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O )\-kOMMyTUpOBaHUHU, J€BOM (IIPABOM) MCEBIOCHEKTPE U
JieBOM (IIpaBOM) yCJIOBHOM IICEB/IOCIEKTPE JIMHENHBIX HEeIPEePbIBHBIX
omnepaTopoB Ha yJibTpaMeTpUieCKnX 0aHAXOBBIX ITPOCTPAHCTBAX

xkasag 9TTAUDB
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YHuBepcuTeTcKasi cpeHsis MmKoJa XaMmMana Aib—DaraBaku

26402, Mapokko, r. Xau Cyasem, jopora B Beppertu

Awnnoramuga. B pabore MBI JeMOHCTPUPYEM HEKOTOPBIE CIIEKTPAJJIbHBIE CBOMCTBA A -KOMMY-
THPOBAHUS JIMHEHHBIX HEMPEPBIBHBIX OIIEPATOPOB B yILTPAMETPHIECKIX OAHAXOBBIX MPOCTPAH-
CTBaX, a TaK¥Ke U3ydaeM oreparopubie ypasueuus ASB =S u AS = SB. Mubl paccMaTpuBaemM
HEKOTOpbIe CBOMCTBA 3TUX ONEPATOPHBIX YPABHEHU; NPUBOIUM UJLIIOCTPATUBHBIE TpUMephl. C
JIPYroil CTOPOHBI, MBI BBOJAMM U U3ydaeM JIeBblil (IPaBblii) IICEBIOCIEKTD U JIEBBI (IIpaBblii)
YCJIOBHBIN TICEBJIOCIIEKTD JTMHEHHBIX HEINPEPHIBHBIX OMEPATOPOB B YJILTPAMETPUIECKUX OAHAXO-
BBIX IIPOCTPaHCTBax. MBI JOKa3bIBAEM, UTO JIEBBIE IICEBJIOCIIEKTPHI, CBA3AHHbIE ¢ PA3IMIHBIMUA
€ > 0, ABJISIOTCS BJIOYKEHHBIMU MHOXKECTBAMM, & MEPECEUEHNE BCEX JIEBBIX MICEBIIOCIEKTPOB B~
JIETCsl JIEBBIM CIIEKTPOM. MBI BBISIBJISIEM CBSI3b MEXKJLY JIEBBIM (IIPABBIM) IICEBIOCIIEKTPOM U
JIeBBbIM (IIPABBIM) YCJIOBHBIM IICEBIOCIIEKTPOM. Bojiee TOro, JOKa3biBaeM elle Psijl Pe3y/IbTaToB,
KaCAIOIMAXCS JIEBOTro (IPABOro) MCEBIOCIEKTPa U JIEBOTO (IPABOTO) YCJIOBHOTO TICEBIOCTIEKTPA
JINHEHHBIX HENPEPBIBHBIX OIIEPATOPOB B YJIBTPAMETPAYECKNX OAHAXOBBIX MTPOCTPAHCTBAX.

KiioueBbie cioBa: ysibTpaMerpuyecKre 0AHAXOBBI IPOCTPAHCTBA, JIMHEWHBIE OrPAHUICHHBIE
OIEPATOPBI, CIEKTP, JIEBBIN U MPAaBBIN TICEBIIOCTIEKTD
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1. Introduction and preliminaries

The classical theory of commutators was studied by H. Weyl [1] and J. von Neumann [2] and
it played an important role in quantum mechanics [3-5]. In [6], C. R. Putnam collected some
properties of the commutation of continuous linear operators in a Hilbert space over the field of
complex numbers C. Recently, many researchers studied and explored the operator equation
AS = ASA where A € C\{0}, A and S are continuous linear operators on complex Hilbert
spaces, see [7-9].

In ultrametric operator theory, the author [10| extended and studied the operator equation
of the form AS = ASA where A € K\{0}, A and S are continuous linear operators on
ultrametric Banach spaces over K. He presented some spectral properties of A-commuting
operators on ultrametric Banach spaces over K and he gave an illustrative examples, see [10].

Recently, A. Ammar et al. [11] introduced and studied the pseudospectra of closed linear
operators on ultrametric Banach spaces. On the other hand, A. Ammar et al. [12] introduced
and studied the condition pseudospectra of continuous linear operators on ultrametric Banach
spaces and gave some of its properties.

In [13], the author presented and studied the determinant spectrum, the M -determinant
spectrum, and the C'-trace pseudospectrum of ultrametric matrix pencils.

There are many studies on pseudospectra and condition pseudospectra of continuous linear
operator pencils and \-commuting of operators in ultrametric operator theory, see [14-17].
In Section 5., we consider the problem of finding the eigenvalues of the generalized eigenvalue
problem of the form

PNz =0,

where P(\) = DL AP A, Ay € M,(K), X € K, z € K" and M, (K) is the space of all
n x n matrices over K. [ is the identity matrix of M, (K). If C' € M, (K), the determinant
of C' is denoted by det(C) (for details on the space M, (K) see [18] and [19]).

Throughout this paper, Q, is the field of p-adic numbers, £ is an ultrametric infinite-
dimensional Banach space over a complete ultrametric valued field K with a non-trivial
valuation |-| and L(€) denotes the set of all continuous linear operators on £. Recall that
K is called spherically complete if each decreasing sequence of balls in K has a non-empty
intersection. For more details, see [20]. Let S € L£(&£), R(S), N(S), S*, 0,(5), o(5) and
p(S) denote the range, the kernel, the adjoint, the point spectrum, the spectrum and the
resolvent set of S respectively [20].

The aim of this paper is to demonstrate some spectral properties of A-commuting of
continuous linear operators on ultrametric Banach spaces and we introduce and study the
operator equations AS =SB and ASB =S for some S € L(£). Moreover, some illustrative
examples are provided. On the other hand, we introduce and study the left (right) pseudo-
spectrum and the left (right) condition pseudospectrum of continuous linear operators on
ultrametric Banach spaces. We obtain some results related to them. We continue by recalling
some preliminaries.

