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Pazjioxkenune momysieit Haa o000IIeHHbIME ajareopavmmu /Inkcona
Cepreit BuktopoBuy JIIO,Z[KOBCKI/Iﬂ

MUPSA — Poccuiickuit TeXHOJOTHIECKUN YHUBEPCUTET

119454, Poccuiickas Penepariusi, r. Mocksa, npoct. Beprajickoro, 78

Awnnoramusi. CtaThsi IOCBSIIIEHA MOJLYJIsIM HaJ| 0000ImeHHbIMU ajiredpamu Jlukcona. dtu aJ-
reOpbl HEACCOIMATUBHBI U B OOIIIEM CJIydyae MOI'YyT ObITh HeaJbrepHaTUBHbIMEU. OHU COCTABJIAIOT
BaKHBII KJIacc ajaredp u pas3iiesl MaTeMaTuKu. B pabore m3ydarorcsi JeBble, IIpPaBble U JIBYCTO-
poHHUE Momysu Haj 0600meHHbIME ajaredpavmu /Iukcona. Vcciemyercss ux CrpyKTypa U IOJI-
Moy, Ocoboe BHUMaHME yIe/eHO OMMOLYJ/ISIM C MHBOJIIOIMEl HaJl 0O00IEeHHBIME ajaredpaMu
Hukcona ¢ nasosnonueit. Takme 6UMOIy M UMEIOT crienudpuIecKrne 0COOEHHOCTH, BEI3BAHHDBIE Ha-
JinareM MHBOJIIOIMY. VcceayoTes MUHIMAJIbHBIE IOAMOIYJIN U pa3JjIoXKeHne MoyJeil. B qact-
HOCTHU, U3yYIAIOTCS ITUKIMIECKUE TTOIMO/TY/IN.

KuroueBbie cjioBa: MOIY/Ib, pa3ioxKenne, 06001mennast aarebpa Jlnkcona, MHBOJIIONHS, KOJIBITO
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Introduction

Dickson algebras compose a great class of nonassociative algebras (see [1,2]). They are
formed by induction using a doubling procedure of a smashed product (see [3-6] and references
therein). This class of algebras is the generalization of the octonion (Cayley) algebra. There
are wide-spread applications of Dickson algebras in the theory of Lie groups and algebras
(see [7T—11]) and their generalizations (see [12]), noncommutative mathematical analysis, non-
commutative geometry (see [13,14]), operator theory (see [15,16]), PDE (see [17]), elementary
particle physics and quantum field theory (see [18]). In the aforementioned areas naturally
modules over Dickson algebras are very important, but they are only a little studied.

In this article left, right and two-sided modules over generalized Dickson algebras are
studied. They are complicated in comparison with alternative algebras. Specific definitions
and notations are given (see Definitions 1.1, 1.2, 1.3, 2.1, 2.2, Remark 1.1), because generalized
Dickson algebras are neither associative nor alternative. Structure of modules and submodules
over generalized Dickson algebras are investigated. For this purpose auxiliary Lemmas 1.1,
1.2, Corollaries 1.1, 1.2, Examples 1.1 and 2.1 are provided. Dickson algebras posses very
important involution property. Therefore bimodules with involution are studied in Section 1.
Bimodules with an involution are scrutinized in Theorems 1.1, 1.2, Corollary 1.3. For them
necessary and sufficient conditions are elucidated. Identities in them are studied in Proposition
1.1. Subbimodules are investigated in Theorem 1.3 and Corollaries 1.4, 1.5. Relations between
left, right and two-sided modules over Dickson algebras are given in Corollary 1.6 and Remark
1.3. Bimodules which are not bimodules with involution also are studied (see Proposition 1.2).
Left subbimodules are investigated in Theorem 1.4, Proposition 1.3, Corollary 1.7. In particular,
cyclic submodules are studied.

All main results of this paper are obtained for the first time.

1. Modules over generalized Dickson algebras

To avoid misunderstandings we recall necessary definitions and notations in Definition 1.1
and Remark 1.1 (see also [1,3,4] and Appendix).

Definition 1.1. Assume that F' is an associative commutative and unital ring. Then
over F' a unital algebra A is considered, which may be generally nonassociative (relative to
multiplication A x A — A). Assume that A is supplied with a scalar involution a — a so
that its norm N and trace T maps have values in F' and fulfil conditions:

aa = N(a)l with N(a) € F, (1.1)
a+a="T(a)l with T(a) € F, (1.2)
T(ab) = T (ba) (1.3)

for each a and b in A.
If a scalar f € F' satisfies the condition: Ya € A fa =0 = a = 0, then such element f

is called cancelable. Using a cancelable scalar f the Dickson doubling procedure provides new
algebra C'(A, f) over F such that:

C(A, f) = A Al (1.4)

(a+bl)(c+dl) = (ac — fdb) + (da + bé)l and (1.5)
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(a+0bl) =a-— 0l (1.6)

for each @ and b in A. Then 1 is called a doubling generator.

Remark 1.1. From Definition 1.1 identities follow: Ya € A Vb€ A T'(a) = T'(a + bl)
and N(a+bl) = N(a)+ fN(b). The algebra A is embedded into C(A, f) as A > a > (a,0),
where (a,b) = a+ 0l It is put by induction A, (fn)) = C(An-1, fn), where Ag=A, fi = f,
n=12,..., foy="(f1,.-..,fa). Then A,(fu) are generalized Dickson algebras, when F' is
not a field, or Dickson algebras, when F' is a field, where 1 < n € N.

If the characteristic of F' is char(F') # 2, then the imaginary part of a Dickson number z
is defined by:
Im(z)=2-T(2)/2,

hence N(a):= Ny(a,a)/2, where Ny(a,b) := T(ab).
If the doubling procedure starts from A = F'1 =: Ay, then A; = C(A, fi) is a *-extension
of F.

