О ядрах инвариантных операторов Шрёдингера с точечными взаимодействиями. Задача Гриневича–Новикова

Обложка

Цитировать

Полный текст

Аннотация

Согласно Березину–Фаддееву под оператором Шрёдингера с точечными взаимодействиями +j=1mαjδ(xxj),X={xj}1m3,{αj}1m,

понимают любое самосопряжённое расширение сужения x оператора Лапласа  на подмножество {fH2(R3):f(xj)=0,1jm} соболевского пространства H2(3). В настоящей заметке изучаются расширения (реализации), инвариантные относительно группы симметрий множества X={xj}1m вершин правильного m-угольника. Такие реализации HB параметризуются специальными циркулянтными матрицами Bm×m. Мы описываем все такие реализации с нетривиальными ядрами. Решена задача Гриневича–Новикова о простоте нулевого собственного значения реализации HB со скалярной матрицей B=αI и четным m. Показано, что при нечётном m нетривиальные ядра всех реализаций HB со скалярными B=αI двумерны.

Кроме того, для произвольных реализаций BαI доказана оценка dimkerBm1 и описаны все инвариантные реализации с максимальной размерностью dimkerB=m1. Одна из них – расширение Крейна – минимальное положительное расширение оператора x.

Об авторах

М. М. Маламуд

Российский университет дружбы народов

Автор, ответственный за переписку.
Email: malamud3m@gmail.com
Россия, Москва

В. В. Марченко

Московский государственный технический университет им. Н.Э. Баумана

Email: wmarchcnko@rambler.ru
Россия, Москва

Список литературы

  1. Като Т. Теория возмущений линейных операторов. М.: Мир, 1972. 740 с.
  2. Рид M., Саймон Б., Методы современной математической физики. Т. 3. М.: Мир, 1982. 443 с.
  3. Тайманов И.А., Царев С.П. Двумерные операторы Шрёдингера с быстро убывающим рациональным потенциалом и многомерным L2-ядром // УМН. 2007. Т. 62. № 3 (375). С. 217–218.
  4. Тайманов И.А., Царев С.П. Двумерные рациональные солитоны, построенные с помощью преобразований Мутара, и их распад // ТМФ. 2008. Т. 157. № 3. С. 188–207.
  5. Гриневич П.Г., Новиков Р.Г., Многоточечные рассеиватели со связанными состояниями при нулевой энергии // ТМФ. 2017. Т. 193. № 2. С. 309–314.
  6. Березин Ф.А., Фаддеев Л.Д. Замечание об уравнении Шредингера с сингулярным потенциалом // Докл. АН СССР. 1961. Т. 137. № 5. С. 1011–1014.
  7. Гриневич П.Г., Новиков Р.Г. Спектральное неравенство для уравнения Шрёдингера с многоточечным потенциалом // УМН. 2022. Т. 77. № 6 (468). С. 69–76.
  8. Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable Models in Quantum Mechanics: texts and monographs in Physics. Berlin–New York: Springer, 1988. 452 p.
  9. Goloschapova N., Malamud M., Zastavnyi V. Radial Positive definite functions and spectral theory of Schrödinger operators with point interactions // Math. Nachr. 2012. V. 285. N 14–15. P. 1839–1859.
  10. Malamud M.M., Schmudgen K. Spectral theory of Schrödinger operators with infinitely many point interactions and radial positive definite functions // J. Funct. Anal. 2012. N 263 (10). P. 3144–3194.
  11. Маламуд М.М. , Марченко В.В. Инвариантные операторы Шрёдингера с точечными взаимодействиями в вершинах правильного многогранника // Матем. заметки. 2021. Т. 110. № 3. С. 471–477.
  12. Деркач В.О., Маламуд М.М. Теория расширений симметрических операторов и граничные задачи. Киев, 2017. 612 с.
  13. Derkach V.A., Malamud M.M. Generalized resolvents and the boundary value problems for hermitian operators with gaps // J. Funct. Anal. 1991. N 95. P. 1–95.
  14. Горбачук В.И., Горбачук М.Л. Граничные задачи для дифференциально-операторных уравнений, Киев: Наукова думка, 1984. 284 с.
  15. Schmüdgen K. Unboubded Self-adjoint Operators on Hilbert Space. Dordrecht–Heidelberg–New York–London: Springer, 2012.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».