Definition 1.1. [20] A field K is said to be ultrametric if it is endowed with an
absolute value |-|: K — R, such that

(i) |a| =0 if, and only if, o = 0;

(ii) For all A\,a € K, |Aa| = |A||al;
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(iii) For each A\, a € K, |A + a| < max{|A|, |a|}.

Definition 1.2. [20] Let £ be a vector space over K. A mapping |- || : £ — Ry is
said to be an ultrametric norm if:

(i) Forall z € &€, ||z|| =0 if and only if = =0,
(ii)) For any =z € £ and XA € K, || Az| = |A|||z],
(iif) For each z,y € &, [lz +yl| < max([|lz], [ly[]).

Definition 1.3. [20] An ultrametric Banach space is a complete ultrametric normed
space.

Example 1.1. [20] Let ¢y (K) be the space of all sequences (x;),.y in K such that
lim; ,oo x; = 0. Then ¢ (K) is a vector space over K and

I (@i)sen | = sup ||
1eN
is an ultrametric norm for which (cq (K), || - ||) is an ultrametric Banach space.

Theorem 1.1. [21]| Let £ be an ultrametric Banach space over a spherically complete field
K. For each z € £ = E\{0}, there exists z* € E* such that z*(z) =1 and ||z*| = ||=|~".

Definition 1.4. [20] An ultrametric Banach space £ over K is called a free Banach
space if there is a family (z;);ez € € indexed by a set Z such that all = € £ is written in a

unique fashion as = = ), ., A\iw; and |[|z|| = sup;ez |Ail||z;]|. The family (z;);ez is called an

orthogonal basis for £. If, for each i € Z, |z = 1, hence (z;),c; is called an orthonormal
basis of £.

Definition 1.5. [20] Let w = (w;); be a sequence of K* = K\{0}. We define &, by
Co={r=(2;);: VieN z; €K, and lim \wl|%|xz| =0},
71— 00
and it is equipped with the norm

Vee &, x=(z:) || = sup(jwi]?|zi]).
€N

Remark 1.1. [20]

(i) The space (&,,] - ||) is an ultrametric Banach space.
(ii) If
<'7'> :gw ng —>K7 (‘ray) Hzxiyiwi)
=0
where = = (z;); and y = (y;);- Then the space (&, |||, (:,-)) is called an ultrametric

Hilbert space.

(iii) The orthogonal basis {e;, ¢ € N} is called the canonical basis of E, where for all i € N,
leill = Jowil2.
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Remark 1.2. [20] Let K=Q,, if p=1(mod4), then i =+/-1€Q, and i = —1.

Definition 1.6. [20] Let S € M, (K). The spectrum o(S) of S is defined by
o(S) ={Ae€K: S — I is not invertible}.

By Definition 6 of [13| (where B = I), we have the following:

Definition 1.7.1f S e M,(K) and € > 0. Then the ¢-determinant spectrum d.(5)
of S is the following set:

d.(S)={N e K: |det(S — \I)| < e}.
From Remark 2 of [13] (where B = 1), we get

Remark 1.3. Note that for ecach S € M,,(K) and £ >0, o(S) C d.(S) and dy(S) =
a(9).

The X-commuting of operators is defined as follows.

Definition 1.8. [10]Let A,B € L(E), A and B are called A-commuting operators
if AB= ABA for some \ € K*.

Example 12 [10] Let K = Q, with p = 1(mod4), let A and B be defined on

Q, x Q, respectively by
0 1 0 i
a= (o) mam= (" ).

Example 1.3. [10] Let A € K*, let A and B be defined on K* by

Then AB = —BA.

1 0 0 0 00
A=11 X O and B=|[1 0 0
1 A\ 010
Then AB = ABA.
Example 1.4. [10] Let A € K such that |A] > 1 and let A, B € L(cy(K)) be given
respectively by

Ty T I3

T’p7ﬁ7”'> for all (z1,22,z3,...) € co(K)

B($1,$27ZE3, .. ) = (

and
forall n>1, Ae,=-¢e,.1,

where (e,,)n>1 is a base of ¢y(K). Hence AB = ABA.

Let A € L(E) be given, set S\(A) ={B € L(£): AB = ABA}. We collect some properties
of \-commuting operators.

Proposition 1.1. [10] Let A€ L(E) and X € K.
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(i) If B1,By € S\(A), hence By + By € S\(A) and BBy € S\2(A);
(ii) If B is invertible and X\ # 0, then B! € S1 (A)
(iii) SA(A) is closed in the uniform operator topology;
)

(iv) If AB = ABA and AB # 0, then Ap(B) = p(AB)A where p is a non-constant
polynomial.

Proposition 1.2. [10] Let A,B € L(E) and N\ € Z, such that AB = ABA,

AB #0 and ||B|| <pﬁ. Then
AeP = P A,

Proposition 1.3. [10]If A,B € L(E), A € K* with AB = ABA, hence 0,(AB) =
Ao,(BA).

Proposition 1.4. [10] Let A,B € L(E), A € K* with AB = ABA. Then p(AB) C
Ap(BA). Furthermore, for any p € p(AB), R(u, AB) = AX"'R(\"'u, BA).

Proposition 1.5. [10] Let A,B € L(E) and X\ € K* with AB = ABA. Then
(1)
(i)
(iii) For all p € K, N(AB — ) = N(BA — X"'p);
v)

(i

N(AB) = N(BA);

R(AB) = R(BA);

For any n € K, R(AB — ) = R(BA—X\"1p).
From Proposition 1.5, we conclude:
Theorem 1.2. [10] If A,B € L(E) and X € K* with AB = ABA, then
0e(AB) = Ao.(BA).
For A € L(E), set r(A) = lim,_ ||A”||#. We have the following proposition.

Proposition 1.6. [10] Let A,B € L(E) and A € K with |\|=1 and AB = ABA.
Then r(AB) < r(A)r(B).

We continue with the following definitions.

