SPECTRAL ANALYSIS OF HEART RATE VARIABILITY BASED ON THE HILBERT-HUANG METHOD

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Analysis of heart rate variability (HRV) is widely used for noninvasive assessment of the state of its regulation systems. The aim of the research was to evaluate the capabilities of the Hilbert-Huang method for calculating spectral parameters of HRV in comparison with the commonly used Fourier analysis. Fourier analysis allows to estimate averaged spectral amplitudes and power of HRV oscillations in fixed frequency intervals, which are associated with the activity of sympathetic, parasympathetic and humoral regulation systems. Using the Hilbert-Huang method, we revealed 4 spectral components, described by Gauss functions, in which HRV oscillations are concentrated, and showed the absence of fixed boundaries between them. The obtained energy quantitative characteristics of the spectral components of heart rhythm oscillations can serve as the basis for diagnostic methods of its regulation, supplementing the commonly used ones.

Авторлар туралы

A. Grinevich

Institute of Cell Biophysics of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: grin_aa@mail.ru
Russian Federation, Pushchino

N. Chemeris

Institute of Cell Biophysics of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: nikolai.chemeris@mail.ru
Russian Federation, Pushchino

Әдебиет тізімі

  1. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology // Circulation. 1996. V. 93. P. 1043–1065.
  2. Huang N.E., Zheng S., Steven R.L., et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis // Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1998. V. 454. P. 903–95.
  3. Тычков А.Ю. Применение модифицированного преобразования Гильберта-Хуанга для решения задач цифровой обработки медицинских сигналов // Известия высших учебных заведений. Поволжский регион. Технические науки. 2018. Т. 3. № 47. С. 70–82.
  4. Гриневич А.А., Гарамян Б.Г., Чемерис Н.К. Локализация механизмов амплитудно-частотной модуляции пульсового кровенаполнения микрососудистого русла мягких тканей. Пилотное исследование // ДАН. 2022. Т. 504. № 3. С. 223–228.
  5. Li H., Kwong S., Yang L., et al. Hilbert-Huang transform for analysis of heart rate variability in cardiac health // IEEE/ACM Trans Comput Biol Bioinform. 2011. V. 8 (6). P. 1557–67.
  6. Lin C.F., Zhu J.D. Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications // Proc Inst Mech Eng H. 2012. V. 226 (3). P. 208–16.
  7. Флейшман А.Н., Кораблина Т.В., Петровский С.А. и др. Сложная структура и нелинейное поведение very low frequency вариабельности ритма сердца: модели анализа и практические приложения // Изв. вузов “ПНД”. 2014. Т. 22. № 1. С. 55–70.
  8. Chang C.C., Hsiao T.C., Hsu H.Y. Frequency range extension of spectral analysis of pulse rate variability based on Hilbert–Huang transform // Med Biol Eng Comput. 2014. V. 52. P. 343–351.
  9. Togo F., Kiyono K., Struzik Z.R., et al. Unique very low-frequency heart rate variability during deep sleep in humans // IEEE Trans Biomed. 2006. V. 53. № 1. P. 28.
  10. Plaza-Florido A., Sacha J., Alcantara J.M.A. Short-term heart rate variability in resting conditions: methodological considerations // Kardiol Pol. 2021. V. 79 (7–8). P. 745–755.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (228KB)

© А.А. Гриневич, Н.К. Чемерис, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».