Remark 1.2. We consider also the following generalizations of the Dickson algebras.
Let F' be a commutative associative unital ring of characteristic

char(F) # 2; (1.7)
an algebra B has a structure of a F'-bimodule with

r+y=y+z, (z+y)+tz=z+@y+2),

a(ayz) = (aay)z, (xa;)a = x(aa;) and such that axr = xa,

(1.8)

for each @ and a; in F, z, y and z in B, B asthe F'-bimodule is free and isomorphic with
the direct sum

B~ (P Fi; (1.9)
§=0

with elements i; € B for each j = 0,...,n, satisfying Tyt = & i, where Tpx = (ipx)iy,
&k € F foreach k, [ in {0,1,2,...,n}, = in B, where n > 2 is a natural number,
€= (&i)ki=1,.nt+1 (1.10)

isa (n+1) x (n+1) matrix having matrix elements &; such that the corresponding F'-linear
operator is invertible.
It will frequently be useful also the additional condition

’ij’ij = Ujio (111)
with nonzero cancelable v; in F' possessing an inverse vj_l € F foreach j=0,...,n.

Lemma 1.1. Let an algebra B satisfy Conditions (1.7)—(1.10) in Remark 1.2. Then there
exist F'-linear operators m; : B — Fi; which are F -linear combinations of the operators
To,..., T, for each j € {0,1,...,n} such that Z?:o 7; = idp, where idg(x) = x for each
x € B.
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P r o o f. From the conditions of this lemma it follows that there exists an inverse operator
having matrix p = ¢! with matrix elements py; belonging to F. Then we put m;(z) =
Y reoPikTi(x), consequently, m;(xz) = > ,_,xym;(i;), where z; € F for each [ such that
xr = Z?:O x4, * € B. Then Wj(il) = Zzzomek(il) hence Wj(il) = Zzzopj,kfk,lil = (SjJZj,
where §;; =1, §;, =0 for each k # j. Thus m;(x) = z;i;. O

Corollary 1.1. Let the algebra B satisfy conditions (1.7)—(1.11) in Remark 1.2. Then
vy i;mj(x) = x; for each x € B and j = 0,...,n, where z; € F for each | such that
xr = 27:0 l’lil.

Example 1.1. Assume that F' is a (commutative associative) field of characteristic
char(F) # 2, B satisfies conditions (1.7)—(1.10) in Remark 1.2, {ig,1,...,%,} is a basis of B
over F, det(§) # 0. Then there exists an inverse matrix p = £~! with matrix elements py
belonging to the field F.

In particular, let us choose B = A,,(fum)) such that 2 < m € N, where F' is the field of
characteristic char(F) #2, fi=1,..., fn=1 n=2"—1, Ay = F with the trivial involu-
tion (i. e. @ = a for each a € Ay), ip = 1, where 1 = 15 is the unit element in B (see Remark

1

1.1). Then Z = moig — X103 — ... — Ty, for each z € B, where xy,...,z, denote expansion
coefficients belonging to F' for x such that x = z¢ig + 2171 + ... + ui,. Then Ty(z) = =z,
Ti(x) = —xolp — 181 + Xolis + ... + Tpin, .., Tn(T) = —xoio + X101 + ... + Ty_10n_1 — Tpin,
since igiy = iy, 12 = —1, izl = —iyip and (ixd;)iy, = 4; for each k #1 with k> 1 and [ > 1.

Therefore, 5= (To+...+Tom_1)(z) = Z, consequently, m(z) = zoio = 3(To+ 575w (To +. .. +
Tom_1))(x). Then my(irx) = xyio for each k > 1, hence m(z) = (mo(ip2))ix = xpig. Thus &
is the invertible matrix.

Lemma 1.2. Let A, = A,(fm)), Ao = A, 2 < n € N, where A is the commutative
associative unital algebra with the trivial involution over the commutative associative unital ring
F' of characteristic char(F) # 2. Let iy = 14, g1 =1 for each k=1,...,n, i;, =1, 1,
with j; = 2R~ jo =1 + 2871 foreach s=2,...,p, 2<p<n, 1<k <...< k, <mn,
where 1, denotes the doubling generator 1 at the p-th step in Formula (1.5) in Definition 1.1.
Then {i; : j =0,1,...,2"=1} s a family of generators of A,, over Ay satisfying the identities:

ij(iju) = (i5i5)u, (uij)i; = u(izij), i;(vi;) = (i50)i;, T(i(iRv)) =0 (1.12)
for each ue A,, v=v€ A, and j=0,1,...,2" =1, 1 <k #j.

P roof Since the ring F' is commutative and associative, then as it is known the left and
right F'-module structures can be considered as equivalent: (pp;)u = p(p1u) = p1(pu) = (p1p)u
for each p, p; in F, u € A,, by putting L, = R, on A, for each p € F, where L,u = pu,
R,u = up (see |9, Ch. 2]). The algebra A, is unital, hence A; is unital, and by induction A, is
unital according to Formulas (1.4), (1.5) in Definition 1.1. The elements f; in F are cancelable
for each k, consequently, the product fi, ... fy, is nonzero for each 1 < k; < ... <k, < n,
p > 2, since A, is the unital algebra. For each ag, a; in Ay by the conditions of this lemma
apa; = ajag and Goa; = apaj.