Definition 1.9. [20] Let £ be a non-Archimedean Banach space over K and let
B e L(€), the spectrum o(B) of B is defined by

o(B)={p€eK: B—ul is not invertible},
the resolvent set of B is defined by p(B) = K\o(B).

Definition 1.10. [13]Let B € M,(K), the trace Tr(B) of B isdefined by > " b
where for each i € {1,...,n}, b;; € K are diagonal coefficients of B.

Proposition 1.7. [13] Let B,C € M,(K). Then
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(i) For any A € K, Tr(B+ XC)=Tr(B)+ XT'r(C),
(ii) Tr(BC)=Tr(CB).
We have:

Definition 1.11. [13] Let B € M,(K), ¢ > 0, the trace pseudospectrum Tr.(B)
of B is given by
Tro(B)=0c(B)U{NeK: |Tr(B—X)| <e}.

The trace pseudoresolvent Trp.(B) of B is defined by
Trp.(B) = p(B) N {pn e K: |Tr(B — ul)| > c}.
Lemma 1.1. [20] Let S € L(E) with ||S|| <1, then ||(I —S)7'| < 1.
2.  A-commuting of ultrametric operators
Similar to the proof of Proposition 1.6, we conclude:

Proposition 21. Let A,B € L(E) and X € K such that |\ =1 and AB = ABA.
Then r(BA) < r(A)r(B).

Question: In Proposition 2.1, if || # 1, does r(BA) < r(A)r(B) hold?

Definition 2.1. Suppose that ||€]] C |K|. Let A € L(E), the approximate spectrum
oap(A) of A is defined by

Oap(A) ={p e K: I(xy)neny € E VR €N ||z,,|| =1 and nlglglo (A = pl)z,|| = 0}.

Proposition 22. Suppose that ||E|| C |K|. If A,B € L(E), N € K* with AB =
ABA # 0, then 0,,(AB) = \o,,(BA).

Proof Let p€ 0,(AB), thenthereis (z,)nen in € such that foreach n € N, ||z, || =1
and lim, o [[(AB — pul)x,|| = 0. Since

[(AB — pD)a |
A

I(BA - ED)a, || =

; (2.1)

Then § € 04,(BA) that is, u € Aogy(BA). Similarly, if £ € 04,(BA) and using (2.1), we get
W E 0ap(AB). O

Lemma 2.1. Let A,B € L(£), X € K such that AB = ABA # 0. Then for any n € N,
A"B = \"BA™.

Proof. Since AB=ABA#0. Then A’B = NMABA = A\2BA?. One can see that for all
neN, A"B— \"BA". 0

Proposition 23. Let A,B e L(E), X\ €Z, such that AB = ABA, AB # 0 and
|A|| < pTs. Then
eB = BeM.
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Proof By |4 < pﬁ, we get e and eM exist. Since AB = ABA # 0. Using Lemma
2.1, we conclude that e4B = BeM. O

In the finite-dimensional ultrametric Banach space, we obtain.

Proposition 24.If A B e M,(K) are invertible matrices and X\ € K* such that
AB = ABA, then \" = 1.

Proof From det(AB) = \"det(BA) and det(BA) = det(AB). We get A" = 1. O

From Proposition 4.2, we have the following:

Corollary 2.1. If A, B € M, (K) are invertible matrices and A\ € K* such that AB =
ABA, then |\ =1.

Proposition 25. Let A,B € M,(K) and A\ € K* with AB = ABA. Then u €
d.(AB) if and only if § € d - (BA).

™
Proof From det(AB—pl) = det(ABA—pul) = X\"det(BA—£1) for p € K and A € K*.
Then p € d.(AB) if and only if £ € d_-_(BA). O

IA"VL
Proposition 26. Let A,B € M,(K) and A € K* with AB=ABA and AB # 0.
If tr(AB) #0 or tr(BA) # 0, then X\ = 1.

Proof Since tr(AB) = Mr(BA) = Mr(AB) and (tr(AB) # 0 or tr(BA) #0), we get
A=1. O

Let & is a free Banach space over K, we set Lo(E) ={A € L(E) : A* exists}.
Proposition 27. [20] If A,B € Lo(E,) and X € K, then
(i) (A+AB)* = A* + \B*.
(i) (AB)* = B*A*.
Definition 22. [20] Let A € Lo(E,). We have
(i) A is said to be selfadjoint if A* = A;
(ii) A is said to be normal if A*A = AA*;
(iii) A is said to be unitary if A*A = AA* = 1.
The following proposition describes some spectral properties of A -commuting operators.

Proposition 28. Let A,B € Ly(E,) and N € K with AB=ABA#0. If A isa
selfadjoint, then ABB* = BB*A and ABB* is selfadjoint.

Proof If A, Be Ly(E,) with AB = ABA, then (AB)* = (ABA)*. Hence
B*A* = \AB". (2.2)
Since A is a selfadjoint and by (2.2), we get B*A = AAB*. On the other hand
ABB* = ABAB* = A\\"'BB*A = BB*A,

and
(ABB*)* = (BB*)*A* = BB*A = ABB".
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As the proof of Proposition 2.8, we get the following:

Proposition 29. Let A,B € Ly(&,) and N\ € K with AB=ABA#0. If B isa
selfadjoint, then BAA* = AA*B and AA*B is selfadjoint.

By Proposition 2.8 and Proposition 2.9, we conclude that:

Lemma 2.2. Let A,B € Ly(&,) and X € K with AB = ABA # 0. If A and B are
selfadjoint operators, then AB%* = B2A and BA? = A%B.

Proposition 2.10. Let A,B € Ly(E,) and N\ € K with AB = ABA # 0 and
BA%?#£0. If A and B are selfadjoint operators, then X € {—1,1}.

Proof From AB = ABA, we get A’2B = \?BA?. By Lemma 2.2, we have A’B =
B?A = )\?BA?% Since BA?#0, we get A>=1. Then \ € {-1,1}. O

We give another proof of Proposition 2.10 without the condition BA? # 0.

