not very large compared to [0, 7].

First of all, we study the following equation in order to explain the product integration
method: for 1 <3< N

Vt € [ti, tiy1] Aug(t) = Tyui(t) + gi(2).

It is clear that u; € X; exists and is unique for all ¢; € X;. For n > 2, 1 <7 < N, we define
a subdivision of [t;,t;11] by

hy, = . Sip=ti+(p—1)h,, 1<p<n.
n—1

For 1 <i< N, let {em,(s)};:l C X, besuch that for 2<p<n—1,

B
(5) = I T 0 S <5 < Sipr1
€iplS - n
0, otherwise.
Si2 — S
y  Sil <s< 5i,2
61'71(8) = hn
0, otherwise.
S — Sin—-1
o ) Sin—1 S S S Sin
ein(s) = hy,

0, otherwise.

Let T}, : X; = X; be a linear operator defined by
Vx € X7, Ez,nx(t) = Zwi7p(t)x(si7p), te [ti7ti+1]7
p=1
with weights

wip(t) = / T gl — th)esp(s)ds.

i

From [10], it follows that for 1 <i < N, T}, € B;; and

H/2

H/2
Oy = 2/ g(s)ds.
0

Theorem 3.1. For all 1 <i < N, for n large enough, (M — Ty;,)"" exists and

Let us denote

| (AL;; — Tz‘z‘,n)_lnii < K,

where Kk 1s a positive constant independent of © and n .
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Proof. Forall 1 <i< N, using Lemma 4.1.2 [10], we get
From Theorem 4.1.2 [10], we obtain that (A;; — T};,,)~" exists for n large enough and

L4 [[(ALi = Tia) Ml 1Tl
N = (T = Tiin) Tiinll

”()‘]i’ - T“")_lHu <

But

1 1
Tiinll; < 0w, M —T) | < = :
Wialla < 0 WO =0 < =y, = W=

Then

m L4 (M s — Tio) "l | T
n—oo |\ = (T — Tiin) Tiinll

i< N1+ (JA = u) o) -

To conclude the proof, we take
O]

For 1 <¢ < N, for n large enough, let u;, € X; be a unique solution of the following
equation:

M (8) = Tiinttin () + gi(t), t € [ti, tiga]
Theorem 3.2. For 1 <i < N, for n large enough,
i = winll; < Srkw (b, ui)
where w (hy,w;) is the modulus of continuity of u;(t) on [t;,t;11] defined by

W (hp,uy) = |Sr_r%‘a§>§ln lu; () — u;(s)].

P r oo f. Follows from Theorem 4.2.1 in [10] and the fact that

U — Uip = (AL — Tn‘,n)_l (Thi — T ) s

For 1 <i¢ < N, w;, is calculated by the formula
1 n
YVt € [t“ t2‘+1] uz,n<t) = X < p:Zl w,'7p(t)xp + gz(t)),

where x = (x1,...,x,) is a unique solution of the system

Ao =Ar+b, Ay =wip(siq), by=0i(siq), 1<q,p<n.



NEW METHOD FOR THE NUMERICAL SOLUTION 397

We define the iterative scheme of the product integration version of the generalized Gauss—
Seidel method corresponding to our integral equation by

N
Auﬁn(t) - ’”nuzn +Z Z EJ 3,n ( )+f2( ) te [ti7ti+1]7 k> 1,
j=i+1
W) e X,
for 1 <i< N and n > 2. For kK > 0, we define U’“ = (u’fn,ugn,.. U?vn) € )Z'N For
technical reasons, we need to define UF = (a¥ .45 ,,.... 4% ,) € Xy:letfor 1 <i <N and
n>2,
N
ik, (t) = Tyl Z gk, (8 + > Tyl t o+ filt), tE [t tin], k>1,
Jj=i+1

Theorem 3.3. For k> 1, n > 2, we have

Yok
k H k770
U, = Ulg, < -y f“giiiw(h”’ a,) + BENU° - Uz,
0<I<k
Al
where ¥ 1= —————— .
Al = || M|