Using Formulas (1.4), (1.5) in Definition 1.1 by induction we deduce that for each z in
A, there exist elements xg,...,z9n_1 in Ay such that x = zgig + ... + Xon_1i9n_1. That is,
{i; : 7=0,...,2"} is the family of generators of A, over Ay. Therefore,

21 2n—1 2n 1
i) = Y ii(i@mim) = Y (i(ijim))Tm  and  (wi;)i; = Y T((imi;)is)- (1.13)
m=0



430 S. V. Ludkovsky

From Formula (1.5) in Definition 1.1 we deduce that

L (Le(ag—1 + di—11g)) = (Lelg)(ag—1 + di—11;) and

(1.14)
((ag—1 + de—11i) L)l = (ap—1 + d—11;) (Lely)

for each aj_1, dy_; in Az_;, where k > 1. Note that 12 = —f, for each k& > 1, since
Ay is the unital algebra. If {li ,...,1;, }4p) denotes an ordered product, where ¢(p) is a
vector indicating an order of pairwise multiplication with a corresponding order of brackets
in ly,..., 1, where 1 <k <n, k # k, foreach [ #5s, [ and s in {1,...,n}, 2<p<mn,
then there exist unique n(ki,...,ky, q(p)) € {1,2} and j(ki,...,kp, q(p)) € {1,...,2" — 1}
such that (—1)"{L,,..., 1k, }op) = i, Where n = n(ky,... . kp,q(p)), j = j(k1,... kp,q(p)).
Therefore, from (1.14) by induction in k& = 1,...,n it follows that i;(i;im,) = (i;i;)i, and
(mi;)i; = im(i;i;) for each m and j. For each v =10 € A,, from Formulas (1.5) and (1.6) in
Definition 1.1 it follows that T'(lyv) = 0, 1(vly) = (Iyv)ly = Lx(v];) for each k& > 1 and by
induction i;(vi;) = (i;v)i; for each j, since ig = 1. The latter and (1.13) imply (1.12). O

Corollary 1.2. If the conditions of Lemma 1.2 are satisfied and F is a field, Ay = F,
then {i; : j=0,...,2" — 1} is a basis in A, (as in the F -linear space).

Definition 1.2. Let F' bethe commutative associative unital ring. Let B be a unital
algebra over F' with F' C Cg(B). Let M be a unital left Cg(B)-module:

b(byu)= (bby)u, b(u+v)=bu+bv, (b+b)u=bu+bu, u+ (u1+v)=(u+u)+v (1.15)

for each u, uy, v in M, b, by in Cg(B). Let u; be a Cg(B)-bilinear map py : BXM — M,
that is,

pi(z, utv)= pi(z,u)+p (2, v0), pi(r+y,u)= (e, u)+p(y,w), pi(br,w)=bui(z,u) (1.16)
such that u is compatible with the left Cg(B)-module structure of M :
pi(x,bu) = bu (x, u) (1.17)

foreach z, y in B, w, v in M, b in Cg(B). Then M will be called a left B-module. Shortly
p1(z,u) can also be denoted by xu. Similarly is defined a right B-module, or a B-bimodule.

For B = A.(fwm)) with Ay = A, n > 2, where A is the commutative associative
unital algebra with the trivial involution over the associative commutative unital ring F' of
characteristic char(F') # 2, if M satisfies conditions (1.15)—(1.17) and

ij(ijz) = (ijij)z (1.18)

foreach x € M, j=0,...,2"! then M will be called a left A, (f(,))-module. Symmetrically
is defined the right A,(f(»))-module with condition (1.19) instead of (1.18):

(wij)i; = 2(ijiz) (1.19)
for each x € M, j=0,...,2"" 1 If M satisfies (1.15)—(1.19) and (1.20):

L, =R, on M for each b € Cp(B), (1.20)
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then it will be called A,(f(n))-bimodule and denoted by pMp or shortly by A, where

B = A,(fn))-
If in the B-bimodule M there exists a Cp(B)-linear map J: M — M such that

J(br) = (Jx)b foreach x € M and b€ B, J* =1 (1.21)
and ((3z € M Vb€ B bz + J(bx) =0) = (z =0)) (1.22)
and (i;y)i; = i;(yi;) and i;(igy) + i;(igy) =0 (1.23)

for each y = Jy in M and j >0, j # k > 1, where B = A, (f)), I : M — M is the
identity map I = idy, on M, Ixr = x, then M will be called the B-bimodule with the
involution J and denoted by gMp or shortly by M. Briefly Jz will also be denoted by .

Theorem 1.1. Let M be the unital A,(fu))-bimodule with the involution J, let the
subalgebra Ay over F be commutative associative and with the trivial involution a = a for
each a € Ay, let also char(F) # 2 and f; possess an inverse element fj’1 m F relative to

multiplication for each j =1,...,n, where 2 < n € N. Then there exists an Ag -subbimodule
My such that a,Ma, = @ " i;My with JMy = My, and My = Cyr(Au(fiw)), and there
exists an Ag-linear map 7, from M onto izMy with 71, o 71; = Oy 7k, where Op) = 1,

Ok; =0 if k#j, for each k and j in {0,1,...,2" —1}.

Proof By virtue of Lemma 1.2 the Dickson algebra B = A,(f»)) has the family of
generators 3, :={i;: j =0,...,2"—1} over Ay. By the conditions imposed above in Definition
1.2 the algebra A, and the ring F' are unital such that there is the natural embedding of F
into Ay as F'lu, and hence into B. Therefore, B contains the Dickson subalgebra algrf,
over F' with generators ig,..., 79 _1.

Note that F' C Cg(B) and Fiyf, = Ff,, Fpnix = F3, for each k, since F C Cy,(Ap).
As in Remark 1.2 let Tyu = (ixu)ip for each u € B, and Thx = (ipx)iy for each = € M,
k=0,...,2" —1. We put mo(u) = “T¢ for each u € B, and 7o(x) = &% for each z € M.
Let My = 7o(M), hence My =J{y € M : 3z € M,y = 2}, On the other hand, Ryx = Lyx
for each b € Cg(B) and x € M by Definition 1.2, where Ly,u = bu, Ryu = ub for each
u, b in B. The algebra Ay is commutative and associative with ag = ag for each ay € Ay,
consequently, Ay C Cp(B) and hence agy = yag = yag = agy for each y € My and ag € Ap.
Therefore, M, is the Ag-subbimodule in M, since Ay C B and M has also the structure
of the Ap-bimodule 4,My4,. It follows that y = y and 7(y) = y for each y € M, hence
Ty © Ty = 7o, where as usually (goh)(v) = g(h(v)) denotes the composition of maps ¢ and h
with a variable v of h.