Proposition 211. Let A,B € Ly(&,) and A € K with AB = BA#0. If A and
B are selfadjoint operators, then A € {—1,1}.

Proof. From A and B are selfadjoint operators, we get (AB)* = (ABA)*, hence
BA = B, (2.3)

Using AB = ABA and (2.3), we get AB = A\2AB. Hence \* =1. Thus X € {-1,1}. O

Proposition 212. Let A, B € L(&,). If there is an unitary operator U € Ly(E,)
with AB = UBA = BAU, then AB*A = BA?B.

Proof Since AB=UBA = BAU, we have
AB*A =UBABA = BAUBA = BAAB = BA®B.
]

Lemma 2.3. Let A, B € Ly(&,) be selfadjoint operators. If there is an unitary operator
Ue€ Ly(E,) with AB=UDBA. Then

(i) U and U* commute with AB;
(ii) U and U* commute with BA.

Proof. (i) From AB = UBA, we have BA = ABU*. Hence AB = UBA = UABU".
Thus ABU =UAB and U*AB = ABU"*.

(ii) From (i), we get U*BA = (ABU)* = (UAB)* = BAU*. On the other hand BAU =
UU*BAU = UBAU*U = UBA. O

Proposition 2.13. Let A, B € Ly(&,) be selfadjoint operators. If there is an unitary
operator U € Ly(E,) with AB=UBA. Then AB*A = BA?B.

Proof. From Lemma 2.3, UBA = BAU. Therefore, BA’B = BAAB = BAUBA =
UBABA = ABBA = AB?A. ]
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Lemma 2.4. Let A,B € L(£). If AB*> = B*A and BA* = A’B, then AB*A = BA®B.
Proof Onecanseethat AB2A = B?A? and BA?B = B?A?. Thus AB?A = BA?’B. [
Question: Let A, B € Ly(€) be selfadjoint operators. Is the converse of Lemma 2.4 hold?
Example 21 Let K=Q, andlet A and B be defined on Q; by

a 0 0 0
A= (b )\a) and B = (1 0),
where Aa € Q,\{0}. Then AB = ABA.
Example 22 Let A€ K* let A and B be defined on K3 by

a 0 0 000
A=1b la 0 and B=|1 0 0
c \b Na 010

Then AB = ABA.

Lemma 2.5. Let A, B € Lo(E,). If there is unitary operators U,V € Ly(E,) with AB =
UB*A* and BA =V A*B*, then the following statements hold:

(i) AB commutes with U and U*;

(i) BA commutes with V and V*.

Proof (i) From AB = UB*A*, we have B*A* = ABU*. Hence AB = UB*A* =
UABU*. Thus ABU =UAB and U*AB = ABU*.

(ii)) By BA=VA*B*, we get A*B* = BAV*. Thus BA = VBAV*. Hence BAV =V BA
and V*BA = BAV™*. O

Theorem 2.1. If A, B € Ly(&,) are selfadjoint operators and A € K* with AB = A\BA #
0, then AB and BA are normal commuting operators.

Proof Set S= AB, hence S* = BA. From S = AB = ABA, we get S = AS*. Then
SS* = \(S*)? = §*S. Thus AB is normal and SS* = S*S. Hence AB and BA are normal
commuting operators. ]

Theorem 2.2. Let A € Ly(&E,) and let B € L(E,) and N € K* with AB = ABA # 0,
A*B = BA* and A*A=1 with B#0. Then A\ = 1.

Proof From AB = ABA, hence A*AB = MA*BA. Since A*B = BA* and A*A =1
we get B =AA*BA = ABA*A = AB. Hence (A—1)B =0. Since B#0, weget A=1. [

Proposition 2.14. Let A, B € Ly(E,). If there is unitary operators U,V € Ly(E,,)
with AB =UB*A* and BA =V A*B*. Then AB and BA are normal.

Proof By Lemma 2.5, we get UB*A* = B*A*U. Then
AB(AB)" = ABB*A* =UB*A*B*A* = B'A*"UB*A* = B*A*AB = (AB)*AB

and
(BA)*BA = A"B*BA = BAV*BA = BABAV* = BA(BA)".
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Definition 23. [22] Let A € L(£), A is said to be bounded below if for each
xe&, M|z|| <|Az| for some M > 0.

We have the following statement.

Theorem 2.3. Let A,B € L(E) and A € K* such that AB = ABA # 0. Then AB is
bounded below if and only if A and B are bounded below.

P r oo f Suppose that AB is bounded below and AB = ABA # 0. Then there is M > 0
with for each x € &,
Mjz[| < [|[ABz|| < [[A][|| Bz].

Hence B is bounded below. Since M||z|| < ||ABz|| for any = € £, and AB = ABA # 0, it

follows that for every z € &, WZYBHH:CH < ||Az||. Consequently, A is bounded below.
Conversely, it is easy to see that if A and B are bounded below, then AB is bounded

below. ]

3. Some properties of ultrametric operator equations

In this section, let A, B € L£(£). We shall study the operator equations AS = SB and
ASB = S for some S € L(£). We continue with the following results.

Lemma 3.1. Let A, B,S € L(E) such that AS =SB and ASB=S. If A>—1 or [ —B?
1s invertible, then S = 0.

Proof From AS =SB and ASB =S, we have S = SB% Then S(I — B?) = 0. Since
I — B? is invertible, we conclude that S = 0. Similarly, one can see that (4% —1)S = 0. From
A? — T is invertible, then S = 0. O

Further, R(S) denotes the range of S dense in &, i.e. R(S)=¢.

Proposition 3.1. Let A,B,S € L(E) and R(S) = & such that AS = SB and
ASB = S. Then A?=1.

Proof. From AS =SB and ASB = S, then (A% —1)S = 0. Hence R(S) C N(A%—1).
Since R(S) =&, we get A*=1. O

One can see the following:

Lemma 3.2. Let A, B,S € L(E) with ASB = S. If S is one to one, then B is one to
one.

