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Аннотация. Статья посвящена модулям над обобщенными алгебрами Диксона. Эти ал-
гебры неассоциативны и в общем случае могут быть неальтернативными. Они составляют
важный класс алгебр и раздел математики. В работе изучаются левые, правые и двусто-
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личием инволюции. Исследуются минимальные подмодули и разложение модулей. В част-
ности, изучаются циклические подмодули.
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Introduction

Dickson algebras compose a great class of nonassociative algebras (see [1, 2]). They are
formed by induction using a doubling procedure of a smashed product (see [3–6] and references
therein). This class of algebras is the generalization of the octonion (Cayley) algebra. There
are wide-spread applications of Dickson algebras in the theory of Lie groups and algebras
(see [7–11]) and their generalizations (see [12]), noncommutative mathematical analysis, non-
commutative geometry (see [13,14]), operator theory (see [15,16]), PDE (see [17]), elementary
particle physics and quantum field theory (see [18]). In the aforementioned areas naturally
modules over Dickson algebras are very important, but they are only a little studied.

In this article left, right and two-sided modules over generalized Dickson algebras are
studied. They are complicated in comparison with alternative algebras. Specific definitions
and notations are given (see Definitions 1.1, 1.2, 1.3, 2.1, 2.2, Remark 1.1), because generalized
Dickson algebras are neither associative nor alternative. Structure of modules and submodules
over generalized Dickson algebras are investigated. For this purpose auxiliary Lemmas 1.1,
1.2, Corollaries 1.1, 1.2, Examples 1.1 and 2.1 are provided. Dickson algebras posses very
important involution property. Therefore bimodules with involution are studied in Section 1.
Bimodules with an involution are scrutinized in Theorems 1.1, 1.2, Corollary 1.3. For them
necessary and sufficient conditions are elucidated. Identities in them are studied in Proposition
1.1. Subbimodules are investigated in Theorem 1.3 and Corollaries 1.4, 1.5. Relations between
left, right and two-sided modules over Dickson algebras are given in Corollary 1.6 and Remark
1.3. Bimodules which are not bimodules with involution also are studied (see Proposition 1.2).
Left subbimodules are investigated in Theorem 1.4, Proposition 1.3, Corollary 1.7. In particular,
cyclic submodules are studied.

All main results of this paper are obtained for the first time.

1. Modules over generalized Dickson algebras

To avoid misunderstandings we recall necessary definitions and notations in Definition 1.1
and Remark 1.1 (see also [1, 3, 4] and Appendix).

D e f i n i t i o n 1.1. Assume that F is an associative commutative and unital ring. Then
over F a unital algebra A is considered, which may be generally nonassociative (relative to
multiplication A × A → A ). Assume that A is supplied with a scalar involution a 7→ ā so
that its norm N and trace T maps have values in F and fulfil conditions:

aā = N(a)1 with N(a) ∈ F, (1.1)

a+ ā = T (a)1 with T (a) ∈ F, (1.2)

T (ab) = T (ba) (1.3)

for each a and b in A.

If a scalar f ∈ F satisfies the condition: ∀a ∈ A fa = 0 ⇒ a = 0, then such element f
is called cancelable. Using a cancelable scalar f the Dickson doubling procedure provides new
algebra C(A, f) over F such that:

C(A, f) = A⊕ Al, (1.4)

(a+ bl)(c+ dl) = (ac− fd̄b) + (da+ bc̄)l and (1.5)
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(a+ bl) = ā− bl (1.6)

for each a and b in A. Then l is called a doubling generator.

R e m a r k 1.1. From Definition 1.1 identities follow: ∀a ∈ A ∀b ∈ A T (a) = T (a + bl)

and N(a+ bl) = N(a) + fN(b). The algebra A is embedded into C(A, f) as A 3 a 7→ (a, 0),

where (a, b) = a + bl. It is put by induction An(f(n)) = C(An−1, fn), where A0 = A, f1 = f,

n = 1, 2, . . . , f(n) = (f1, . . . , fn). Then An(f(n)) are generalized Dickson algebras, when F is
not a field, or Dickson algebras, when F is a field, where 1 ≤ n ∈ N.

If the characteristic of F is char(F ) 6= 2, then the imaginary part of a Dickson number z
is defined by:

Im(z) = z − T (z)/2,

hence N(a) := N2(a, ā)/2, where N2(a, b) := T (ab̄).

If the doubling procedure starts from A = F1 =: A0, then A1 = C(A, f1) is a ∗ -extension
of F.

R e m a r k 1.2. We consider also the following generalizations of the Dickson algebras.
Let F be a commutative associative unital ring of characteristic

char(F ) 6= 2; (1.7)

an algebra B has a structure of a F -bimodule with

x+ y = y + x, (x+ y) + z = x+ (y + z),

a(a1x) = (aa1)x, (xa1)a = x(aa1) and such that ax = xa,
(1.8)

for each a and a1 in F, x, y and z in B, B as the F -bimodule is free and isomorphic with
the direct sum

B '
n⊕
j=0

Fij (1.9)

with elements ij ∈ B for each j = 0, . . . , n, satisfying Tkil = ξk,lil, where Tkx = (ikx)ik,

ξk,l ∈ F for each k, l in {0, 1, 2, . . . , n}, x in B, where n > 2 is a natural number,

ξ = (ξk,l)k,l=1,...,n+1 (1.10)

is a (n+1)× (n+1) matrix having matrix elements ξk,l such that the corresponding F -linear
operator is invertible.

It will frequently be useful also the additional condition

ijij = vji0 (1.11)

with nonzero cancelable vj in F possessing an inverse v−1
j ∈ F for each j = 0, . . . , n.