For each x € M there is the decomposition = y + z such that y = %, z =% Let
M_:={z€ M :zZ=—z}. Evidently, My N M_ = {0} and M_ is the Ay-subbimodule in
Ao Ma, such that My @® M_ = 4, Ma,, since J: M — M and J? = I, also By N B_ = {0},
By =my(B), By=Ay, B_:={ue€B:3ve B u="3"}

We put

Sl ) ::U{fEF:EIpE{l,...,n} Jjhe{l,...,n} ... F,e{l,....n}
o €Z ... EIaPEZEIUG{—l,l}:f:vj‘:l,,,f.%}7

Jp

consequently, i = s, € S for each k > 1, where S = S,(fn)). Note that if y € My,
z€ M_, be B_, then (by —yb) € My, (by +yb) € M_, bz+zb € My, bz—zb e M_.
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On the other hand, (ixy = yix) < ((ixy)ix = ysk) < (ix(yix) = ysg) for each k > 1,
consequently, from conditions (1.21), (1.22), (1.23) in Definition 1.2 it follows that iyy = yiy
for each £ =0,...,2" — 1, since s, € S C F, 19 = 1. This implies that ¢,y € M_ for each
k > 1. By the Ag-linearity and Lemma 1.2 this implies that My C Com(B).

Then we put 7;(z) = —s; ' (o(bjx))i; for each € M, j =1,...,2" — 1. Notice that
7r(x) = 7r(y) + 7x(2) = 7p(z) for each &k > 1 and = € M, where y € My, z € M_,
v=y+z y="3l2, »=L5I2 since iy € M_ and 7(M_) = {0}. Thus 7y o@p =0 for

each k > 1, since 7x(My) = {0} and 7g(M) = My. From itz = ix(izz) = sz with s, € S
for each k > 1, char(F) # 2, F C Ay C Cp(B) and the conditions (1.15)—(1.19) in Definition
1.2 it follows that L; : M — M and similarly R;, : M — M are Aj-linear bijections for each
k=0,...,2" — 1, since M is the unital B-bimodule with involution, since the algebra B is
unital, 4o = 1p. Then we deduce that 7j(z) = 5= 3, (L + J)(bp) )i, = Sty " (bpx)ix + 7] for
each x € M and k=1,...,2" — 1. Therefore, 7rk M_ — M_ for each k> 1, since z = —Z2
for each z € M_. This implies that 7y o Tx(x) = To(7x(z)) = 0 for each x € M and k > 1,
since Mo N M_ = {0}, where z = Z=2z. Then we infer that @ o x(z) = —7,(Z) = () for
each x € M and k > 1, since my(z) = mx(z) with z = I2Jx since L;, R; g = Lz, since
7o(M) = My. Particularly 7x(ixy) = ixy for each k > 1 and y € My, since ixy = yig. This
implies that 7, (M) = 7ty o Tp(M) = Tp(ixMo) = ixMo, My = Myiy for each k > 0, since
io = 1. Note that i,My C M_ and #o(bpw) = @o(bpz) with z = %x for each & > 1 and
x € M. Thus 7o|n, = idag, Tolm. = 0, where idy,(y) = y for each y € M,. Therefore,
wjo7, = 0 for each j # k, since i;My NixMy = {0}, since i;(ixy) + i;(iry) = 0 for each
y=Jyin M and j >0, j#k >1, since f; is invertible relative to multiplication in F' for
each j.

Then we put K = Z?igl 7 on M, and K = Zjigl m; on B. These operators are
idempotent K2 = K and K? = K, since Tjofy = jxft; and ;o my = &;xm; for each
J,k=0,...,2" — 1. Hence I — K also is the idempotent operator.

It is known that the minimal subalgebra A in A,(f)) generated by {Aq,i;,ix} is
associative for each j, k=0,...,2"—1, since F and Ay are commutative and associative by the
conditions of this theorem (see [1,4,9]). Therefore, M) := Mo@® ;Mo @i Mo® (i5ir) My is the
Aj ) -subbimodule with involution in M, since iy Mo = Myiy for each k, ;Mo NipMy = {0}
for each j # k, i, € G, where G = Gy(fm)) = {io, ... d2n_1}- S, F C A,.

On the other hand, Ky = 7oy = y and k(ijy) = 71,(i;y) = i;y foreach y € My and j > 1,
since 7 (i;y) = 7 0 7;(i;) = 0 for each j # k. Then we deduce that KM_ = @31;1 i; Mo,
since Ly, : My — M_ and 7;M_ = i;My for each j > 1, since (7;M_)i; = My, Moi; = i;My.
Hence 7y (ixP) = 7o(P) = {0}, where P := M © (@3251 i;Mp). Notice that P is the proper
Ay (fny) -subbimodule with involution in M, that is P satisfies conditions (1.18)—(1.23) in
Definition 1.2. On the other side, the condition

(3z € M Vbe Bbx+ J(bx) =0) = (z=0)) is equivalent to
(Bz e MVjed{0,...,2" =1} iz + J(ijz) =0) = (z =0)),