Proof. It follows by S is one to one and N(ASB) = N(S). O

Theorem 3.1. Let A, B € L(E) such that A is injective and R(B) is dense. If A%2S = SB?
and A3S = SB3, then AS =SB for some S € L(E).

Proof Set U = AS and V = SB. Using A%2S = SB? and A3S = SB?. We get
AU = VB and A2U = VB2 Then A(AU) = AVB = (UB)B, thus (AV — VB)B = 0. By
R(B) is dense, we get B # 0 then AV =V B. From AU = VB = AV, we get A(U—-V) =0.
From A is injective, then U = V. Hence AS = SB. O
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Theorem 3.2. Let A,B € L(E) with A is injective and R(B) is dense. If A2SB? = S
and A3SB® =S, then ASB =S for some S € L(E).

Proof From A%2SB? = S and A3SB3 = S, then A2SB? = A3SB3. Hence A2SB? —
A38B3 = 0. Thus A(A?2SB?—ASB)B = 0. From A is injective and R(B) is dense, we obtain
that A2SB? — ASB =0. Thus ASB = S. O

4. Left (right) pseudospectum and left (right) condition pseudospectum of
bounded linear operators on ultrametric Banach spaces

We introduce the following definitions.

Definition 4.1. Let £ be an ultrametric Banach space over K and let A € L(E).
(i) A is said to be left invertible if there exists B € £(£) such that BA = I.
(ii) A is said to be right invertible if there exists C' € L£(€) such that AC = I.

Definition 4.2. Let £ be an ultrametric Banach space over K. Let A € £(£), the
left spectrum o!(A) of A is defined by

oc'(A) ={\ € K: A — X is not left invertible in £(£)}.

Definition 4.3. Let £ be an ultrametric Banach space over K. Let A € L(£), the
right spectrum o"(A) of A is defined by

0"(A) ={X € K: A— Al is not right invertible in L(E)}.

Definition 4.4. Let £ be an ultrametric Banach space over K, let A € £(£) and
e > 0, the left spectrum o'(A) of A is defined by

ol(A) =o' (A)U{X e K: inf{||C)|| : C;a left inverse of A — X[} > &'},
with the convention inf{||Ci|| : C; a left inverse of A— A} = oo if A—AI is not left invertible.

Definition 4.5. Let £ be an ultrametric Banach space over K, let A € £(£) and
e > 0, the right spectrum o’(A) of A is defined by

"(A)=0"(A)U {)\ € K: inf{||C,|| : C, aright inverse of A — A\I} > 871},

with the convention inf{||C,|| : C, a right inverse of A — A} = oo if A — Al is not right
invertible.

We obtain the following results.
Remark 4.1. From Definition 4.4 and Definition 4.5, we get
ol(A) C ol (A) C 0.(A)

and

o"(A) C ol(A) C o.(A).
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Proposition 4.1. Let €& be an ultrametric Banach space over K, let A € L(E) and
e >0, we have

(i) o'(A)=()0oL(A) and o"(A) =[)oL(A).

(ii) For all &1 and &5 such that 0 < &1 < &3, ¢'(A) C ol (A) C oL (A) and o"(A) C
ol (A) C ol (A).

Proof. (i) From Definition 4.4, for any ¢ > 0, o'(A) C oL(A). Conversely, if \ €
() oL(A), hence for all £ >0, X € gl(A). If A& 0'(A), then

e>0

A e {XeK:inf{||C) : C)aleft inverse of A — X[} > &'},

taking limits as ¢ — 0T, we get inf{||C}|| : C; a left inverse of A — A} = co. Thus ) € o!(A).
Similarly, we obtain ¢"(A) = ﬂ ol (A).
e>0

(ii) For &; and e such that 0 <e&; <es. Let X € ol (A4), then
inf{||C|| : C; a left inverse of A — A} > e7! > &5,
hence X € 0!, (A). Similarly, we have ¢"(A) C o (A) C oL, (A). O

Proposition 4.2. Let £ be an ultrametric Banach space over K, let A € L(E) and
e >0. Then

U +0) cdA). (4.1)
CeL(E):]|C|<e

Proof If A€ Uccre) o)< o'(A+ C). We argue by contradiction. Suppose that \ ¢
ol (A), hence A & o'(A) and inf{||C}]| : C; a left inverse of A — A} < e~ !, thus ||CCy|| < 1.
Let D defined on & by

D=> ¢(-co".
n=0

One can see that D is well-defined and D = C;(I+CC))~!. Henceforall y € £, D(I+CC))y =
Cly. Set y = (A — M)z, we have for all z € £,

r=D(I+CC)A—-XN)x=DA-XN+CC(A— X))z =D(A—- X+ ().

Hence A+ C — Al is left invertible which is contradiction with A € Ugc e d(A+QO).
Thus, (4.1) holds.

Theorem 4.1. Let £ be an ultrametric Banach space over a spherically complete field K
such that |E|| C K|, let A€ L(E) and € > 0. Then,

A= |J dUA+o.

CeL(€):||Cll<e
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P roof. According to the proposition 4.2 the embedding (inclusion) (4.1) is satisfied.

Conversely, suppose that A € aL(A4). We discuss two cases.

First case: If X € o'(A), we may set C' = 0.

Second case: Assume that A € ol(A) and )\ ¢ o!'(A), then for all C; a left inverse of
A — X, we have ||Cj|| > %. Hence, there exists y € £\{0} such that

Iyl ~ e

Set y = (A—Al)z, then Ciy = z. From (4.2), we have [|[(A—AI)z| < ¢||z|. Since ||€]] C K],
then there exists ¢ € K\{0} such that |¢| = |z||. Putting z = ¢ 'z, then |z|| = 1, hence
|[(A—AI)z|| <e. By Theorem 1.1, there exists ¢ € £* such that ¢(z)=1 and ||¢]| = ||z||"* = 1.
Define

forall ye &, Cy=—o(y)(A— N)z.
Then C € L(€) and ||C]| < e, since for all y € &,
ICyll = lloW)IIII(A = AD:z[| < elly]-

Furthermore, we have (A— A+ C)z = 0. Thus A—AI+C' is not left invertible. Consequently,
A € Uoere) o)< o' (A+C). u

We continue with the following definitions.