Lemma 1.1. Let an algebra B satisfy Conditions (1.7)–(1.10) in Remark 1.2. Then there
exist F -linear operators πj : B → Fij which are F -linear combinations of the operators
T0, . . . , Tn for each j ∈ {0, 1, . . . , n} such that

∑n
j=0 πj = idB, where idB(x) = x for each

x ∈ B.
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P r o o f. From the conditions of this lemma it follows that there exists an inverse operator
having matrix p = ξ−1 with matrix elements pk,l belonging to F. Then we put πj(x) =∑n

k=0 pj,kTk(x), consequently, πj(x) =
∑n

l=0 xlπj(il), where xl ∈ F for each l such that
x =

∑n
l=0 xlil, x ∈ B. Then πj(il) =

∑n
k=0 pj,kTk(il) hence πj(il) =

∑n
k=0 pj,kξk,lil = δj,lil,

where δj,j = 1, δj,k = 0 for each k 6= j. Thus πj(x) = xjij.

Corollary 1.1. Let the algebra B satisfy conditions (1.7)–(1.11) in Remark 1.2. Then
v−1
j ijπj(x) = xj for each x ∈ B and j = 0, . . . , n, where xl ∈ F for each l such that
x =

∑n
l=0 xlil.

E x a m p l e 1.1. Assume that F is a (commutative associative) field of characteristic
char(F ) 6= 2, B satisfies conditions (1.7)–(1.10) in Remark 1.2, {i0, i1, . . . , in} is a basis of B
over F, det(ξ) 6= 0. Then there exists an inverse matrix p = ξ−1 with matrix elements pk,l
belonging to the field F.

In particular, let us choose B = Am(f(m)) such that 2 ≤ m ∈ N, where F is the field of
characteristic char(F ) 6= 2, f1 = 1, . . . , fm = 1, n = 2m− 1, A0 = F with the trivial involu-
tion (i. e. a = ā for each a ∈ A0 ), i0 = 1, where 1 = 1B is the unit element in B (see Remark
1.1). Then x̄ = x0i0 − x1i1 − . . . − xnin for each x ∈ B, where x0, . . . , xn denote expansion
coefficients belonging to F for x such that x = x0i0 + x1i1 + . . . + xnin. Then T0(x) = x,

T1(x) = −x0i0 − x1i1 + x2i2 + . . . + xnin, . . . , Tn(x) = −x0i0 + x1i1 + . . . + xn−1in−1 − xnin,
since i0ik = ik, i

2
k = −1, ikil = −ilik and (ikil)ik = il for each k 6= l with k ≥ 1 and l ≥ 1.

Therefore, 1
2−2m

(T0 + . . .+T2m−1)(x) = x̄, consequently, π0(x) = x0i0 = 1
2
(T0 + 1

2−2m
(T0 + . . .+

T2m−1))(x). Then π0(̄ikx) = xki0 for each k ≥ 1, hence πk(x) = (π0(̄ikx))ik = xkik. Thus ξ
is the invertible matrix.

Lemma 1.2. Let An = An(f(n)), A0 = A, 2 ≤ n ∈ N, where A is the commutative
associative unital algebra with the trivial involution over the commutative associative unital ring
F of characteristic char(F ) 6= 2. Let i0 = 1A, i2k−1 = lk for each k = 1, . . . , n, ijs = ijs−1lks
with j1 = 2k1−1, js = js−1 + 2ks−1 for each s = 2, . . . , p, 2 ≤ p ≤ n, 1 ≤ k1 < . . . < kp ≤ n,

where lp denotes the doubling generator l at the p -th step in Formula (1.5) in Definition 1.1.

Then {ij : j = 0, 1, . . . , 2n−1} is a family of generators of An over A0 satisfying the identities:

ij(iju) = (ijij)u, (uij)ij = u(ijij), ij(vij) = (ijv)ij, T (ij(ikv)) = 0 (1.12)

for each u ∈ An, v = v̄ ∈ An and j = 0, 1, . . . , 2n − 1, 1 ≤ k 6= j.

P r o o f. Since the ring F is commutative and associative, then as it is known the left and
right F -module structures can be considered as equivalent: (pp1)u = p(p1u) = p1(pu) = (p1p)u

for each p, p1 in F, u ∈ An, by putting Lp = Rp on An for each p ∈ F, where Lpu = pu,

Rpu = up (see [9, Ch. 2]). The algebra A0 is unital, hence A1 is unital, and by induction An is
unital according to Formulas (1.4), (1.5) in Definition 1.1. The elements fk in F are cancelable
for each k, consequently, the product fk1 . . . fkp is nonzero for each 1 ≤ k1 < . . . < kp ≤ n,

p ≥ 2, since An is the unital algebra. For each a0, a1 in A0 by the conditions of this lemma
a0a1 = a1a0 and a0a1 = a0a1.

Using Formulas (1.4), (1.5) in Definition 1.1 by induction we deduce that for each x in
An there exist elements x0, . . . , x2n−1 in A0 such that x = x0i0 + . . . + x2n−1i2n−1. That is,
{ij : j = 0, . . . , 2n−1} is the family of generators of An over A0. Therefore,

ij(ijx) =
2n−1∑
m=0

ij(ijxmim) =
2n−1∑
m=0

(ij(ijim))xm and (xij)ij =
2n−1∑
m=0

xm((imij)ij). (1.13)
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From Formula (1.5) in Definition 1.1 we deduce that

lk(lk(ak−1 + dk−1lk)) = (lklk)(ak−1 + dk−1lk) and

((ak−1 + dk−1lk)lk)lk = (ak−1 + dk−1lk)(lklk)
(1.14)

for each ak−1, dk−1 in Ak−1, where k ≥ 1. Note that l2k = −fk for each k ≥ 1, since
An is the unital algebra. If {lk1 , . . . , lkp}q(p) denotes an ordered product, where q(p) is a
vector indicating an order of pairwise multiplication with a corresponding order of brackets
in lk1 , . . . , lkp , where 1 ≤ kl ≤ n, kl 6= ks for each l 6= s, l and s in {1, . . . , n}, 2 ≤ p ≤ n,

then there exist unique η(k1, . . . , kp, q(p)) ∈ {1, 2} and j(k1, . . . , kp, q(p)) ∈ {1, . . . , 2n − 1}
such that (−1)η{lk1 , . . . , lkp}q(p) = ij, where η = η(k1, . . . , kp, q(p)), j = j(k1, . . . , kp, q(p)).