since for each b € B there exist aq,...,asn_1 in Ay such that b = agig + ...+ aon_1i9n_1 by
Lemma 1.2. From 7(P) = {0} and Py = 7o(P) it follows that Py = {0}, consequently, P =
{0}, since Py = i;x;(P_) = {0} for each j > 1. Thus P = {0}, consequently, K =1 on M
and hence 4, M4, = @3; ;Mo and consequently, My = Comy(B), where M is considered
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as the Ap-bimodule 4,Mp,,, since M_ N Comy(B) = {0}. Analogously 4,Ba, = @3181 i; By
and By = Compg(B), By = m(B), where B is considered as the Ag-bimodule 4,Ba4,.
Therefore, for each y € My and for each j # k such that 7 > 1 and k£ > 1 we infer that
((i;9)ik) = 0 and m(i;(yix)) = 0 for each t # r, 7. ((¢;v)ix) = (4;y)ir and 7,(i;(yix)) =
i;(yix), where r € {1,...,2" — 1} is such that i;i, € 4,5, since (i;y)ix € Myn—, 1;(yir) €
M ry—. We put v = i;(yix) — (¢;9)ig. Therefore, v € L; My C M;-. From Formulas (1.21),
(1.22) and (1.23) in Definition 1.2 we deduce that v = v. Thus v € My N M_ = {0}, that
is v = 0. Hence (i;y)ir = i;(yi)) for each j # k such that j > 1 and k¥ > 1. For j =0
or k=0 evidently ¢;(yix) = (i;y)ix, since ig = 1. Using My = Comy(B) and Conditions
(1.21), (1.22), (1.23) in Definition 1.2 we infer that i;(yix) = —(yix)i; for each y € M, and
Jj # k such that 7 > 1, & > 1. Then it is similarly deduced that ¢;(ixy) = (i;i5)y and
(yix)i; = y(igi;) foreach j # k in {1,...,2" =1}, y € M), since v+v; =0 and v = v; with
v =14;(ipy) — (i5ik)y, v1 = (yix)i; —y(ixi;), since ve M_, vy € M_, MynM_ = {0}, since i;,
ik, il belongto B_. If j =0 or k=0, evidently ¢;(ixy) = (i;ix)y and (yix)i; = y(ixi;) for
each y € My. By the Aj-linearity and Lemma 1.2 we infer that My C Ny, (B), consequently,
Cu(B) = M. O

Corollary 1.3. Let the conditions of Theorem 1.1 be satisfied and n = 3. Then b(bzx) =
(bb)x, (bx)b = b(xb), (xb)b= x(bb) for each x € M and b€ B.

Proposition 1.1. If the conditions of Theorem 1.1 are satisfied and there is some
equality with a finite sum like

> Yoskrekma{doge) - - Ao Yapm) =0

in An(fn)), where dip; € An(fn))s Yowkr,okmit € Ao for each kj, j, 1, 0, then there exists a
corresponding identity in M.

P r o o f. For the identity satisfying the conditions of this proposition we use the decompo-
sition 4,My, = @3161 i;My and JMy = My, where My = Cyp;(B). Then we substitute one of
dy, on dy;y with an arbitrary fixed nonzero y € M, for each additive {dg(kl) . dg(km)}qw(m),
where S,, denotes the symmetric group of {1,...,m}, 6 : {1,...,m} — {1,...,m} is a
bijection for each 6 € S,,,, g 9(m) is a vector indicating an order of pairwise multiplications in
{...}. Then it is possible to make sums of such type equalities with multipliers from Ay. O

This proposition shows that definitions above are natural, because particularly the algebra
has also the structure of the module over itself. There may other equivalent definitions be given.

Theorem 1.2. Assume that F is a commutative associative unital ring, char(F) # 2, a
unital algebra Ag over F' is associative and commutative with the trivial involution a = a for
each a € Ay, My is a unital Ay -bimodule, B = A,(f)) is the generalized Dickson algebra,
and f; possess an inverse element fj_1 in ' orelative to multiplication for each j =1,...,n,
A My, = @?ialijMo such that My = Cp(B), where n > 2. Then a,Ma, can be supplied

with B -bimodule with involution BM B Structure.

Proof Weput by =yb, a(by) = (ab)y, a(yb) = (ay)b, (ya)b = y(ab), J(by) = by for
each y € My, a and b in B, J(x+ z) = Jr+ Jz for each z and z in M = @?181%’]\/[07
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since My = Cp(B) and igy = y for each y € My. Therefore, Jx = zoby + ...+ Ton_1ban_; for
each o = gl + ...+ XTon_1i9n_q in M with xo,...,29n_1 in My, consequently, J? = I and
hence J is the involution on M. In view of Lemma 1.2 the equalities by = yb, a(by) = (ab)y,
a(yb) = (ay)b, (ya)b = y(ab) for each y € My, a and b in B, supply M with properties
(1.15)—(1.23) in Definition 1.2, since the minimal subalgebra A, in A,(f)) generated by
{Ao, 5,1k, 0} is alternative for each j, k,l in {0,...,2" — 1} (see |1,4,9]), since F and A
are unital, associative and commutative, a = a for each a € Ay, since each x € M has the
decomposition x = xgig+,...,+Ton_199n_1 in M with zq,...,zon_1 in M. O

Definition 1.3.1If M istheleft B-module (see Definition 1.2), E is a subset in B,
D is a subset in B (orin M ), then

E-D=|J{ed:ecE, de D},

ED:U{l‘ZzekdeWEN, Vk:ekEE, deD}

k=1
denote subsets in B (or in M correspondingly). Then it is put
EW = F, (E-D)(l) — E-D;
Vn>1 dE™ = E-E"', (E-D)™ = E.(E-D)™Y;
E<> =E, (ED)~” = ED,
Vn>1 E<"> = FE"! (ED)<" = E(ED)<""'>;

E(o) — U E™  d(E- D)™ = U(E.D)(n);
n=1 n=1
E<oo> — ZE<”>? (ED)<OO> — Z(ED)<TL>
n=1 n=1

If N isaleft B-submodulein M suchthat 3d € M, D ={d}, E =B, N = (B{d})<>~,
then N is called a cyclic left B-submodule in M generated by d.
Similar notations are for right B-modules or B -bimodules.
If M is the B-bimodule, then
(E-D)" =(E-D)u(D-E), (ED)*"'> = (ED)+ (DE),
vn>1 (E-D)™ =(E.(E-D)"t=Uyy(E.D)" 1D, E),
(ED)<n,n> — (E(ED)<n—1,n—l>) 4 ((ED)<n_l’n_1>E);

(E . D)(oo,oo) _ U(E . D)(n,n)7 (ED)<oo,oo> _ Z(ED)<n,n>'
n=1 n=1

If N isa B-subbimodulein M suchthat 3d € M, D ={d}, £ =B, N = (B{d})<*>~,
then N is called a cyclic B-subbimodule in M generated by d.