Definition 4.6. Let £ be an ultrametric Banach space over K, let A € £(€) and
e > 0, the left condition pseudospectrum Al(A) of A is defined by

AL(A) =o' (A u{r e K: inf{||(A— AD|||Di|| : Dy a left inverse of A — X} > e '},

with the convention inf{|[(A — AI)||||D:|| : D, a left inverse of A — A} = oo if A — Al is not
left invertible.

Definition 4.7. Let £ be an ultrametric Banach space over K, let A € £L(£) and
e > 0, the right condition pseudospectrum AZ(A) of A is defined by

AL(A) =0"(A)U{X € K: inf{||A = X||||D;|| : D, a right inverse of A — X[} > &'},

with the convention inf{||A — X ||||D,|| : D, a right inverse of A — A\[} = co if A — A\ is not
right invertible.

We have the following results.
Remark 4.2, From Definition 4.6 and Definition 4.7, we get
ol(A) C AL(A) € A(A)

and

o"(A) C AL(A) C A(A).

Proposition 4.3. Let €& be an ultrametric Banach space over K, let A € L(E) and
e >0, we have
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(i) o'(A) =[)AL(A) and o"(A) = [ AL(A).

e>0 e>0

(ii) For all &1 and ey such that 0 < g1 < &5, 0'(A) C AL (A) C AL (A) and 0"(A) C
AL (A) C AL (A).

Proof. (i) From Definition 4.6, for any ¢ > 0, o'(4) C AL(A). Conversely, if A €
MNeso AL(A), hence for all € >0, A € AL(A). If X & o'(A), then

Ae{XeK: inf{||[A = X|||D)|| : D a left inverse of A — X} >},

taking limits as ¢ — 07, we get inf{||A — XI||||D,|| : D, a left inverse of A — A} = co. Hence
A € o'(A). Similarly, we obtain ¢"(A4) = (.., AL(A).
(ii) For e; and ey such that 0 <& <es. Let A € AL (A), then

inf{||A — M ||||Dy|| : Dy a left inverse of A — M} > &7 > &5,
hence A € AL (A). Similarly, we have o"(A) C AZ (A) C AZ_(A). O

Proposition 44. Let £ be an ultrametric Banach space over K and let A € L(E)
and for every € >0 and ||A— M| #0. Then,

(i) A€ AL(A) if, and only if, \ € Ué||A—,\I||<A)‘
(A).

Proof. (i) Let A € AL(A), then X\ € o'(A) or

(i) X € ol(A) if and only if X € A!

13
[A=XT]|

inf{||(A = AD||||Ci]| : C; a left inverse of A — A} >

Hence \ € o!(A) orfor all C; a left invertible of A — \I, ||| >

A€ Oi\\A—AIH(A)' The converse is similar.

(ii) Let A € ol(A), then, X\ € o'(A) or for all C; a left inverse of A — I, ||Cj|| > 7.
Thus X € o'(A) or for all C; a left inverse of A — A, ||[(A — AD]||||Ci]| > e Y[(A = AD)].
Then, X € AZHA_EMII (A).

The converse is similar. H

1
Ay Consequently,

One can see the following corollary.

Corollary 4.1. Let £ be an ultrametric Banach space over K, let A € L(E) and ¢ > 0.
If a,8 € K with B#0, then AL(BA+ al) = a+ BAL(A).

Proposition 4.5. Let £ be an ultrametric Banach space over K, let A € L(E) such
that A# X and Cy = inf{||]A— | : A € K} and € > 0. Then o.(A) C AlCL(A).
A

Proof. Let u € ol(A), then u € o'(A) or for all C; a left inverse of A — ul, ||Cy]] >
el Since ||[A — ul|] > C4 > 0. Then p € o'(A) or for all C; a left inverse of A — ul,
|A— uI||||Ci|| > e 'C4. Hence X € AZCL(A). O

A

Lemma 4.1. Let £ be an ultrametric Banach space over K, let A € L(E) and € > 0. If
X € AY(A)\d'(A). Then there exists x € E\{0} such that ||[(A— X)z|| < g||A — X ||||z]|.
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Proof If A€ Al(A)\o!(A), then for all C; a left inverse of A — \I, we have

1
|4 =TG-

Thus .
cll > ——m.
|| l” €||A— /\]H
Then there exists y € £\{0} such that
|Cuyl| 1
) (4.3)
lyll — ellA— A
Set y = (A — M)z, then Cyy = z. From (4.3), we have |[(A— X)x| < e||A — A||||=|]. O

Theorem 4.2. Let £ be an ultrametric Banach space over K, let A € L(E), N € K and
e > 0. If there exists C € L(E) with ||C|| < e||A=X|| and X € c'(A+C). Then, X € AL(A).

P roof. Assume that there exists C' € L(E) such that
|C|| < el]A— M| and X € o'(A+C).

If A\ZAL(A), hence \ ¢ o'(A) and for each C; a left inverse of A—\I, ||A—\||||Cy]| <&t
Consider D defined on £ by

D=> C(-ca)".
n=0

Consequently D = C)(I+CC))~!. Henceforall y € £, D(I+CC))y = Cyy. Put y = (A—\I)z,
then
Ve e E) DIA= XN +C)x ==z

Then A — M + C is a left invertible which is a contradiction. Thus A € AL(A). O
Set C.(€) ={C € L(E) : |C]] < e|]|]A— M|}, we have.

Theorem 4.3. Let £ be an ultrametric Banach space over a spherically complete field K
such that ||E|| C |K|, let A€ L(E) and € > 0. Then,

A= | dA+o0).
cec:(&)

P roof By Theorem 4.2, we have Joee (s ol(A+ C) C AL(A). Conversely, assume that
A e AL(A). If X € 0'(A), we may put C = 0. If X\ € AL(A) and X & o'(A). By Lemma 4.1
and ||&|| C |K|, there exists x € E\{0} such that ||z|| =1 and ||[(A— A])z| < e||A— M.