Therefore, from (1.14) by induction in k = 1, . . . , n it follows that ij(ijim) = (ijij)im and
(imij)ij = im(ijij) for each m and j. For each v = v̄ ∈ An from Formulas (1.5) and (1.6) in
Definition 1.1 it follows that T (lkv) = 0, lk(vlk) = (lkv)lk = lk(vlk) for each k ≥ 1 and by
induction ij(vij) = (ijv)ij for each j, since i0 = 1. The latter and (1.13) imply (1.12).

Corollary 1.2. If the conditions of Lemma 1.2 are satisfied and F is a field, A0 = F,

then {ij : j = 0, . . . , 2n − 1} is a basis in An (as in the F -linear space).

D e f i n i t i o n 1.2. Let F be the commutative associative unital ring. Let B be a unital
algebra over F with F ⊆ CB(B). Let M be a unital left CB(B) -module:

b(b1u)= (bb1)u, b(u+ v)= bu+ bv, (b+ b1)u= bu+ b1u, u+ (u1 + v)= (u+ u1) + v (1.15)

for each u, u1, v in M, b, b1 in CB(B). Let µ1 be a CB(B) -bilinear map µ1 : B×M →M,

that is,

µ1(x, u+v)= µ1(x, u)+µ1(x, v), µ1(x+y, u)= µ1(x, u)+µ1(y, u), µ1(bx, u)= bµ1(x, u) (1.16)

such that µ1 is compatible with the left CB(B) -module structure of M :

µ1(x, bu) = bµ1(x, u) (1.17)

for each x, y in B, u, v in M, b in CB(B). Then M will be called a left B -module. Shortly
µ1(x, u) can also be denoted by xu. Similarly is defined a right B -module, or a B -bimodule.

For B = An(f(n)) with A0 = A, n ≥ 2, where A is the commutative associative
unital algebra with the trivial involution over the associative commutative unital ring F of
characteristic char(F ) 6= 2, if M satisfies conditions (1.15)–(1.17) and

ij(ijx) = (ijij)x (1.18)

for each x ∈M, j = 0, . . . , 2n−1, then M will be called a left An(f(n)) -module. Symmetrically
is defined the right An(f(n)) -module with condition (1.19) instead of (1.18):

(xij)ij = x(ijij) (1.19)

for each x ∈M, j = 0, . . . , 2n−1. If M satisfies (1.15)–(1.19) and (1.20):

Lb = Rb on M for each b ∈ CB(B), (1.20)
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then it will be called An(f(n)) -bimodule and denoted by BMB or shortly by M, where
B = An(f(n)).

If in the B -bimodule M there exists a CB(B) -linear map J : M →M such that

J(bx) = (Jx)b̄ for each x ∈M and b ∈ B, J2 = I (1.21)
and

(
(∃x ∈M ∀b ∈ B bx+ J(bx) = 0) ⇒ (x = 0)

)
(1.22)

and (ijy)ij = ij(yij) and ij(iky) + ij(iky) = 0 (1.23)

for each y = Jy in M and j ≥ 0, j 6= k ≥ 1, where B = An(f(n)), I : M → M is the
identity map I = idM on M, Ix = x, then M will be called the B -bimodule with the
involution J and denoted by BM̂B or shortly by M. Briefly Jx will also be denoted by x̄.

Theorem 1.1. Let M be the unital An(f(n)) -bimodule with the involution J, let the
subalgebra A0 over F be commutative associative and with the trivial involution ā = a for
each a ∈ A0, let also char(F ) 6= 2 and fj possess an inverse element f−1

j in F relative to
multiplication for each j = 1, . . . , n, where 2 ≤ n ∈ N. Then there exists an A0 -subbimodule
M0 such that A0MA0 =

⊕2n−1
j=0 ijM0 with JM0 = M0, and M0 = CM(An(f(n))), and there

exists an A0 -linear map π̂k from M onto ikM0 with π̂k ◦ π̂j = δk,jπ̂k, where δk,k = 1,

δk,j = 0 if k 6= j, for each k and j in {0, 1, . . . , 2n − 1}.

P r o o f. By virtue of Lemma 1.2 the Dickson algebra B = An(f(n)) has the family of
generators βn := {ij : j = 0, . . . , 2n−1} over A0. By the conditions imposed above in Definition
1.2 the algebra A0 and the ring F are unital such that there is the natural embedding of F
into A0 as F1A0 and hence into B. Therefore, B contains the Dickson subalgebra algFβn
over F with generators i0, . . . , i2n−1.

Note that F ⊆ CB(B) and Fikβn = Fβn, Fβnik = Fβn for each k, since F ⊆ CA0(A0).

As in Remark 1.2 let Tku = (iku)ik for each u ∈ B, and T̂kx = (ikx)ik for each x ∈ M,

k = 0, . . . , 2n − 1. We put π0(u) = u+ū
2

for each u ∈ B, and π̂0(x) = x+x̄
2

for each x ∈ M.

Let M0 = π̂0(M), hence M0 =
⋃
{y ∈M : ∃x ∈M, y = x+x̄

2
}. On the other hand, Rbx = Lbx

for each b ∈ CB(B) and x ∈ M by Definition 1.2, where Lbu = bu, Rbu = ub for each
u, b in B. The algebra A0 is commutative and associative with a0 = ā0 for each a0 ∈ A0,

consequently, A0 ⊆ CB(B) and hence a0y = ȳā0 = ya0 = a0y for each y ∈ M0 and a0 ∈ A0.