If F is the field and V' is an A, (f())-subbimodule with the involution in an A,(fu))-
bimodule with the involution, then dimgV denotes the dimension of V' over F.

Theorem 1.3. Let the conditions of Theorem 1.1 be satisfied, D C M. Then (BD)<™™> C
(BD)<m+Lm+1>" for each m > 1, (BD)<**> = (BD)<**> for each k > 4. Moreover,
(BD)<**> is the B -subbimodule with involution in M and (BD)<**> = (BD)<*>>
(BD)<oo,oo> — (BD)<oo,oo>.
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P roof. Thealgebra B = A,(fr)) is unital, the B -bimodule with involution A is unital,
n > 2, by the imposed conditions. Therefore, (BD)<™™> C (BD)<m™+bm+1> for each m > 1.
For each x € D the element 7;(x) belongs to (B(B{z}))B for each j =0,...,2" — 1,
since . (i) G )i
1T)11 on 1 )lon 1
m( + 8—1 + ...+ T)
by Theorem 1.1, where s; is invertible in F' (relative to multiplication) for each j > 1.
Evidently, (B(B{z}))B C (BD)<**> for each x € D. On the other hand, R; 7;(x) belong
to (BD)<**> for each j and k in {0,...,2" — 1}, z € D, since by Theorem 1.1 7;(z) €
1;Mp, each x in M has the decomposition x = wgig + ... + Ton_1ion_1 With wg,..., 220
in My, #;(x) = x5i;, My = Cp(B). This implies that (BD)<**> = 2" 14, Vj with Vj =
spcmFU{xj 3z € D 3j € {0,...,2" — 1} z; = ;—ijrj(x)}, where spanp() denotes the
F-linear span of a subset @ in M. Certainly, Vj C M, and consequently, (BD)<*> is
the B-subbimodule with involution in M and (BD)<**> = (BD)<*>> (BD)<>®>®> =
(BD)<eo0>, O

Corollary 1.4. If the conditions of Theorem 1.3 are satisfied and F is the field, then
dimp(BD)<%>> = 2"dimpVy and dimpVy < 2"card(D).

T =

Corollary 1.5. Let F' be a commutative associative unital ring, char(F) # 2, let Ay be a
commutative associative unital algebra over F with trivial involution a = a for each a € Ay,
2<neN, f; beinvertible in F' relative to multiplication for each j =1,...,n+1. Let also N
be an A, (fm)) -bimodule with involution and N be contained in some Api1(fni1)) -bimodule
P such that Cn(An(fm))) = Co(Anti(fint1))), then M = N @ (Nl,1q) is an Apia(finsr)) -

bimodule with involution and My = Ny.

Proof By virtue of Theorem 1.1 N has the decomposition N = @i:ol Nyt with
Ny = CN<An<f(n)>>7 hence

2ntl_g
M= P Nij.
J=0

From Theorem 1.2 it follows that M is the A, i(f(n41))-bimodule with involution and M, =
No, since Cn(An(fm)) = Cv(Ans1(finrn))- O

Remark 1.3. For the generalized Dickson algebra B = A,(fn)) with n > 2, there is
its unvolutorial algebra B, which as an F -linear space, is the same, but has the multiplication
obtained from B by the following formula: @ o b = ¢ with ¢ = ba induced from B by the
involution operator Jb = b for each @, b in B, an addition in B is induced by that of in B.

Therefore, the left B-module 5M also has the structure of the right B-module Mp such
that ao (box) = (xb)a, where ¢ denotes the multiplication of  in M on b, @ in B. Using
the tensor product over F' and the involutorial algebra B instead of the opposite algebra B
one gets the involutorial enveloping algebra B¢ = B & » B instead of the enveloping algebra
B¢ = B B®. Then the left B¢ -module peM also has the structure of B-bimodule gMpg,
but generally it may not have the structure of the B-bimodule with involution sMp.

Proposition 1.2. Let B = A,(fw)), n > 2, where Ay is the commutative asso-
ciative unital algebra with trivial involution a = a for each a € Ay over the commutative
associative unital ring F, char(F) # 2, f; is invertible in F relative to multiplication for
each 37 =1,...,n. Then there exist B -bimodules which are not B -bimodules with involution.
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Proof. Take A,p(finip) with n > 2 and p > 1, with f; invertible in F' for each
j=n+1,...,n+p. Then M = A, ,(fntp)) has the structure of the B-bimodule pMp, but
it is not the B-bimodule with involution by Theorems 1.1 and 1.2. That is, this M does not
satisfy conditions (1.21), (1.22), (1.23) in Definition 1.2. O

Theorem 1.4. Let gN the left B -module with B = A,(fn)), n > 2, where Ay is the
commutative associative unital algebra with trivial involution a = a for each a € Ay over
the commutative associative unital ring F, char(F) # 2, f; is invertible in F relative to
multiplication for each 7 =1,....,n. Let D C N, N C M, where M has the structure of the
B -bimodule with involution gMpg. Then (BD)<™> = (BD)<*> for each 1 < m < oo and
(BD)<*> s the left B -submodule in gN.

Proof In view of Lemma 1.2 (BD)<!> is the Ay-linear span spana,@ of the family
Q= {ijx cxe D, jeA0,... ,2”—1}}. By virtue of Theorem 1.1 each element = in M has the
decomposition x = xgig+...+Ton_1ign_1 With xg, ..., zon_1 belonging to My, thatis = = f[x],
where 8 = 8, = (ig,...,i2m_1), [2]" = (0,...,22n_1), U' denotes a transposed matrix of a
matrix U. Consequently, i;x = wo(ijig)+,...,+xan_1(ijion_1) for each j € {0,...,2" — 1},
since My = Cyp/(B).