By Theorem 1.1, there is ¢ € £* such that ¢(z) = 1 and ||| = ||z||”* = 1. Consider
C on & defined by for all y € X, Cy = —¢(y)(A — AI)z. Hence, |C| < €]|]A — \|| and
D(C) = &. Moreover, for z € E\{0}, (A — A+ C)xz = 0. Then, (A — X + C) is not left
invertible. Consequently, A € Ucec. (e o(A+C). O
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5. Determinant spectrum of non-Archimedean polynomial pencils

From Proposition 1 and Theorem 2 and Theorem 3 of [13], we get.
Theorem 5.1. Let C € M, (K). Hence,
(1) If 0 <1 < e, TTgl(C) C T’I“gz(c),

(ii) If p € K and o € K\{0}, hence Tr.(aC + pI) = ozTr‘%‘(C’) + B,
(iii) For any a, X € K, we have Tr.(al) = {)\ eK: [ A—al < ﬁ}

Theorem 5.2. Let C,S,A € M,(K) and € > 0. If S=ACA™', then Tr.(S) = Tr.(C).

Theorem 5.3. Let C € M, (K), hence for any € > 0,
5

T B
T(;(C) + f(O, ’nl

) C T, (C)

with v = max{e,d}, if 6 <e, we get
5

TT5(C> + Bf(O, |n|

) C Tr.(C).

We have the following example.
Example 5.1 1If
10
A= (0 2) € M (Qy).

Then for any € > 0,
Tro(A)={1,2} U{Ae€Q,: [3—-2)|, <e}.

By Definition 5 of [13], we get.
Definition 5.1. Let C € M,(K), € > 0. Then the e-trace set tr.(C) of C is
tro(C) ={NeK: |Tr(C - \)| <e}.
From Remark 1, Theorem 4, Proposition 2 and Proposition 3 of [13], we get.
Remark 5.1 Foreach ¢ >0, tr.(C) C Tr.(C).
Theorem 5.4. If B,C € M, (K). Then, for any € > 0,
(i) tre(BC) = tre(CB),
(ii) tro(B) +tr(C) Ctr(B 4+ O).

Proposition 5.1. Let C € M,(K), ¢ >0, if \,u € tro(C) and o € K with
la| < 1. Then ap+ (1 —a)X € tr.(C).

Proposition 5.2. Let C € M,(K), € >0 with |C| <e. If \,u € tro(C), then
A—p e tr(C).

The following propositions are valid.
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Proposition 53. Let Be M,(K), A€ K and ¢ > 0. If there exists C € M,(K)
with |Tr(C)| <e and Tr(B— X —C) =0, then X € tr.(B).

Proof. Since Tr(B— X —C) =0 and |Tr(C)| < ¢, hence Tr(B — \) =Tr(C) and
|Tr(C)| <e, then |Tr(B — \)| =|Tr(C)| <e. Hence A € tr.(B). O

Proposition 54. Let A € M,(K), A € K and € > 0. If there is C € M,(K)
with |Tr(C)| >¢e and Tr(A— X —C) =0, then X\ € tr.(A).

P roof. Assume that there is C' € M, (K) with |Tr(C)| > ¢ and Tr(A— X —C) = 0.
If \etro(A), thus |Tr(A— M)| = |Tr(C)| < e which is contradiction with |T'r(C)| > ¢ and
Tr(A— M —C) = 0. O

Proposition 5.5. Let Ae M,(K), A€ K and ¢ > 0. If X\ € tr.(A), then there
exists C € M, (K) with |Tr(C)| >¢e and Tr(A— X —C) =0.

Proof If A&tr.(A), hence |Tr(A— A)| >e. Set C = TT(A*M I. Thus C € M, (K)
and |T7(C)| = |Tr(ZA2AD )| = | ZHAAD oy (1)) = | THAAD | |Tr(A )| > e. ]

Proposition 5.6. Let A€ M,(K), N€ K and € > 0. If X € tr.(A), then there
ezists C' € M, (K) with |Tr(C)| <e and Tr(A— X —C) =0.

Proof If A€ tr.(A), hence |Tr(A — M) <e. Set ¢ =201 Thus ¢ € M, (K)
and [Tr(C)| = [Tr(FHA20T)| = rMTW—\WT”\ ITr(A - AD)| <. O

From Definition 6 and Remark 2 of [13], we get.

Definition 5.2, Let C € M,(K), € >0, the e-determinant spectrum d.(C) of C
is the set
d-(C) ={N e K: |det(C — )| < e}.

Remark 52 If Ce M,(K), then for any ¢ >0, o(C) C d.(C) and dy = o(C).
Using Proposition 4 of [13], we get.
Proposition 5.7. Let C € M, (K). Then for any ¢ > 0,

() 0(C) = Moy d-(O).

(il) For any 0 < ey < &9, d.,(C) Cd,(C).
We get:
Example 52 Let

C= G D e Ma(Qy).
Then for any € >0, d.(C) ={p e Q,: |u(p—2)|, <e}.

Example 53. Let a,06€Qp, c€Q, and

C= (g Z) € My(Q,).

Hence for any € >0, d.(C)={A€Q, :|a— A|p|b— A, < e}
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Example 54. Let
a b
C = (C d) € MQ(@p)
Thus for any € >0, d.(C) ={A € Q,: [\ = \Tr(C) +det(C)|, < e}.
Example 5.5. Let

c=(y o) < M@

Then for any ¢ > 0,
d:(C) ={A e Qy: |>‘2|p <e}

We have the following propositions.