Therefore, M0 is the A0 -subbimodule in M, since A0 ⊂ B and M has also the structure
of the A0 -bimodule A0MA0 . It follows that y = ȳ and π̂0(y) = y for each y ∈ M0, hence
π̂0 ◦ π̂0 = π̂0, where as usually (g ◦ h)(v) = g(h(v)) denotes the composition of maps g and h

with a variable v of h.
For each x ∈ M there is the decomposition x = y + z such that y = x+x̄

2
, z = x−x̄

2
. Let

M− := {z ∈ M : z̄ = −z}. Evidently, M0 ∩M− = {0} and M− is the A0 -subbimodule in
A0MA0 such that M0 ⊕M− = A0MA0 , since J : M → M and J2 = I, also B0 ∩ B− = {0},
B0 = π0(B), B0 = A0, B− := {u ∈ B : ∃v ∈ B, u = v−v̄

2
}.

We put

Sn(f(n)) :=
⋃{

f ∈ F : ∃p ∈ {1, . . . , n} ∃j1 ∈ {1, . . . , n} . . . ∃jp ∈ {1, . . . , n}

∃α1 ∈ Z . . . ∃αp ∈ Z ∃v ∈ {−1, 1} : f = vfα1
j1
. . . f

αp
jp

}
,

consequently, i2k = sk ∈ S for each k ≥ 1, where S = Sn(f(n)). Note that if y ∈ M0,

z ∈ M−, b ∈ B−, then (by − yb) ∈ M0, (by + yb) ∈ M−, bz + zb ∈ M0, bz − zb ∈ M−.
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On the other hand, (iky = yik) ⇔ ((iky)ik = ysk) ⇔ (ik(yik) = ysk) for each k ≥ 1,

consequently, from conditions (1.21), (1.22), (1.23) in Definition 1.2 it follows that iky = yik
for each k = 0, . . . , 2n − 1, since sk ∈ S ⊂ F, i0 = 1. This implies that iky ∈ M− for each
k ≥ 1. By the A0 -linearity and Lemma 1.2 this implies that M0 ⊆ ComM(B).

Then we put π̂j(x) = −s−1
j (π̂0(b̄jx))ij for each x ∈ M, j = 1, . . . , 2n − 1. Notice that

π̂k(x) = π̂k(y) + π̂k(z) = π̂k(z) for each k ≥ 1 and x ∈ M, where y ∈ M0, z ∈ M−,

x = y + z, y = I+J
2
x, z = I−J

2
x, since iky ∈ M− and π̂0(M−) = {0}. Thus π̂k ◦ π̂0 = 0 for

each k ≥ 1, since π̂k(M0) = {0} and π̂0(M) = M0. From i2kx = ik(ikx) = skx with sk ∈ S
for each k ≥ 1, char(F ) 6= 2, F ⊆ A0 ⊆ CB(B) and the conditions (1.15)–(1.19) in Definition
1.2 it follows that Lik : M →M and similarly Rik : M →M are A0 -linear bijections for each
k = 0, . . . , 2n − 1, since M is the unital B -bimodule with involution, since the algebra B is
unital, i0 = 1B. Then we deduce that π̂k(x) = −1

2sk
([I + J ](b̄kx))ik = −1

2
[s−1
k (b̄kx)ik + x̄] for

each x ∈M and k = 1, . . . , 2n − 1. Therefore, π̂k : M− →M− for each k ≥ 1, since z = −z̄
for each z ∈ M−. This implies that π̂0 ◦ π̂k(x) = π̂0(π̂k(z)) = 0 for each x ∈ M and k ≥ 1,

since M0 ∩M− = {0}, where z = I−J
2
x. Then we infer that π̂k ◦ π̂k(x) = −π̂k(x̄) = π̂k(x) for

each x ∈ M and k ≥ 1, since π̂k(x) = π̂k(z) with z = I−J
2
x, since LikRik π̂0 = Li2k π̂0, since

π̂0(M) = M0. Particularly π̂k(iky) = iky for each k ≥ 1 and y ∈ M0, since iky = yik. This
implies that π̂k(M) = π̂k ◦ π̂k(M) = π̂k(ikM0) = ikM0, ikM0 = M0ik for each k ≥ 0, since
i0 = 1B. Note that ikM0 ⊂ M− and π̂0(b̄kx) = π̂0(b̄kz) with z = I−J

2
x for each k ≥ 1 and

x ∈ M. Thus π̂0|M0 = idM0 , π̂0|M− = 0, where idM0(y) = y for each y ∈ M0. Therefore,
π̂j ◦ π̂k = 0 for each j 6= k, since ijM0 ∩ ikM0 = {0}, since ij(iky) + ij(iky) = 0 for each
y = Jy in M and j ≥ 0, j 6= k ≥ 1, since fj is invertible relative to multiplication in F for
each j.

Then we put K̂ =
∑2n−1

j=0 π̂j on M, and K =
∑2n−1

j=0 πj on B. These operators are
idempotent K̂2 = K̂ and K2 = K, since π̂j ◦ π̂k = δj,kπ̂j and πj ◦ πk = δj,kπj for each
j, k = 0, . . . , 2n − 1. Hence I − K̂ also is the idempotent operator.

It is known that the minimal subalgebra A(j,k) in An(f(n)) generated by {A0, ij, ik} is
associative for each j, k = 0, . . . , 2n−1, since F and A0 are commutative and associative by the
conditions of this theorem (see [1,4,9]). Therefore, M(j,k) := M0⊕ijM0⊕ikM0⊕(ijik)M0 is the
A(j,k) -subbimodule with involution in M, since ikM0 = M0ik for each k, ijM0 ∩ ikM0 = {0}
for each j 6= k, ijik ∈ G, where G = Gn(f(n)) = {i0, . . . , i2n−1} · S, F ⊆ A0.