Proof Wehave, for n > 2,
Uz = Ullz, <Y = Ugllg, + Uy = Ullg,-

But, for 1 <: < N,

i—1 N
(@, — ;) = (i = Ti) ™ > Tyluf, —ug) + (A = )™ > Tyl —uy).
=1 j=it1

Therefore
1—1
4, = willi < 1AL = Tia) ™Ml Y 1Tl — sl
j=1

N
+ IO = T) Ml Y 1Tl = ugll

j=i+1
< Uy = Ullg, + %0 = Ullg, -
Let i,, € N be such that

= |UF - Ullg, -

5, — i, Ix,,

We obtain

1Ux = Ullg, < 72, 102 =Ullg, 7,107 = Ullz,-
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Then

Uy = Ullg, < Uy =Unliz, +7, 10 = Ulg, +7,10.7" = Uliz,.

> 71m
VS = Ullg, < ———|lU% — 0¥l g, + L2 U ~ U,
< Y¥ogk max w(hn,um) + B ||Uk ! —Ullz,-

1<<

Repeating the last inequality,

HUS_U”XN < Jdyk max w(h al )—l—ﬁ*(ﬁcSHF; max cu(hn, ag )+ B U UH)~(N>

n
1<i<N T Tnn 1<i<

< 195Hﬁ26l max w (hy, Zn)+ﬁk||U0 Ullg,

1<i<N

< ~
— 1_6 1122}1(\160(]7”“ zn)—i_ﬁ HU U“XN‘
0<I<k

4. Numerical Results

We illustrate the application of our numerical method by considering the following Fredholm
integral equation of the second kind:

u(s)
t:/ ——2 _ds+ f(t), A=40v2, te[0,100],
) Y (t) [0, 100]
2 10 4 400t + 8¢2)/100 — ¢t 1
P = M2 (3 x 10* + ()015+8 )v/100 _1§t5/27

and the exact solution is u(t) = ¢* on [0,100]. The kernel g(s) = \/Lg satisfies the hypothesis
(H) . We mention that this equation is the same studied in [§].

where

In order to give a comprehensive view of the procedure of the generalized versions, we study

this example by applying the following methods:

1. Generalized Gauss—Seidel method, our method described in this paper.

2. Conventional Gauss—Seidel method, the method described in [2], the latter applies the
Gauss—Seidel iterative scheme to approach the huge matrix obtained after using the
product integration method.

3. Generalized Jacobi method, the method described in [§].

We fix H =1 and we take the null function as a starting point for our method and the null

vector for the conventional Gauss—Seidel method. The stopping condition on the parameter k
is fixed by

||Un6w - Uold” S 10_8-

Eccs(hyn), Ecas(hy,) and Egy(h,) denote the absolute error obtained by using the Generali-
zed Gauss—Seidel method, Conventional Gauss—Seidel method and Generalized Jacobi method,
respectively. We vary now h,, to compare the results of the methods.
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Table 1. Numerical results

hy, Ecas Eaas

0.250 9.86E-3 1.20E-3
0.125 247E-3 3.12E-4
0.050 3.97E-4 5.15E-5
0.025 1.01E-4 1.38E-5

Table 2. Numerical results

hn EG] (Results of [8]) k EGGS k

0.250 1.20E-3 34 1.20E-3 20
0.125 3.12E-4 34 3.12E-4 20
0.050 5.15E-5 34 5.15E-5 20
0.025 1.38E-5 34 1.38E-5 20

Table (1) shows that the error committed by the two methods decreases with the decrease
of h,, but the error order of the generalized version of Gauss—Seidel method is smaller than
the error order of the conventional version of Gauss—Seidel method. Furthermore, in Table (2)
we can also see that the both generalized methods (Gauss-Seidel and Jacobi) give the same
results, but the generalized Gauss-Seidel method is faster than the generalized Jacobi method.
So, we confirm that our vision of generalization is reasonable.

5. Concluding remarks

We have constructed a generalization of the Gauss—Seidel iterative method for a system
of linear operators. We used this new technique, in collocation with the product integration
method, to approximate a solution of the Fredholm linear integral equation of the second kind
with a weakly singular kernel on a large interval. The numerical tests show the efficiency of our
new method compared to the classical Gauss—Seidel method.
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