Proposition 58 Let Di,Dy € L(Q)) be two diagonal operators with for each
1€ {1, Ce ,n}, Dlei = )\iei and Dgei = Ui€; with )\1,/% € @p; )\,L # )\i+1 and 27 7é Mia1- Then
d=(D1, D2) = {p € Qp : [\ = ppalp - - [An — pipinlp < €}

Proof Foreach ie{l,...,n}, (D1 —ADs)e; = (N\i — A\;)e; where (ej)1<j<n is a basis
of Q7. Hence, |det(Dy — ADy)|, = [A1 — Mualp - - - [An — Apin]p. Consequently for any e > 0,

de(D1, D2) = {p € Qp : [det(Dy — puDs)l, < €}
={neQ: | = Mlp- - [pptn — Anlp < €}
m

Proposition 5.9 Let C € M,(K) be invertible and X\ € K\{0}. Then for any
e >0,

A €d.(C) ifand onlyif \7' € d e (c). (5.1)
P r o o f. By virtue of the relation
det(C — M) = det(AC(A™' — C 1)) = det(\C) det(A™! — C 1),
where A # 0, (5.1) is satisfied. O

Proposition 5.10. Let B,C € M, (K) with det(B) # 0 and € > 0. Then d.(BC) =
d-(CB).

P roof. Since B is invertible, then

det(BC — M) = det(B(C — AB™")) = det(B) det(C — AB™})
= det(C — AB™ 1) det(B) = det(CB — \I).

Then A € d.(BC) if and only if A\ € d.(CB). O

Now, we consider the problem of the eigenvalue of the polynomial pencil given by

where P(A\) = >  AFA; and A, € M,(K) and z € K", we introduce the determinant
pseudospectrum of polynomial pencils. Set P(\) = Y7  A*A; and A;, € M, (K), we have.
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Definition 5.3. Let P(\) € M, (K), the resolvent set p(P(\)) of the polynomial
pencil P()) is
p(P(N\)) ={X € K: P()) is invertible},

the spectrum o(P(X)) of P(A) is K\p(P(X)).

Definition 5.4. Let P(\) € M,(K), >0, the e-determinant spectrum d.(P(\))
of the polynomial pencil P()) is defined by

d.(P(\) = A e K: [det(P(\)] < £}

Remark 53. From the Definition 5.4, if P(\) € M,,(K), then for any ¢ > 0, o(P(\)) C
d:(P()\)) and dy = o(P(N)).

Proposition 5.11. If P(\) € M,(K), then
(1) a(PA) = Nesg de(P(N));
(ii) For all 0 < ey < g9, we have d.,(P(N)) C d.,(P(X)).

Proof (i) Obvious.
(ii)) Let 0 < &1 < g9 and A € d.,(P()\)). Then |det(P(\))| < &1 < e9. Hence \ €
de, (P())- =

Example 5.6. Let
11
A= (1 1) € M3(Qy).
Set P(\) = A?A% — I. Then for any ¢ > 0,
de(P(A)) ={A e Q: [2A=1)(2A+ 1))[, <}

Let A, B,C € M, (K). We consider P(\) = AN?A+AB+C. For all A € p(P()\)), R(\,P) =
(MA+AB+C) L

Proposition 5.12. Let A, B,C € M, (K). If the inclusions A € p(P) and p € K
with RO, PY(X — j2)A+ (A~ w)B)| < 1, then € p(P) and | R, P)|| < [ RO\, P)|.

P roof Because

WPA+puB+C = NA+AB+C— (N —p*)A+ (\—pu)B)
= (NMA+AB+C)(I—R\P)((N—p)A+(A—pn)B)),

and ||[R(A, P)((N* = p®)A+ (A= p)B)|| <1, thereis R(u, P) and [|R(u, P)|| < |R(A\, P)||. O
The next theorem presents the perturbation of operators.

Theorem 5.5. Let £ be a non-Archimedean Banach space over K, let B,C € L(E).
Let p € p(B,C) and N\ € K with |A\ — u| < [|[R(u, B,C)C||™', then X\ € p(B,C) and
IRO B, C)|| < |R(u, B,C)|| where RO\, B,C) = (B — AC).
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Proof. Let uep(B,C), we have:
B—=XC=B—puC+puC —\C = (B—puC)(I—(\—p)R(u,B,C)C).
Since A € K with |\ — u| < ||R(u, B,C)C||7!, by Lemma 1.1,
(1= (A= wR(w. B,OYC) ™" and [|(I = (A~ p)R(n. B.C)C) | < 1.
Then A € p(B,C) and R(\, B,C) = ([—()\—/L)R(/L,B,C)C)_IR(,M,B,C). Thus A € p(B,C)
and RO\, B, O)| < |R(, B, O)||. .
From Theorem 5.5, we have.
Corollary 5.1. o(B,C) is closed in K.

From the results of M. Vishik 23] for C' = I, there is a nonanalytic resolvent of an operator,
for that we assume that application A € p(B,C) — R(\, B,C) = (B — AC)™! is analytic on
p(B,C).

Theorem 5.6. Let £ be a non-Archimedean Banach space over an algebraically closed field
K, let B,C € L(E) with R(\, B,C) is analytic on p(B,C). Then

d
aR(A B,C) = R(\ B,C)CR(\, B,C). (5.2)
Proof. Let A€ p(B,C), let pe€ K with |A—pu| <|[R(\, B,C)C||~!, by Theorem 5.5,
we have:

R(u,B,C) = (I—(u—NR(\, B,C)C) 'R\, B,C)

i ((u = MR\, B,C)C) R(X, B, C).

[e=]

Then
B,C) — R(\, B
HR(“’ ’CZL_ f“’ ) ROLB.C)CR(. B (J)H
= [ - 2t mo B oY)y RO BLO)|
k=2

< A= plsup [[(p = A" (R(\, B, C)C)*R(A, B,C))|

hence B,C) — R(\,B,C
H (1, ) (A, 5,C) —R(A,B,C)C’R()\,B,C)H -
u—))\ - A

Therefore, (5.2) is satisfied. O

From Theorem 5.7 and B = I, we get.

Theorem 5.7. Let £ be a non-Archimedean Banach space over an algebraically closed field
K, let C € L(E) such that R(\,C) is analytic on p(C). Then
d

—TR(\.C) = R\ O
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