On the other hand, K̂y = π̂0y = y and K̂(ijy) = π̂j(ijy) = ijy for each y ∈M0 and j ≥ 1,

since π̂k(ijy) = π̂k ◦ π̂j(ijy) = 0 for each j 6= k. Then we deduce that K̂M− =
⊕2n−1

j=1 ijM0,

since Lij : M0 →M− and π̂jM− = ijM0 for each j ≥ 1, since (π̂jM−)ij = M0, M0ij = ijM0.

Hence π̂k(ikP ) = π̂0(P ) = {0}, where P := M 	 (
⊕2n−1

j=0 ijM0). Notice that P is the proper
An(f(n)) -subbimodule with involution in M, that is P satisfies conditions (1.18)–(1.23) in
Definition 1.2. On the other side, the condition

(
(∃x ∈M ∀b ∈ B bx+ J(bx) = 0) ⇒ (x = 0)

)
is equivalent to(

(∃x ∈M ∀j ∈ {0, . . . , 2n − 1} ijx+ J(ijx) = 0) ⇒ (x = 0)
)
,

since for each b ∈ B there exist a0, . . . , a2n−1 in A0 such that b = a0i0 + . . .+ a2n−1i2n−1 by
Lemma 1.2. From π̂0(P ) = {0} and P0 = π̂0(P ) it follows that P0 = {0}, consequently, P− =

{0}, since P0 = ijπ̂j(P−) = {0} for each j ≥ 1. Thus P = {0}, consequently, K̂ = I on M

and hence A0MA0 =
⊕2n−1

j=0 ijM0 and consequently, M0 = ComM(B), where M is considered



DECOMPOSITION OF MODULES 433

as the A0 -bimodule A0MA0 , since M− ∩ ComM(B) = {0}. Analogously A0BA0 =
⊕2n−1

j=0 ijB0

and B0 = ComB(B), B0 = π0(B), where B is considered as the A0 -bimodule A0BA0 .

Therefore, for each y ∈ M0 and for each j 6= k such that j ≥ 1 and k ≥ 1 we infer that
π̂t((ijy)ik) = 0 and π̂t(ij(yik)) = 0 for each t 6= r, π̂r((ijy)ik) = (ijy)ik and π̂r(ij(yik)) =

ij(yik), where r ∈ {1, . . . , 2n − 1} is such that ijik ∈ irS, since (ijy)ik ∈ M(j,k)−, ij(yik) ∈
M(j,k)−. We put v = ij(yik)− (ijy)ik. Therefore, v ∈ LirM0 ⊂M(j,k)−. From Formulas (1.21),
(1.22) and (1.23) in Definition 1.2 we deduce that v = v̄. Thus v ∈ M0 ∩M− = {0}, that
is v = 0. Hence (ijy)ik = ij(yik) for each j 6= k such that j ≥ 1 and k ≥ 1. For j = 0

or k = 0 evidently ij(yik) = (ijy)ik, since i0 = 1B. Using M0 = ComM(B) and Conditions
(1.21), (1.22), (1.23) in Definition 1.2 we infer that ij(yik) = −(yik)ij for each y ∈ M0 and
j 6= k such that j ≥ 1, k ≥ 1. Then it is similarly deduced that ij(iky) = (ijik)y and
(yik)ij = y(ikij) for each j 6= k in {1, . . . , 2n−1}, y ∈M0, since v+ v1 = 0 and v̄ = v1 with
v = ij(iky)−(ijik)y, v1 = (yik)ij−y(ikij), since v ∈M−, v1 ∈M−, M0∩M− = {0}, since ij,
ik, ijik belong to B−. If j = 0 or k = 0, evidently ij(iky) = (ijik)y and (yik)ij = y(ikij) for
each y ∈M0. By the A0 -linearity and Lemma 1.2 we infer that M0 ⊆ NM(B), consequently,
CM(B) = M0.

Corollary 1.3. Let the conditions of Theorem 1.1 be satisfied and n = 3. Then b(bx) =

(bb)x, (bx)b = b(xb), (xb)b = x(bb) for each x ∈M and b ∈ B.

P r o p o s i t i o n 1.1. If the conditions of Theorem 1.1 are satisfied and there is some
equality with a finite sum like∑

θ∈Sm; k1,...,km; l

γθ;k1,...,km;l{dθ(k1) . . . dθ(km)}ql,θ(m) = 0

in An(f(n)), where dkj ∈ An(f(n)), γθ;k1,...,km;l ∈ A0 for each kj, j, l, θ, then there exists a
corresponding identity in M.

P r o o f. For the identity satisfying the conditions of this proposition we use the decompo-
sition A0MA0 =

⊕2n−1
j=0 ijM0 and JM0 = M0, where M0 = CM(B). Then we substitute one of

dkj on dkjy with an arbitrary fixed nonzero y ∈ M0 for each additive {dθ(k1) . . . dθ(km)}ql,θ(m),

where Sm denotes the symmetric group of {1, . . . ,m}, θ : {1, . . . ,m} → {1, . . . ,m} is a
bijection for each θ ∈ Sm, ql,θ(m) is a vector indicating an order of pairwise multiplications in
{. . .}. Then it is possible to make sums of such type equalities with multipliers from A0.

This proposition shows that definitions above are natural, because particularly the algebra
has also the structure of the module over itself. There may other equivalent definitions be given.

Theorem 1.2. Assume that F is a commutative associative unital ring, char(F ) 6= 2, a
unital algebra A0 over F is associative and commutative with the trivial involution ā = a for
each a ∈ A0, M0 is a unital A0 -bimodule, B = An(f(n)) is the generalized Dickson algebra,
and fj possess an inverse element f−1

j in F relative to multiplication for each j = 1, . . . , n,

A0MA0 =
⊕2n−1

j=0 ijM0 such that M0 = CM(B), where n ≥ 2. Then A0MA0 can be supplied
with B -bimodule with involution BM̂B structure.