On the other hand, {i;, ...4;, }¢m) € G for each ji,...,jm in {0,...,2" =1}, 2<m € N,
where G = G,(fn)), where g(m) is a vector indicating an order of pairwise multiplications in
{...}. Note that si;G =G for each j € {0,...,2" — 1} and s € S, where S = 5,(fm))-

Notice also that S C F' C Ay. On the other side, Ag(Ap{z}) = Ao{z} and A(Ao{b}) =
Ap{b} for each x € M, b€ B. For each j, k, | in {0,...,2" — 1} the minimal subalgebra
Ay in B generated by {Ao, 1,1k, 4} is alternative (see [1,4,9]). Therefore, i;(ixi;)+ix(i;4) =
0 for each j # k with j > 1 and k> 1, [ in {0,...,2" — 1}, since (i; + ix)((i; + ix)i) =
((ZJ + Zk)(lj + Zk>>’ll, Z]Zk + ’lk’l] = 0, ’LJ(ZJZl) = (ZJZ])ZZ Then Zkﬁ = Ukﬁ with 2™ x 2™ matrix
Ui with entries in S for each k. From this and Conditions (1.1)—(1.4) in Definition 1.2, and
x = Bla] for each & € zgMp, it follows that span,Q = (BD)<*> and spana,Q = span,(GD),
span, (GD) = span 4, (Gspan,(GD)), since D C gMp, S C Ap. It implies that (BD)<?> =
(BD)<'>. By induction this gives (BD)~™*!'> = (BD)<™> for each 2 < m € N, hence
(BD)<oo> — (BD)<1>.

Certainly (BD)<*> is the left B-submodule in gN, consequently, (BD)<'> is the left
B -submodule in gNV. O

Corollary 1.6. Let the conditions of Theorem 1.4 be satisfied. Then (BD)<>>= (DB)<>>

Proposition 1.3. Let the conditions of Theorem 1.1 be satisfied with Ay = F, where
F is a field, char(F) # 2. Let either My = F™ and m € N, or My be a F -linear space such
that My © Fy be isomorphic with My for each y € My. Then for each x € M there exist an
inwertible F -linear operator V : M — M and b € B and y € My such that Vx = by.

Proof If x =0 the assertion of this theorem is evident. For x # 0 in M there is the
decomposition x = xgig+,...,+Ton_1ion_1 With xg,...,z9n_1 in M, such that there exists
ke {0,...,2" — 1} with x; # 0. So it is possible to choose such marked k. If M, = F™,
then it has a basis ey,...,e, as the F'-linear space. Therefore, for each 0 # x; € M, there
exists an invertible F'-linear operator V,, on My such that V, z; = x;,. If M, is the F-
linear space such that My, & Fy is isomorphic with M, for each y € M,, then for each
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0 # z; € M, there exists an invertible F'-linear operator Ve, on My such that V, z; = .
We put V = @3;1 ‘A/_,Ej, where V,, =idy, if ;=0 orif [ =k, where ij : Moi; — Moij,
ij(yij) = (Va,;(y))ij = i;(Va,(y)) for each y € My. In view of Theorem 1.1 My = Cp(B),
hence it is naturally V(bI) = (bI)V for each b in F, where I = idy. Therefore, V is the
left and right F'-linear operator on M such that V' is invertible on M, since Cp(B) = F
in the considered case Ay = F' with n > 2. This implies that Vx = by with y = 2, and

b=73,ca, i, Where Ay ={je{0,....,2n =1} : z; #0}. O

Corollary 1.7. Let B be the division alternative algebra, let M be a B -bimodule with
mwvolution satisfying the conditions of Theorem 1.1, x = by with y € My, b€ B. Then

(B{z})=™" = ({=}B)~" = (B{z})=™>".

1.1. Conclusion

The results of this paper can be used for further studies of a structure of modules over
nonassociative algebras, operator theory in modules over Dickson algebras, their applications
to PDEs, mathematical physics, quantum field theory, their applications in other sciences, etc.

This can be used for analysis and solution of PDEs utilized in gas dynamics and high
energy density physics, hydrodynamics, particularly, describing tidal deformations and the
gravitational potential of the planet [17,19-21].

It is worth to mention, that spectral theory of operators over Dickson algebras and par-
ticularly Cayley algebras was studied in [15-17|. Therefore, using the results obtained in this
article, it will be important to investigate further operator theory in modules over generalized
Dickson algebras, theory of factors for nonassociative analogs of C* -algebras, analogs of direct
integrals for them, applications in coding theory [22], etc.

2. Appendix
Definition 2.1. Let X be an algebra over a ring F, let M be a X -bimodule and
B C X. We put
Compy(B) :={x € M :V¥b € B,xb=bx};
Nuyy(B) :=={x € M :V¥b e B,Vc € B,(xzb)c = z(bc)};
Nym(B) :={z € M :Vb e B,Vc € B, (bx)c = b(zc)};
Nyo(B) :={x € M : Vb€ B,Vc e B, (bc)r = b(cx)};
NM(B) = NMJ(B) N NM,m(B) N NM,T<B) and
Then Comy(B), Ny (B), and Cyp(B) are called a commutant, a nucleus and a centralizer
correspondingly of the X -bimodule M relative to a subset B in X. Instead of Com(X),
Ny (X), or Cy(X) it will be also written shortly Comy;, Ny, or Cyp correspondingly.

A left (or right) X -module M is also denoted by xM (or My correspondingly), similarly
for bimodules.

Example 2.1. Particularly over the real field F' = Ay =R for A.(fy)), 2<r, upto
normalization of the doubling generator 1, on k-th step, a scalar f, € {—1,1} can be chosen
for each kK =1,2,... (see Definition 1.1 and Remark 1.1). Frequently a is also denoted by a*
or a.
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Definition 2.2. Let N and M be two left B-modules (see Definition 1.2). A map
T: N — M we call a left B-quasi-linear operator, if it is additive:

Tv+w)=T()+T(w)

and left Cp(B)-homogeneous:
T(av) = aT(v)

for each a € Cg(B), v and w € N.

