TO A QUESTION OF SULFUR SITES IN CRYSTAL STRUCTURES OF TETRAHEDRITE GROUP MINERALS: RELATIONSHIPS BETWEEN OCCUPANCY, EFFECTIVE ION SIZES, AND UNIT CELL PARAMETERS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, a crystal chemical analysis of the known experimentally deciphered crystal structures of tetrahedrite group minerals was carried out in order to reveal the relationships between the occupancies of anion crystallographic sites in the structures, their effective sizes and unit cell parameters. To achieve this aim, we analyzed the effective sizes of the 24g and 2a anion sites in 68 deciphered crystal structures of tetrahedrite group minerals according to the published data. The analysis was carried out using the TOPOSPro software package by partitioning the space into Voronoi–Dirichlet polyhedra (VDP). It has been shown theoretically for the first time that the content of a large sulfur ion and its deficiency affect the unit cell parameter. A linear correlation between the VDP volume of the anionic site of S2 (24g) and the unit cell parameter in minerals of the tetrahedrite group was established, which shows that the anionic substructure dictates the structural motif in this class of compounds. It was found that the change in the VDP volumes of sulfur anions is associated with different occupancies of anionic sites. It is found that the formula (unit cell) of the compound contains fewer than 13 sulfur ions in almost all deciphered crystal structures of tetrahedrite group minerals. It was concluded that the calculated VDP volume of the 24g anionic position less than 22 Å3 indicates a significant deficit in the anionic substructure. It was shown that, using information about the VDP volumes of all anionic and cationic sites in the structure, it is possible to predict the unit cell parameters of minerals of the tetrahedrite group with an accuracy of 0.01 Å

About the authors

N. G. Lyubimtseva

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: luy-natalia@yandex.ru
Russian Federation, Moscow

E. I. Marchenko

Lomonosov Moscow State University

Email: luy-natalia@yandex.ru
Russian Federation, Moscow

N. N. Eremin

Lomonosov Moscow State University

Email: luy-natalia@yandex.ru
Russian Federation, Moscow

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: luy-natalia@yandex.ru
Russian Federation, Moscow

References

  1. Biagioni C., George L.L., Cook N.J., Makovicky E., Moëlo Y., Pasero M., Sejkora J., Stanley C.J., Welch M.D., Bosi F. The tetrahedrite group: Nomenclature and classification // American Mineralogist. 2020. V. 105. № 1. P. 109–122. https://doi.org/10.2138/am-2020-7128
  2. Мозгова Н.Н., Цепин А.И. Блеклые руды. (Особенности химического состава и свойств). Москва: Наука, 1983.
  3. Любимцева Н.Г., Бортников Н.С., Борисовский С.Е., Прокофьев В.Ю., Викентьева О.В. Блеклая руда и сфалерит золоторудного месторождения Дарасун (Восточное Забайкалье, Россия). Часть 1: Минеральные ассоциации и срастания, химический состав и его эволюция // Геология рудных месторождений. 2018. Т. 60. № 2. С. 109–140. https://doi.org/10.7868/S0016777018020016
  4. Tatsuka K., Morimoto N. Tetrahedrite stability relations in the Cu–Fe–Sb–S system // American Mineralogist. 1977. V. 62. № 11–12. P. 1101–1109.
  5. Бортников Н.С., Некрасов И.Я. Состав и фазовые взаимоотношения теннантита в системе Cu–Fe–As–S при 500°С // Доклады АН СССР. 1987. Т. 297. № 2. С. 449–451.
  6. Luce F.D., Tuttle C.L., Skinner B.J. Studies of sulfosalts of copper: V. Phases and phase relations in the system Cu–Sb–As–S between 350° and 500°C // Economic Geology. 1977. V. 72. № 2. P. 271–289. https://doi.org/10.2113/gsecongeo.72.2.271
  7. Белов Н.В., Победимская Е.А. Очерки по структурной минералогии. XXIV. Повторно о некоторых сульфидах и их аналогах // Минералогический сборник Львовского государственного университета им. И. Франко. 1973. Выпуск 1. № 27. С. 3–9.
  8. Welch M.D., Stanley C.J., Spratt J., Mills S.J. Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+, Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group // European Journal of Mineralogy. 2018. V. 30. № 6. P. 1163–1172. https://doi.org/10.1127/ejm/2018/0030-2773
  9. Biagioni C., Sejkora J., Moëlo Y., Makovicky E., Pasero M., Dolníček Z. Kenoargentotennantite-(Fe), IMA 2020-062. In: CNMNC Newsletter № 58 // Mineralogical Magazine. 2020. V. 84. P. 971–975. https://doi.org/10.1180/mgm.2020.93
  10. Qu K., Sima X., Gu X., Sun W., Fan G., Hou Z., Ni P., Wang D., Yang Z., Wang Y. Kenoargentotetrahedrite-(Zn), IMA 2020-075. In: CNMNC Newsletter № 59 // Mineralogical Magazine. 2021. V. 85. P. 278–281. https://doi.org/10.1180/mgm.2021.5
  11. Shu Z., Shen C., Lu A., Gu X. Chemical Composition and Crystal Structure of Kenoargentotetrahedrite-(Fe), Ag6Cu4Fe2Sb4S12, from the Bajiazi Pb–Zn Deposit, Liaoning, China // Crystals. 2022. V. 12. № 4. P. 467. https://doi.org/10.3390/cryst12040467
  12. Sack R.O., Lyubimtseva N.G., Bortnikov N.S., Anikina E.Y., Borisovsky S.E. Sulfur vacancies in fahlores from the Ag–Pb–Zn Mangazeyskoye ore deposit (Sakha, Russia) // Contributions to Mineralogy and Petrology. 2022. V. 177. № 8. P. 82. https://doi.org/10.1007/s00410-022-01942-5
  13. Rozhdestvenskaya I.V., Zayakina N.V., Samusikov V.P. Crystal structure features of minerals from a series of tetrahedrite-freibergite // Mineralogiceskij Zhurnal. 1993. V. 15. P. 9.
  14. Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied topological analysis of crystal structures with the program package topospro // Cryst. Growth Des. American Chemical Society. 2014. V. 14. № 7. P. 3576–3586. https://doi.org/10.1021/cg500498k

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (97KB)
4.

Download (72KB)

Copyright (c) 2023 Н.Г. Любимцева, Е.И. Марченко, Н.Н. Еремин, Н.С. Бортников

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».