P r o o f. We put by = yb, a(by) = (ab)y, a(yb) = (ay)b, (ya)b = y(ab), J(by) = b̄y for
each y ∈ M0, a and b in B, J(x + z) = Jx + Jz for each x and z in M =

⊕2n−1
j=0 ijM0,
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since M0 = CM(B) and i0y = y for each y ∈M0. Therefore, Jx = x0b̄0 + . . .+x2n−1b̄2n−1 for
each x = x0i0 + . . . + x2n−1i2n−1 in M with x0, . . . , x2n−1 in M0, consequently, J2 = I and
hence J is the involution on M. In view of Lemma 1.2 the equalities by = yb, a(by) = (ab)y,

a(yb) = (ay)b, (ya)b = y(ab) for each y ∈ M0, a and b in B, supply M with properties
(1.15)–(1.23) in Definition 1.2, since the minimal subalgebra A(j,k,l) in An(f(n)) generated by
{A0, ij, ik, il} is alternative for each j, k, l in {0, . . . , 2n − 1} (see [1, 4, 9]), since F and A0

are unital, associative and commutative, ā = a for each a ∈ A0, since each x ∈ M has the
decomposition x = x0i0+, . . . ,+x2n−1i2n−1 in M with x0, . . . , x2n−1 in M0.

D e f i n i t i o n 1.3. If M is the left B -module (see Definition 1.2), E is a subset in B,

D is a subset in B (or in M ), then

E ·D =
⋃{

ed : e ∈ E, d ∈ D
}
,

ED =
⋃{

x =
m∑
k=1

ekdk : m ∈ N, ∀k ek ∈ E, dk ∈ D
}

denote subsets in B (or in M correspondingly). Then it is put

E(1) = E, (E ·D)(1) = E ·D;

∀n > 1 dE(n) = E · En−1, (E ·D)(n) = E · (E ·D)(n−1);

E<1> = E, (ED)<1> = ED,

∀n > 1 E<n> = EEn−1, (ED)<n> = E(ED)<n−1>;

E(∞) =
∞⋃
n=1

E(n), d(E ·D)(∞) =
∞⋃
n=1

(E ·D)(n);

E<∞> =
∞∑
n=1

E<n>, (ED)<∞> =
∞∑
n=1

(ED)<n>.

If N is a left B -submodule in M such that ∃d ∈M, D = {d}, E = B, N = (B{d})<∞>,
then N is called a cyclic left B -submodule in M generated by d.

Similar notations are for right B -modules or B -bimodules.
If M is the B -bimodule, then

(E ·D)(1,1) = (E ·D) ∪ (D · E), (ED)<1,1> = (ED) + (DE),

∀n > 1 (E ·D)(n,n) = (E · (E ·D)(n−1,n−1)) ∪ ((E ·D)(n−1,n−1) · E),

(ED)<n,n> = (E(ED)<n−1,n−1>) + ((ED)<n−1,n−1>E);

(E ·D)(∞,∞) =
∞⋃
n=1

(E ·D)(n,n), (ED)<∞,∞> =
∞∑
n=1

(ED)<n,n>.

If N is a B -subbimodule in M such that ∃d ∈M, D = {d}, E = B, N = (B{d})<∞,∞>,
then N is called a cyclic B -subbimodule in M generated by d.

If F is the field and V is an An(f(n)) -subbimodule with the involution in an An(f(n)) -
bimodule with the involution, then dimFV denotes the dimension of V over F.

Theorem 1.3. Let the conditions of Theorem 1.1 be satisfied, D ⊂M. Then (BD)<m,m> ⊆
(BD)<m+1,m+1> for each m ≥ 1, (BD)<k,k> = (BD)<4,4> for each k ≥ 4. Moreover,
(BD)<4,4> is the B -subbimodule with involution in M and (BD)<4,4> = (BD)<∞,∞>,

(BD)<∞,∞> = (BD̄)<∞,∞>.
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P r o o f. The algebra B = An(f(n)) is unital, the B -bimodule with involution M is unital,
n ≥ 2, by the imposed conditions. Therefore, (BD)<m,m> ⊆ (BD)<m+1,m+1> for each m ≥ 1.

For each x ∈ D the element π̂j(x) belongs to (B(B{x}))B for each j = 0, . . . , 2n − 1,

since

x̄ =
1

2− 2n
(
x+

(b̄1x)i1
s1

+ . . .+
(b̄2n−1x)i2n−1

s2n−1

)
by Theorem 1.1, where sj is invertible in F (relative to multiplication) for each j ≥ 1.

Evidently, (B(B{x}))B ⊆ (BD)<3,3> for each x ∈ D. On the other hand, Rik π̂j(x) belong
to (BD)<4,4> for each j and k in {0, . . . , 2n − 1}, x ∈ D, since by Theorem 1.1 π̂j(x) ∈
ijM0, each x in M has the decomposition x = x0i0 + . . . + x2n−1i2n−1 with x0, . . . , x2n−1

in M0, π̂j(x) = xjij, M0 = CM(B). This implies that (BD)<4,4> =
∑2n−1

k=0 ikV0 with V0 =

spanF
⋃{

xj : ∃x ∈ D ∃j ∈ {0, . . . , 2n − 1} xj =
ij
sj
π̂j(x)

}
, where spanFQ denotes the

F -linear span of a subset Q in M. Certainly, V0 ⊂ M0 and consequently, (BD)<4,4> is
the B -subbimodule with involution in M and (BD)<4,4> = (BD)<∞,∞>, (BD)<∞,∞> =

(BD̄)<∞,∞>.

Corollary 1.4. If the conditions of Theorem 1.3 are satisfied and F is the field, then
dimF (BD)<∞,∞> = 2ndimFV0 and dimFV0 ≤ 2ncard(D).