Evidently, each left B-quasi-linear operator is left Cp(B)-linear. Similarly right B -quasi-
linear operators for right B-modules are defined. If N and M are B-bimodules and a map
T : N — M is left and right B -quasi-linear, then T will be called a B -quasi-linear operator.

If for left B-modules N and M the operator T is additive and

T(bv) =0T (v)

for each b € B, v in N, then it will be called left B -linear. Analogously right B -linear
operators for right B-modules are defined. If N and M are B-bimodules and a map T :
N — M is left and right B -linear, then T" will be called a B -linear operator.

The operator left or right B-quasi-linear (or left or right B-linear) T': M — M is called
invertible if there exists a left or right B -quasi-linear (or left or right B -linear correspondingly)
operator V : M — M such that TV = [ and VT = I, where I = idy;, where idy(z) =z
for each x € M. Then V is called an inverse operator of T' and also denoted by 7.

References

[1] L.E. Dickson, The Collected Mathematical Papers, Cambridge Library Collection — Mathematics,
1-5, Chelsea Publishing Co., New York, 1975.

[2] K.A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, A.I. Shirshov, Rings that are Nearly Associative,
Academic Press, New York, 1982.

[3] R.B. Brown, “On generalized Cayley—Dickson algebras”, Pacific Journal of Mathematics, 20:3
(1967), 415-422.

[4] J.C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145-205.
[5] R.D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966.

[6] S.V. Ludkowski, “Completions and homomorphisms of infinite dimensional Cayley—Dickson
algebras”, Linear Multilinear Algebra, 69:11 (2021), 2040-2049.

[7] D. Allcock, “Reflection groups and octave hyperbolic plane”, J. Algebra, 213:2 (1998), 467—-498.

[8] A. Belov, L. Bokut, L. Rowen, J.-T. Yu, “The Jacobian conjecture, together with Specht and
Burnside-type problems”, Automorphisms and birational affine geometry, Springer Proceedings
in Mathematics and Statistics, 79, ed. I. Cheltsov, 2014, 249-285.

[9] N. Bourbaki, Algebra, Springer, Berlin, 2022.

[10] N. Jacobson, “Cayley numbers and normal simple Lie algebras of type G”, Duke Math. J., 5
(1939), 775-783.

[11] M. Goto, F.D. Grosshans, Semisimple Lie Algebras, Marcel Dekker, Inc., New York, 1978.

[12] P. Eakin, A. Sathaye, “On automoprhisms and derivations of Cayley—Dickson algebras”, J.
Algebra, 129:2 (1990), 263-278.

[13] H.B. Lawson, M.-L. Michelson, Spin Geometry, Princ. Univ. Press, Princeton, 1989.
[14] C. Culbert, “Cayley—Dickson algebras and loops”, J. Gener. Lie Theory Appl., 1:1 (2007), 1-17.



DECOMPOSITION OF MODULES 439

15)
16]
17]
18]
19]
[20]
[21)

[22]

S. V. Ludkovsky, “C*-algebras of meta-invariant operators in modules over Cayley—Dickson
algebras”, Southeast Asian Bull. Math., 39:5 (2015), 625-684.

S. V. Ludkovsky, W. Sprossig, “Spectral representations of operators in Hilbert spaces over
quaternions and octonions”, Complex Var. Elliptic Equ., 57:12 (2012), 1301-1324.

S. V. Ludkovsky, W. Sprossig, “Spectral theory of super-differential operators of quaternion and
octonion variables”, Adv. Appl. Clifford Algebr., 21:1 (2011), 165-191.

F. Giirsey, C.-H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics,
World Scientific Publ. Co., Singapore, 1996.

A.V. Shatina, A.S. Borets, “A mathematical model of the gravitational potential of the planet
taking into account tidal deformations”, Russian Technol J., 12:2 (2024), 77-89.

S. V. Ludkovsky, “Integration of vector Sobolev type PDE over octonions”, Complex Var. Elliptic
Equ., 61:7 (2016), 1014-1035.

S.V. Ludkovsky, “Integration of vector hydrodynamical partial differential equations over
octonions”, Complex Var. Elliptic Equ., 58:5 (2013), 579-609.

V.N. Markov, A.V. Mikhalev, A.A. Nechaev, “Nonassociative algebraic structures in
cryptography and coding”, J. Math. Sci. (N.Y.), 245:2 (2020), 178-196.

Information about the author

Sergey V. Ludkovsky, Doctor of Physical
and Mathematical Sciences, Professor of Applied
Mathematics Department, MIREA — Russian
Technological ~ University, = Moscow,
Federation. E-mail: sludkowski@mail.ru
ORCID: https://orcid.org/0000-0002-4733-8151

Russian

Received 29.07.2024
Reviewed 15.10.2024
Accepted for press 22.11.2024

Nuadopmariust o6 aBTope

JIionkoBckuii Cepreii BukTopoBud4, 10K-
TOp (DU3MKO-MATEeMATHIECKUX HAyK, IPodeccop

kadeapbl IpHKJIaaHON Maremaruku, MHUPIA
— Poccuiickuit TeXHOJIOTUYIECKUY YHUBEPCUTET,
r. Mocksa, Poccniickas Pemeparusa. E-mail:

sludkowski@mail.ru
ORCID: https://orcid.org/0000-0002-4733-8151

Ilocrynuna B penakmuio 29.07.2024 1.
Iloctynuna mocse pernensuposanus 15.10.2024 1.
IIpunsara ¥ mybsmukarmmn 22.11.2024 .



	Modules over generalized Dickson algebras
	Conclusion

	Appendix
	toReferences