Corollary 1.5. Let F be a commutative associative unital ring, char(F ) 6= 2, let A0 be a
commutative associative unital algebra over F with trivial involution a = ā for each a ∈ A0,

2 ≤ n ∈ N, fj be invertible in F relative to multiplication for each j = 1, . . . , n+1. Let also N

be an An(f(n)) -bimodule with involution and N be contained in some An+1(f(n+1)) -bimodule
P such that CN(An(f(n))) = CN(An+1(f(n+1))), then M = N ⊕ (N ln+1) is an An+1(f(n+1)) -
bimodule with involution and M0 = N0.

P r o o f. By virtue of Theorem 1.1 N has the decomposition N =
⊕2n−1

k=0 N0ik with
N0 = CN(An(f(n))), hence

M =
2n+1−1⊕
j=0

N0ij.

From Theorem 1.2 it follows that M is the An+1(f(n+1)) -bimodule with involution and M0 =

N0, since CN(An(f(n))) = CN(An+1(f(n+1))).

R e m a r k 1.3. For the generalized Dickson algebra B = An(f(n)) with n ≥ 2, there is
its unvolutorial algebra B̄, which as an F -linear space, is the same, but has the multiplication
obtained from B by the following formula: ā � b̄ = c̄ with c̄ = ba induced from B by the
involution operator Jb = b̄ for each ā, b̄ in B̄, an addition in B̄ is induced by that of in B.

Therefore, the left B̄ -module B̄M also has the structure of the right B -module MB such
that ā � (b̄ � x) = (xb)a, where � denotes the multiplication of x in M on b̄, ā in B̄. Using
the tensor product over F and the involutorial algebra B̄ instead of the opposite algebra Bop

one gets the involutorial enveloping algebra B̌e = B
⊗

F B̄ instead of the enveloping algebra
Be = B

⊗
F B

op. Then the left B̌e -module B̌eM also has the structure of B -bimodule BMB,

but generally it may not have the structure of the B -bimodule with involution BM̂B.

P r o p o s i t i o n 1.2. Let B = An(f(n)), n ≥ 2, where A0 is the commutative asso-
ciative unital algebra with trivial involution ā = a for each a ∈ A0 over the commutative
associative unital ring F, char(F ) 6= 2, fj is invertible in F relative to multiplication for
each j = 1, . . . , n. Then there exist B -bimodules which are not B -bimodules with involution.



436 S.V. Ludkovsky

P r o o f. Take An+p(f(n+p)) with n ≥ 2 and p ≥ 1, with fj invertible in F for each
j = n+ 1, . . . , n+ p. Then M = An+p(f(n+p)) has the structure of the B -bimodule BMB, but
it is not the B -bimodule with involution by Theorems 1.1 and 1.2. That is, this M does not
satisfy conditions (1.21), (1.22), (1.23) in Definition 1.2.

Theorem 1.4. Let BN the left B -module with B = An(f(n)), n ≥ 2, where A0 is the
commutative associative unital algebra with trivial involution ā = a for each a ∈ A0 over
the commutative associative unital ring F, char(F ) 6= 2, fj is invertible in F relative to
multiplication for each j = 1, . . . , n. Let D ⊂ N, N ⊆ M, where M has the structure of the
B -bimodule with involution BM̂B. Then (BD)<m> = (BD)<1> for each 1 < m ≤ ∞ and
(BD)<1> is the left B -submodule in BN.

P r o o f. In view of Lemma 1.2 (BD)<1> is the A0 -linear span spanA0Q of the family
Q =

{
ijx : x ∈ D, j ∈ {0, . . . , 2n−1}

}
. By virtue of Theorem 1.1 each element x in M has the

decomposition x = x0i0+. . .+x2n−1i2n−1 with x0, . . . , x2n−1 belonging to M0, that is x = β[x],

where β = βn = (i0, . . . , i2n−1), [x]t = (x0, . . . , x2n−1), U t denotes a transposed matrix of a
matrix U. Consequently, ijx = x0(iji0)+, . . . ,+x2n−1(iji2n−1) for each j ∈ {0, . . . , 2n − 1},
since M0 = CM(B).

On the other hand, {ij1 . . . ijm}q(m) ∈ G for each j1, . . . , jm in {0, . . . , 2n−1}, 2 ≤ m ∈ N,

where G = Gn(f(n)), where q(m) is a vector indicating an order of pairwise multiplications in
{. . .}. Note that sijG = G for each j ∈ {0, . . . , 2n − 1} and s ∈ S, where S = Sn(f(n)).

Notice also that S ⊂ F ⊆ A0. On the other side, A0(A0{x}) = A0{x} and A0(A0{b}) =

A0{b} for each x ∈ M, b ∈ B. For each j, k, l in {0, . . . , 2n − 1} the minimal subalgebra
A(j,k,l) in B generated by {A0, ij, ik, il} is alternative (see [1,4,9]). Therefore, ij(ikil)+ik(ijil) =

0 for each j 6= k with j ≥ 1 and k ≥ 1, l in {0, . . . , 2n − 1}, since (ij + ik)((ij + ik)il) =

((ij + ik)(ij + ik))il, ijik + ikij = 0, ij(ijil) = (ijij)il. Then ikβ = Ukβ with 2n × 2n matrix
Uk with entries in S for each k. From this and Conditions (1.1)–(1.4) in Definition 1.2, and
x = β[x] for each x ∈ BM̂B, it follows that spanA0Q = (BD)<1> and spanA0Q = spanA0(GD),

spanA0(GD) = spanA0(GspanA0(GD)), since D ⊂ BM̂B, S ⊂ A0. It implies that (BD)<2> =

(BD)<1>. By induction this gives (BD)<m+1> = (BD)<m> for each 2 ≤ m ∈ N, hence
(BD)<∞> = (BD)<1>.

Certainly (BD)<∞> is the left B -submodule in BN, consequently, (BD)<1> is the left
B -submodule in BN.

Corollary 1.6. Let the conditions of Theorem 1.4 be satisfied. Then (BD)<∞>= (D̄B)<∞>.

P r o p o s i t i o n 1.3. Let the conditions of Theorem 1.1 be satisfied with A0 = F, where
F is a field, char(F ) 6= 2. Let either M0 = Fm and m ∈ N, or M0 be a F -linear space such
that M0 	 Fy be isomorphic with M0 for each y ∈M0. Then for each x ∈M there exist an
invertible F -linear operator V : M →M and b ∈ B and y ∈M0 such that V x = by.

P r o o f. If x = 0 the assertion of this theorem is evident. For x 6= 0 in M there is the
decomposition x = x0i0+, . . . ,+x2n−1i2n−1 with x0, . . . , x2n−1 in M0 such that there exists
k ∈ {0, . . . , 2n − 1} with xk 6= 0. So it is possible to choose such marked k. If M0 = Fm,

then it has a basis e1, . . . , em as the F -linear space. Therefore, for each 0 6= xj ∈ M0 there
exists an invertible F -linear operator Vxj on M0 such that Vxjxj = xk. If M0 is the F -
linear space such that M0 	 Fy is isomorphic with M0 for each y ∈ M0, then for each
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0 6= xj ∈ M0 there exists an invertible F -linear operator Vxj on M0 such that Vxjxj = xk.

We put V =
⊕2n−1

j=0 V̂xj , where Vxl = idM0 if xl = 0 or if l = k, where V̂xj : M0ij → M0ij,

V̂xj(yij) = (Vxj(y))ij = ij(Vxj(y)) for each y ∈ M0. In view of Theorem 1.1 M0 = CM(B),

hence it is naturally V (bI) = (bI)V for each b in F, where I = idM . Therefore, V is the
left and right F -linear operator on M such that V is invertible on M, since CB(B) = F

in the considered case A0 = F with n ≥ 2. This implies that V x = by with y = xk and
b =

∑
j∈Λx

ij, where Λx =
{
j ∈ {0, . . . , 2n − 1} : xj 6= 0}.

Corollary 1.7. Let B be the division alternative algebra, let M be a B -bimodule with
involution satisfying the conditions of Theorem 1.1, x = by with y ∈M0, b ∈ B. Then

(B{x})<∞> = ({x}B)<∞> = (B{x})<∞,∞>.

1.1. Conclusion

The results of this paper can be used for further studies of a structure of modules over
nonassociative algebras, operator theory in modules over Dickson algebras, their applications
to PDEs, mathematical physics, quantum field theory, their applications in other sciences, etc.

This can be used for analysis and solution of PDEs utilized in gas dynamics and high
energy density physics, hydrodynamics, particularly, describing tidal deformations and the
gravitational potential of the planet [17, 19–21].

It is worth to mention, that spectral theory of operators over Dickson algebras and par-
ticularly Cayley algebras was studied in [15–17]. Therefore, using the results obtained in this
article, it will be important to investigate further operator theory in modules over generalized
Dickson algebras, theory of factors for nonassociative analogs of C∗ -algebras, analogs of direct
integrals for them, applications in coding theory [22], etc.

2. Appendix

D e f i n i t i o n 2.1. Let X be an algebra over a ring F, let M be a X -bimodule and
B ⊆ X. We put

ComM(B) := {x ∈M : ∀b ∈ B, xb = bx};
NM,l(B) := {x ∈M : ∀b ∈ B, ∀c ∈ B, (xb)c = x(bc)};
NM,m(B) := {x ∈M : ∀b ∈ B, ∀c ∈ B, (bx)c = b(xc)};
NM,r(B) := {x ∈M : ∀b ∈ B, ∀c ∈ B, (bc)x = b(cx)};
NM(B) := NM,l(B) ∩NM,m(B) ∩NM,r(B) and

CM(B) := ComM(B) ∩NM(B).

Then ComM(B), NM(B), and CM(B) are called a commutant, a nucleus and a centralizer
correspondingly of the X -bimodule M relative to a subset B in X. Instead of ComM(X),

NM(X), or CM(X) it will be also written shortly ComM , NM , or CM correspondingly.
A left (or right) X -module M is also denoted by XM (or MX correspondingly), similarly

for bimodules.

E x a m p l e 2.1. Particularly over the real field F = A0 = R for Ar(f(r)), 2 ≤ r, up to
normalization of the doubling generator lk on k -th step, a scalar fk ∈ {−1, 1} can be chosen
for each k = 1, 2, . . . (see Definition 1.1 and Remark 1.1). Frequently ā is also denoted by a∗

or ã.
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D e f i n i t i o n 2.2. Let N and M be two left B -modules (see Definition 1.2). A map
T : N →M we call a left B -quasi-linear operator, if it is additive:

T (v + w) = T (v) + T (w)

and left CB(B) -homogeneous:
T (av) = aT (v)

for each a ∈ CB(B), v and w ∈ N.
Evidently, each left B -quasi-linear operator is left CB(B) -linear. Similarly right B -quasi-

linear operators for right B -modules are defined. If N and M are B -bimodules and a map
T : N →M is left and right B -quasi-linear, then T will be called a B -quasi-linear operator.

If for left B -modules N and M the operator T is additive and

T (bv) = bT (v)

for each b ∈ B, v in N, then it will be called left B -linear. Analogously right B -linear
operators for right B -modules are defined. If N and M are B -bimodules and a map T :

N →M is left and right B -linear, then T will be called a B -linear operator.
The operator left or right B -quasi-linear (or left or right B -linear) T : M → M is called

invertible if there exists a left or right B -quasi-linear (or left or right B -linear correspondingly)
operator V : M → M such that TV = I and V T = I, where I = idM , where idM(x) = x

for each x ∈M. Then V is called an inverse operator of T and also denoted by T−1.
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